
Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Document Title Example for a Serialization
Protocol (SOME/IP)

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 637

Document Classification Auxiliary

Document Version 1.0.0

Document Status Final

Part of Release 4.1

Revision 1

Document Change History
Date Version Changed by Description

06.03.2013 1.0.0 AUTOSAR
Administration Initial Release

1 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the Specification Documents for illustration
purposes only, and they themselves are not part of the AUTOSAR Standard. Nei-
ther their presence in such Specification Documents, nor any later documentation of
AUTOSAR conformance of products actually implementing such exemplary items, im-
ply that intellectual property rights covering such exemplary items are licensed under
the same rules as applicable to the AUTOSAR Standard.

2 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Table of Contents

1 Introduction and functional overview 6

2 Acronyms and Abbreviations 8

3 Related documentation 10

3.1 Input documents . 10
3.2 Related standards and norms . 11
3.3 Related specification . 11

4 Constraints and assumptions 12

4.1 Limitations . 12
4.2 Applicability to car domains . 12

5 Dependencies to other modules 13

5.1 File structure . 13
5.1.1 Code file structure . 13
5.1.2 Header file structure . 13

6 Functional specification 14

6.1 Definition of Identifiers . 14
6.2 Specification of the SOME/IP on-wire format 15

6.2.1 Transport Protocol . 15
6.2.1.1 Message Length Limitations 15

6.2.2 Endianess . 16
6.2.3 Header . 16

6.2.3.1 IP-Address / port numbers 17
6.2.3.2 Message ID [32 Bit] . 17
6.2.3.3 Length [32 Bit] . 18
6.2.3.4 Request ID [32 Bit] . 18
6.2.3.5 Protocol Version [8 Bit] 19
6.2.3.6 Interface Major Version [8 Bit] 20
6.2.3.7 Message Type [8 Bit] 20
6.2.3.8 Return Code [8 Bit] . 20
6.2.3.9 Payload [variable size] 21

6.2.4 Serialization of Parameters and Data Structures 21
6.2.4.1 Basic Datatypes . 21
6.2.4.2 Structured Datatypes (structs) 22
6.2.4.3 Strings (fixed length) 24
6.2.4.4 Strings (dynamic length) 24
6.2.4.5 Arrays (fixed length) . 25
6.2.4.6 Optional Fields . 26
6.2.4.7 Dynamic Length Arrays 26
6.2.4.8 Enumeration . 28
6.2.4.9 Union / Variant . 28

3 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.2.4.10 Example Map / Dictionary 29
6.3 RPC Protocol specification . 30

6.3.1 Transport Protocol Bindings . 30
6.3.1.1 UDP Binding . 30
6.3.1.2 TCP Binding . 31
6.3.1.3 Multiple Service-Instances 33

6.3.2 Request/Response Communication 34
6.3.2.1 AUTOSAR Specific . 34

6.3.3 Fire&Forget Communication . 35
6.3.3.1 AUTOSAR Specific . 35

6.3.4 Notification . 35
6.3.4.1 Strategy for sending notifications 35
6.3.4.2 Publish/Subscribe Handling 36
6.3.4.3 AUTOSAR Specific . 36

6.3.5 Fields . 36
6.3.6 Error Handling . 37

6.3.6.1 Transporting Application Error Codes and Exceptions . 37
6.3.6.2 Return Code . 37
6.3.6.3 Error Message Format 38
6.3.6.4 Communication Errors and Handling of Communication

Errors . 39
6.4 Guidelines on SOME/IP . 40

6.4.1 Choosing the transport protocol 40
6.4.2 Implementing Advanced Features in AUTOSAR Applications . . 41
6.4.3 Serialization of Data Structures Containing Pointers 41

6.4.3.1 Array of data structures with implicit ID 42
6.4.3.2 Array of data structures with explicit ID 42

6.5 Compatibility rules for Interface Design (informational) 42
6.6 Transporting CAN and FlexRay Frames 44

6.6.1 AUTOSAR specific . 45
6.7 SOME/IP Service Discovery (SOME/IP-SD) 45

6.7.1 General . 45
6.7.1.1 Terms and Definitions 45

6.7.2 SOME/IP-SD ECU-internal Interface 46
6.7.3 SOME/IP-SD Message Format 47

6.7.3.1 General Requirements 47
6.7.3.2 Header . 48
6.7.3.3 Entry Format . 49
6.7.3.4 Options Format . 51
6.7.3.5 Referencing Options from Entries 58
6.7.3.6 Example . 59

6.7.4 Service Discovery Messages . 60
6.7.4.1 Service Entries . 60
6.7.4.2 Eventgroup Entry . 62

6.7.5 Service Discovery Communication Behavior 64
6.7.5.1 Startup Behavior . 64

4 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.5.2 Server Answer Behavior 66
6.7.5.3 Shutdown Behavior . 67
6.7.5.4 State Machines . 67

6.7.6 Announcing non-SOME/IP protocols with SOME/IP-SD 69
6.7.7 Publish/Subscribe with SOME/IP and SOME/IP-SD 72
6.7.8 Endpoint Handling for Services and Events 80

6.7.8.1 Service Endpoints . 80
6.7.8.2 Eventgroup Endpoints 81
6.7.8.3 Example . 82

6.7.9 Mandatory Feature Set and Basic Behavior 83
6.7.10 SOME/IP-SD Mechanisms and Errors 86

6.8 Migration and Compatibility . 87
6.8.1 Supporting multiple versions of the same service. 87

6.9 Reserved and special identifiers for SOME/IP and SOME/IP-SD. 88

5 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

1 Introduction and functional overview

This document specifies the Scalable service-Oriented middlewarE over IP
(SOME/IP) — an automotive/embedded RPC mechanism and the underlying serial-
ization / wire format — as an example for a Serializatier called by the RTE.

The basic motivation to specify "yet another RPC-Mechanism" instead of using an
existing infrastructure/technology is the goal to have a technology that:

• Fulfills the hard requirements regarding resource consumption in an embedded
world

• Is compatible through as many use-cases and communication partners as possi-
ble

• compatible with AUTOSAR at least on the wire-format level; i.e. can commu-
nicate with PDUs AUTOSARs can receive and send without modification to the
AUTOSAR standard. The mappings within AUTOSAR shall be chosen according
to the SOME/IP specification.

• Provides the features required by automotive use-cases

• Is scalable from tiny to large platforms

• Can be implemented on different operating system (i.e. AUTOSAR, GENIVI, and
OSEK) and even embedded devices without operating system

SOME/IP is only an example for a serializer which can be used for inter-ECU Clien-
t/Server Serialization. An implementation of SOME/IP allows AUTOSAR to parse the
RPC PDUs and transport the signals to the application.

As a consequence this example defines several feature sets. The feature set "basic" is
compatible to AUTOSAR 4.1.1. The other feature sets are in progress to be integrated
into AUTOSAR. The goal is to increase the compatibility towards higher sophisticated
feature sets. It is however possible to use these features in non-AUTOSAR nodes or
to implement them inside the AUTOSAR application with a carefully designed interface
(see Chapter 6.4) and suitable tool chain.

For ECUs not using AUTOSAR the complete feature set can be supported as of today
but a limited set of features can be used in the communication with AUTOSAR ECUs.

SOME/IP and SOME/IP-SD may be implemented in AUTOSAR in different modules.
Currently the Socket Adaptor may write the Message-ID and Length field by means of
the header mode.

For the data path (SOME/IP), the message may be serialized/deserialized by the COM,
an pluggable serializer in the RTE, or a proxy SWS.

For the control path (SOME/IP-SD), the Service Discovery Module implements
SOME/IP-SD including the SOME/IP headers without the Message-ID and Length field
itself.

6 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Figure 1.1: Example for Some/IP in AUTOSAR

7 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the SOME/IP
specification that are not included in the [1, AUTOSAR glossary].

Abbreviation / Acronym: Description:

Method a method, procedure, function, or subroutine that can
be called/invoked

Parameters input, output, or input/output arguments of a method
Remote Procedure Call
(RPC)

a method call from one ECU to another that is trans-
mitted using messages

Request a message of the client to the server invoking a
method

Response a message of the server to the client transporting re-
sults of a method invocation

Request/Response com-
munication a RPC that consists of request and response

Fire&Forget communica-
tion a RPC call that consists only of a request message

Event a Fire&Forget callback that is only invoked on changes
or cyclic and is sent from Server to Client

Field a representation of a remote property, which has up to
one getter, up to one setter, and up to one notifier

Notification Event

an event message the notifier of an field sends. The
message of such a notifier cannot be distinquised from
the event message; therefore, when refering to the
message of an event, this shall also be true for the
messages of notifiers of fields.

Getter a Request/Response call that allows read access to a
field.

Setter a Request/Response call that allows write access to a
field.

Notifier sends out event message with a new value on change
of the value of the field.

Service

a logical combination of zero or more methods, zero or
more events, and zero or more fields (empty service is
allowed, e.g. for announcing non-SOME/IP services in
SOME/IP-SD)

Eventgroup a logical grouping of events and notification events of
fields inside a service in order to allow subscription

Service Interface the formal specification of the service including its
methods, events, and fields

8 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Abbreviation / Acronym: Description:

Service Instance
software implementation of the service interface,
which can exist more than once in the vehicle and
more than once on an ECU

Server The ECU offering a service instance shall be called
server in the context of this service instance.

Client The ECU using the service instance of a server shall
be called client in the context of this service instance.

Union or Variant a data structure that can dynamically assume different
data types.

Offering a service instance
that one ECU implements an instance of a service and
tells other ECUs using SOME/IP-SD that they may use
it.

Finding a service instance to send a SOME/IP-SD message in order to find a
needed service instance.

Requiring a service in-
stance

to send a SOME/IP-SD message to the ECU imple-
menting the required service instance with the mean-
ing that this service instance is needed by the other
ECU. This may be also sent if the service instance is
not running; thus, was not offered yet.

Releasing a service in-
stance

to sent a SOME/IP-SD message to the ECU hosting
this service instances with the meaning that the ser-
vice instance is not longer needed.

Server-Service-Instance-
Entry

the configuration and required data of a service in-
stance the local ECU offers

Client-Service-Instance-
Entry

the configuration and required data of a service in-
stance another ECU offers

Publishing an eventgroup to offer an eventgroup of a service instance to other
ECUs using a SOME/IP-SD message

Subscribing an eventgroup to require an evengroup of a service instance using a
SOME/IP-SD message

9 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

3 Related documentation

3.1 Input documents

[1] Glossary
AUTOSAR_TR_Glossary.pdf

10 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

3.2 Related standards and norms

Not applicable.

3.3 Related specification

Not applicable.

11 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

12 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

5 Dependencies to other modules

There are not dependencides to AUTOSAR SWS modules.

5.1 File structure

5.1.1 Code file structure

Not applicable.

5.1.2 Header file structure

Not applicable.

13 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6 Functional specification

6.1 Definition of Identifiers

[TR_SOMEIP_00001] d A service shall be identified using the Service-ID. c

[TR_SOMEIP_00002] d Service-IDs shall be of type 16 bit length unsigned integer
(uint16). c

[TR_SOMEIP_00003] d The Service-ID of 0xFFFE shall be used to encode non-
SOME/IP services. c

[TR_SOMEIP_00004] d The Service-ID of 0x0000 and 0xFFFF shall be reserved for
special cases. A reference table can be found in [TR_SOMEIP_00515]. c

[TR_SOMEIP_00005] d Different services within the same vehicle shall have different
Service-IDs. c

[TR_SOMEIP_00006] d A service instance shall be identified using the Service-
Instance-ID. c

[TR_SOMEIP_00007] d Service-Instance-IDs shall be of type 16 bit length unsigned
integer (uint16). c

[TR_SOMEIP_00008] d The Service-Instance-IDs of 0x0000 and 0xFFFF shall not be
used for a service, since 0x0000 is reserved and 0xFFFF is used to describe all service
instances. c

[TR_SOMEIP_00009] d Different service instances within the same vehicle shall have
different Service-Instance-IDs.c

Note:
This means that two different camera services shall have two different Service-
Instance-IDs SI-ID-1 and SI-ID-2. For all vehicles of a vehicle project SI-ID-1 shall
be the same. The same is true for SI-ID-2. If considering another vehicle project, dif-
ferent IDs may be used but it makes sense to use the same IDs among different vehicle
projects for ease in testing and integration.

[TR_SOMEIP_00010] d Methods and events shall be identified inside a service using
a 16bit Method-ID, which may be also called Event-ID for events and notifications. c

[TR_SOMEIP_00011] d Methods shall use Method-IDs with the highest bit set to 0,
while the Method-IDs highest bit shall be set to 1 for events and notifications of fields.
c

[TR_SOMEIP_00012] d An eventgroup shall be identified using the Eventgroup-ID. c

[TR_SOMEIP_00013] d Eventgroup-IDs shall be of 16 bit length unsigned integer
(uint16). c

[TR_SOMEIP_00014] d Different eventgroups of a service shall have different
Eventgroup-IDs. c

14 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.2 Specification of the SOME/IP on-wire format

Serialization describes the way data is represented in protocol data units (PDUs) trans-
ported over an IP-based automotive in-vehicle network.

6.2.1 Transport Protocol

[TR_SOMEIP_00016] d SOME/IP may be transported using UDP or TCP. When used
in a vehicle the ports used shall be specified in the Interface Specification. c

[TR_SOMEIP_00021] d If an ECU needs to dynamically use a port number, it shall
follow the rules of IETF and IANA for that:

• Ephermeral ports from range 49152-65535

c

[TR_SOMEIP_00017] d The IP addresses and port numbers an ECU shall use, shall
be taken from the Interface Specification. c

[TR_SOMEIP_00018] d The client shall take the IP address and port number the server
announces using SOME/IP-SD (see Chapter 6.7.3.4.2). c

[TR_SOMEIP_00019] d SOME/IP-SD currently uses port 304901 but this shall be over-
written if another port number is specified in the Interface Specification. c

[TR_SOMEIP_00020] d The port 304902 (UDP and TCP as well) shall be only used for
SOME/IP-SD and not used for applications communicating over SOME/IP. c

[TR_SOMEIP_00022] d It is recommended to use UDP for as many messages as
possible and see TCP as fall-back for message requiring larger size. UDP allows the
application to better control the timeouts and behavior when errors occurring. c

6.2.1.1 Message Length Limitations

[TR_SOMEIP_00023] d In combination with regular Ethernet, IPv4 and UDP can trans-
port packets with up to 1472 Bytes of data without fragmentation, while IPv6 uses
additional 20 Bytes. Especially for small systems fragmentation shall be avoided, so
the SOME/IP header and payload should be of limited length. The possible usage of
security protocols further limits the maximal size of SOME/IP messages. c

[TR_SOMEIP_00024] d When using UDP as transport protocol SOME/IP messages
may use up to 1416 Bytes for the SOME/IP header and payload, so that 1400 Bytes
are available for the payload. c

1Port number 30490 is currently not registered with IANA and might change without further notice.
2Port number 30490 is currently not registered with IANA and might change without further notice.

15 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00025] d The usage of TCP allows for larger streams of data, which may
be used for the SOME/IP header and payload. However, current transport protocols
for CAN and FlexRay as well as AUTOSAR limit messages to 4095 Bytes. When
compatibility to CAN or FlexRay has to be achieved, SOME/IP messages including the
SOME/IP header shall not exceed 4095 Bytes. c

[TR_SOMEIP_00026] d See also [TR_SOMEIP_00061] and [TR_SOMEIP_00139] for
payload length. c

6.2.1.1.1 AUTOSAR restrictions

[TR_SOMEIP_00027] d See AUTOSAR SWS COM Chapter 7.6. c

6.2.2 Endianess

[TR_SOMEIP_00028] d All RPC-Headers shall be encoded in network byte order (big
endian) [RFC 791]. The byte order of the parameters inside the payload shall be de-
fined by the interface definition (i.e. FIBEX or ARXML) and should be in network byte
order when possible and if no other byte order is specified. c

[TR_SOMEIP_00029] d This means that Length and Type fields shall be always in
network byte order. c

6.2.3 Header

[TR_SOMEIP_00030] d For interoperability reasons the header layout shall be identical
for all scales of the SOME/IP and is shown in the Figure 6.1. The fields are presented
in transmission order; i.e. the fields on the top left are transmitted first. In the following
sections the different header fields and their usage is being described. c

[TR_SOMEIP_00031] d

Protocol Version [8 bit] Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]

Request ID (Client ID / Session ID) [32 bit]

Length [32 bit]

Message ID (Service ID / Method ID) [32 bit]

Payload [variable size]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o
ve

re
d
 b

y
 L

e
n
gt

h

16 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Figure 6.1: SOME/IP Header Format

c

6.2.3.1 IP-Address / port numbers

[TR_SOMEIP_00032] d The Layout in Figure 6.1 shows the basic header layout over IP
and the transport protocol used. This format can be easily implemented with AUTOSAR
as well. For details regarding the socket handling see AUTOSAR Socket Adaptor SWS.
c

6.2.3.1.1 Mapping of IP Addresses and Ports

[TR_SOMEIP_00033] d For the response and error message the IP addresses and
port number of the transport protocol shall match the request message. This means:

• Source IP address of response = destination IP address of request.

• Destination IP address of response = source IP address of request.

• Source port of response = destination port of request.

• Destination port of response = source port of request.

• The transport protocol (TCP or UDP) stays the same.

c

6.2.3.2 Message ID [32 Bit]

[TR_SOMEIP_00034] d The Message ID is a 32 Bit identifier that is used to dispatch
the RPC call to a method of an application and to identify a notification. The Message
ID has to uniquely identify a method. c

[TR_SOMEIP_00035] d The assignment of the Message ID is up to the user; however,
the Message ID has to be unique for the whole system (i.e. the vehicle). The Message
ID can be best compared to a CAN ID and should be handled with a comparable
process. The next section describes how structure the Message IDs in order to ease
the organization of Message IDs. c

6.2.3.2.1 Structure of the Message ID

[TR_SOMEIP_00036] d In order to structure the different methods, events, and fields,
they are clustered into services. Services have a set of methods, events, and fields as

17 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

well as a Service ID, which is only used for this service. The events and notification
events may in addition be assigned into a number eventgroups, which simplify the
registration of events and notifies.

An event may be part of zero to many eventgroup and an eventgroup can contain zero
to many events. An field may be part of zero to many eventgroup and an eventgroup
can contain zero to many fields.

c

[TR_SOMEIP_00037] d Currently empty eventgroups are not used and events as well
as fields are mapped to at least one eventgroup. c

[TR_SOMEIP_00038] d For RPC calls we structure the ID in 216 services with 215 meth-
ods:

Service ID [16 Bit] 0 [1 Bit] Method ID [last 15 Bit]

c

[TR_SOMEIP_00039] d With 16 Bit Service-ID and a 16 Bit Method-ID starting with a
0-Bit, this allows for up to 65536 services with up to 32768 methods each. c

[TR_SOMEIP_00040] d Since events and notifications (see Notification or Publish/Sub-
scribe) are transported using RPC, the ID space for the events is further structured:

Service ID [16 Bit] 1 [1 Bit] Event ID [last 15 Bit]

c

[TR_SOMEIP_00041] d This means that up to 32768 events or notifications per service
are possible. c

6.2.3.3 Length [32 Bit]

[TR_SOMEIP_00042] d Length is a field of 32 Bits containing the length in Byte of
the payload beginning with the Request ID/Client ID until the end of the SOME/IP-
message. c

Rationale: Message-ID and Length are not covered since this allows the AUTOSAR
Socket Adaptor header mode to work.

6.2.3.4 Request ID [32 Bit]

[TR_SOMEIP_00043] d The Request ID allows a client to differentiate multiple calls to
the same method. Therefore, the Request ID has to be unique for a single client and
server combination only. When generating a response message, the server has copy

18 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

the Request ID from the request to the response message. This allows the client to
map a response to the issued request even with more than one request outstanding. c

[TR_SOMEIP_00044] d Request IDs might be reused as soon as the response arrived
or is not expected to arrive anymore (timeout). In most automotive use cases a very low
number of outstanding requests are expected. For small systems without the possibility
of parallel requests, the Request ID might always set to the same value. c

[TR_SOMEIP_00045] d For AUTOSAR systems the Request ID needs to be structured
as shown in the next section. Even for non-AUTOSAR systems it is recommended to
encode the callers Client ID as shown in the next section. c

6.2.3.4.1 Structure of the Request ID

[TR_SOMEIP_00046] d In AUTOSAR the Request ID is constructed of the Client ID
and Session ID:

Client ID [16 Bits] Session ID [16 Bits]

c

[TR_SOMEIP_00047] d The Client ID is the unique identifier for the calling client inside
the ECU. The Session ID is a unique identifier chosen by the client for each call. If
session handling is not used, the Session ID shall be set to 0x0000. c

[TR_SOMEIP_00048] d If session handling is used, the Session ID shall start with
0x0001 else it can be set to 0x0000. c

[TR_SOMEIP_00049] d For events and notification events no session handling shall
be used; thus, the Client ID should be set to 0x0000. c

[TR_SOMEIP_00050] d For fire&forget methods, events and notification events the
Session ID should start with 1 and be incremented for every message sent. c

[TR_SOMEIP_00521] d When the Session ID reaches 0xFFFF, it shall start with
0x0001 again. c

[TR_SOMEIP_00051] d The handling of the Request ID in SOME/IP-SD messages is
discussed later in this specification. c

6.2.3.5 Protocol Version [8 Bit]

[TR_SOMEIP_00052] d Protocol Version is an 8 Bit field containing the SOME/IP pro-
tocol version, which currently shall be set to 0x01. c

19 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.2.3.6 Interface Major Version [8 Bit]

[TR_SOMEIP_00053] d Interface Major Version is an 8 Bit field that contains the Major
Version of the Service Interface. c

Rationale: This is required to catch mismatches in Service definitions and allows de-
bugging tools to identify the Service Interface used, if version is used.

6.2.3.7 Message Type [8 Bit]

[TR_SOMEIP_00055] d The Message Type field is used to differentiate different types
of messages and may contain the following values:

Number Value Description
0x00 REQUEST A request expecting a response

(even void)
0x01 REQUEST_NO_RETURN A fire&forget request
0x02 NOTIFICATION A request of a notification/event

callback expecting no response

c

[TR_SOMEIP_00056] d Regular request (message type 0x00) will be answered by
a response (message type 0x80), when no error occurred. If errors occur an error
message (message type 0x81) will be sent. It is also possible to send a request that
does not have a response message (message type 0x01). For updating values through
notification a callback interface exists (message type 0x02). c

6.2.3.8 Return Code [8 Bit]

[TR_SOMEIP_00058] d The Return Code is used to signal whether a request was
successfully been processed. For simplification of the header layout, every message
transports the field Return Code.

The Return Codes are specified in detail in [TR_SOMEIP_00191].

Messages of Type REQUEST, REQUEST_NO_RETURN, and Notification have to set
the Return Code to 0x00 (E_OK). The allowed Return Codes for specific message
types are:

Message Type Allowed Return Codes
REQUEST N/A set to 0x00 (E_OK)
REQUEST_NO_RETURN N/A set to 0x00 (E_OK)
NOTIFICATION N/A set to 0x00 (E_OK)
RESPONSE See Return Codes in [TR_SOMEIP_00191]

20 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

ERROR See Return Codes in [TR_SOMEIP_00191]. Shall
not be 0x00 (E_OK).

c

6.2.3.9 Payload [variable size]

[TR_SOMEIP_00060] d In the payload field the parameters are carried. The serializa-
tion of the parameters will be specified in the following section. c

[TR_SOMEIP_00061] d The size of the SOME/IP payload field depends on the trans-
port protocol used. With UDP the SOME/IP payload can be between 0 and 1400 Bytes.
The limitation to 1400 Bytes is needed in order to allow for future changes to protocol
stack (e.g. changing to IPv6 or adding security means). Since TCP supports segmen-
tation of payloads, larger sizes are automatically supported. c

6.2.4 Serialization of Parameters and Data Structures

[TR_SOMEIP_00062] d The serialization is based on the parameter list defined by the
interface specification. To allow migration of the service interface the deserialization
code shall ignore parameters attached to the end of previously known parameter list;
i.e. parameters that were not defined in the interface specification used to generate or
parameterize the deserialization code. c

[TR_SOMEIP_00063] d The interface specification defines the exact position of all
parameters in the PDU and has to consider the memory alignment. The serialization
shall not try to automatically align parameters but shall be aligned as specified in the
interface specification. SOME/IP payload should be placed in memory so that the
SOME/IP payload is suitable aligned. For infotainment ECUs an alignment of 8 Bytes
(i.e. 64 bits) should be achieved, for all ECU at least an alignment of 4 Bytes shall be
achieved. c

[TR_SOMEIP_00064] d In the following the deserialization of different parameters is
specified. c

6.2.4.1 Basic Datatypes

[TR_SOMEIP_00065] d The following basic datatypes shall be supported:

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8 unsigned Integer 8
uint16 unsigned Integer 16

21 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

uint32 unsigned Integer 32
sint8 signed Integer 8
sint16 signed Integer 16
sint32 signed Integer 32
float32 floating point number 32 IEEE 754 binary32 (Single

Precision)
float64 floating point number 64 IEEE 754 binary64 (Double

Precision)

c

[TR_SOMEIP_00066] d The Byte Order is specified for each parameter by the interface
definition. c

[TR_SOMEIP_00067] d In addition uint64 and sint64 types may be supported. c

6.2.4.1.1 AUTOSAR Specifics

[TR_SOMEIP_00068] d See AUTOSAR SWS COM 7.2.2 (COM675) for supported
data types. c

[TR_SOMEIP_00069] d AUTOSAR COM module shall support endianess conversion
for all Integer types (COM007). c

[TR_SOMEIP_00070] d AUTOSAR defines boolean as the shortest supported un-
signed Integer (Platform Types PLATFORM027). SOME/IP uses 8 Bits. c

6.2.4.2 Structured Datatypes (structs)

[TR_SOMEIP_00071] d The serialization of a struct shall be close to the in-memory
layout. This means, only the parameters shall be serialized sequentially into the buffer.
Especially for structs it is important to consider the correct memory alignment. Insert
reserved/padding elements in the interface definition if needed for alignment, since the
SOME/IP implementation shall not automatically add such padding. c

[TR_SOMEIP_00072] d So if for example a struct includes an uint8 and an uint32,
they are just written sequentially into the buffer. This means that there is no padding
between the uint8 and the first byte of the uint32; therefore, the uint32 might not be
alligned. c

[TR_SOMEIP_00073] d If a SOME/IP generator or similar encounters an interface
specification that leads to an PDU not correctly aligned (e.g. because of an unaligned
struct), the SOME/IP generator shall warn about a misaligned struct but shall not fail in
generating the code. c

22 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00074] d Warning about unaligned structs or similar shall not be done
in the implemenation but only in the toolchain used to generate the implementation. c

[TR_SOMEIP_00075] d Messages of legacy busses like CAN and FlexRay may never
be aligned. Warnings can be turned off or be ignored in such cases. c

[TR_SOMEIP_00076] d A struct shall be serialized exactly as specified. c

[TR_SOMEIP_00077] d The SOME/IP implementation shall not automatically insert
dummy/padding elements. c

[TR_SOMEIP_00078] d

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 6.2: Serialization of Structs

c

[TR_SOMEIP_00079] d The interface specification may add a length field of 8, 16 or
32 Bit in front of the Struct. c

[TR_SOMEIP_00080] d If the length of the length field is not specified, a length of 0
has to be assumed and no length field is in the message. c

[TR_SOMEIP_00081] d The length field of the struct describes the number of bytes of
the struct. If the length is greater than the length of the struct as specified in the Inter-
face Definition only the bytes specified in the Interface Specification shall be interpreted
and the other bytes shall be skipped based on the length field.

This allows for extensible structs which allow better migration of interfaces. c

23 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.2.4.3 Strings (fixed length)

[TR_SOMEIP_00082] d Strings are encoded using Unicode and are terminated with a
"\0"-character despite having a fixed length. The length of the string (this includes the
"\0") in Bytes has to be specified in the interface definition. Fill unused space using
"\0". c

[TR_SOMEIP_00083] d Different Unicode encoding shall be supported including UTF-
8, UTF-16BE, and UTF-16LE. Since these encoding have a dynamic length of bytes
per character, the maximum length in bytes is up to three times the length of characters
in UTF-8 plus 1 Byte for the termination with a "\0" or two times the length of the
characters in UTF-16 plus 2 Bytes for a "\0". c

[TR_SOMEIP_00084] d UTF-16LE and UTF-16BE strings shall be zero terminated
with a "\0" character. This means they shall end with (at least) two 0x00 Bytes. c

[TR_SOMEIP_00085] d UTF-16LE and UTF-16BE strings shall have an even length. c

[TR_SOMEIP_00086] d For UTF-16LE and UTF-16BE strings having a odd length the
last byte shall be ignored. The two bytes before shall be 0x00 bytes (termination). c

[TR_SOMEIP_00087] d All strings must always start with a Byte Order Mark (BOM).
The BOM must be included in fixed-length-strings as well as dynamic-length strings. c

[TR_SOMEIP_00088] d The receiving SOME/IP implementation shall check the BOM
against the Interface Specification and might need to handle this as an error based on
this specification. c

[TR_SOMEIP_00089] d The BOM may be added by the application or the SOME/IP
implementation. c

[TR_SOMEIP_00090] d The String encoding shall be specified in the interface defini-
tion. c

6.2.4.4 Strings (dynamic length)

[TR_SOMEIP_00091] d Strings with dynamic length start with a length field. The length
is measured in Bytes and is followed by the "\0"-terminated string data. The interface
definition shall also define the maximum number of bytes the string (including termina-
tion with "\0") can occupy. c

[TR_SOMEIP_00092] d [TR_SOMEIP_00084], [TR_SOMEIP_00085], and
[TR_SOMEIP_00086] shall also be valid for strings with dynamic length. c

[TR_SOMEIP_00093] d The length of the length field may be 8, 16 or 32 Bit. Fixed
length strings may be seen as having a 0 Bit length field. c

[TR_SOMEIP_00094] d If not specified otherwise in the interface specification the
length of the length field is 32 Bit (default length of length field). c

24 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00095] d The length of the Strings length field is not considered in the
value of the length field; i.e. the length field does not count itself. c

[TR_SOMEIP_00096] d Supported encodings are defined as in Chapter 6.2.4.3. c

[TR_SOMEIP_00097] d If the interface definition hints the alignment of the next data
element the string shall be extended with "\0" characters to meet the alignment. c

6.2.4.5 Arrays (fixed length)

[TR_SOMEIP_00098] d The length of fixed length arrays is defined by the interface
definition. They can be seen as repeated elements. In Chapter 6.2.4.7 dynamic length
arrays are shown, which can be also used. However fixed length arrays can easier be
used in very small devices; thus, both options are being supported. c

6.2.4.5.1 One-dimensional

[TR_SOMEIP_00099] d The one-dimensional arrays with fixed length n carry exactly n
elements of the same type. The layout is shown in Figure 6.3. c

[TR_SOMEIP_00100] d

Static Array a[n]

Element_1 Element_2 Element_3 Element_n

…
element size e

n * e

Figure 6.3: One-dimensional array (fixed length)

c

6.2.4.5.2 Multidimensional

[TR_SOMEIP_00101] d The serialization of multidimensional arrays follows the in-
memory layout of multidimensional arrays in the C++ programming language (row-
major order) and is shown in Figure 6.4. c

[TR_SOMEIP_00102] d

25 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Static Array a[n][m]

Element_1 Element_2 Element_n

…
e

n * (m * e)

E1,1 E1,2 … E1,m

m * e

Figure 6.4: Multidimensional array (fixed length)

c

6.2.4.5.3 AUTOSAR Specifics

[TR_SOMEIP_00103] d Consult AUTOSAR SWS RTE chapter 5.3.4.4 for Arrays. c

6.2.4.6 Optional Fields

[TR_SOMEIP_00105] dOptional Fields shall be encoded as array with 0 to 1 elements.
For the serialization of arrays with dynamic length see Chapter 6.2.4.7. c

6.2.4.7 Dynamic Length Arrays

[TR_SOMEIP_00106] d The layout of arrays with dynamic length basically is based on
the layout of fixed length arrays. To determine the size of the array the serialization
adds a length field (default length 32 bit) in front of the data, which counts the bytes
of the array. The length does not include the size of the length field. Thus, when
transporting an array with zero elements the length is set to zero. c

[TR_SOMEIP_00107] d The Interface Definition may define the length of the length
field. Length of 0, 8, 16, and 32bit are allowed. If the length is set to 0 Bits, the number
of elements in the array has to be fixed; thus, being an array with fixed length. c

[TR_SOMEIP_00108] d The layout of dynamic arrays is shown in 6.5 and Figure 6.6.
c

[TR_SOMEIP_00109] d

26 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Element_1

…

element size e
n [Bytes]

Length n

32 Bit

Element_2 Element_3 Element_n

Figure 6.5: One-dimensional array (dynamic length)

c

[TR_SOMEIP_00110] d In the one-dimensional array one length field is used, which
carries the number of bytes used for the array. c

[TR_SOMEIP_00111] d The number of static length elements can be easily calculated
by dividing by the size of an element. c

[TR_SOMEIP_00112] d In the case of dynamical length elements the number of ele-
ments cannot be calculated but the elements must be parsed sequentially. c

[TR_SOMEIP_00113] d

Element_a[1][j…k_1]

L_1 [Bytes]

Length n

32 Bit

E1,1 E1,2 E1,k_1 … L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 … L_2

32 Bit

…

L_2 [Bytes]
32 Bit

n [Bytes]

Figure 6.6: Multidimensional array (dynamic length)

c

[TR_SOMEIP_00114] d In multidimensional arrays multiple length fields are needed. c

[TR_SOMEIP_00115] d The interface definition should define the maximal length of
each dimension in order to allow for static buffer size allocation by AUTOSAR COM. c

Rationale: When measuring the length in Bytes, complex multi-dimensional arrays can
be skipped over in deserialization.

27 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.2.4.8 Enumeration

[TR_SOMEIP_00117] d The interface definition might specify an enumeration based
on unsigned integer datatypes (uint8, uint16, uint32, uint64). c

6.2.4.9 Union / Variant

[TR_SOMEIP_00118] d A union (also called variant) is a parameter that can contain
different types of elements. For example, if one defines a union of type uint8 and type
uint16, the union may carry an element of uint8 or uint16. It is clear that that when using
different types of elements the alignment of subsequent parameters may be distorted.
To resolve this, padding might be needed. c

[TR_SOMEIP_00119] d The default serialization layout of unions in SOME/IP is as
follows:

Length field [32 bit]
Type field [32 bit]
Element including padding [sizeof(padding) = length - sizeof(element)]

c

[TR_SOMEIP_00120] d The order of the length and type field may be adjusted
by the interface specification. If this is not specified the default layout as in
[TR_SOMEIP_00119] shall be used. c

[TR_SOMEIP_00121] d The length of the length field shall be defined by the Interface
Specification and shall be 32, 16, 8, or 0 bits c

[TR_SOMEIP_00122] d An length field of 0 Bit means that no length field will be written
to the PDU. c

[TR_SOMEIP_00123] d If the length field is 0 Bit, all types in the union shall be of the
same length. c

[TR_SOMEIP_00124] d If the interface specification defines a union with a length field
of 0 Bits and types with different length, a SOME/IP implementation shall warn about
this and use the length of the longest element and pad all others with zeros (0x00). c

[TR_SOMEIP_00125] d If the Interface Specification does not specify the length of the
length field for a union, 32 bit length of the length field shall be used. c

[TR_SOMEIP_00126] d The length field defines the size element and padding in bytes
and does not include the size of the length field and type field. c

[TR_SOMEIP_00127] d The length of the type field may be defined by the Interface
Specification and may be 32, 16, or 8 bits. c

28 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00128] d If the Interface Specification does not specify the length of the
type field of a union, 32 bit length of the type field shall be used. c

[TR_SOMEIP_00129] d The type field describes the type of the element. Possible val-
ues of the type field are defined by the interface specification for each union separately.
The types are encoded as in the interface specification in ascending order starting with
1. The 0 is reserved for the NULL type - i.e. an empty union. The Interface Definition
migth also allow the usgae of NULL. c

[TR_SOMEIP_00130] d The element is serialized depending on the type in the type
field. In conjunction with the length field padding can be added behind the element.
The deserializer shall skip bytes according to the length field. The value of the length
field for each type shall be defined by the interface specification. c

[TR_SOMEIP_00131] d By using a struct different padding layouts can be achieved. c

6.2.4.9.1 Example: Union of uint8/uint16 both padded to 32 bit

[TR_SOMEIP_00132] d In this example a length of the length field is specified as 32
Bits. The union shall support a uint8 and a uint16 as elements. Both are padded to the
32 bit boundary (length=4). c

[TR_SOMEIP_00133] d A uint8 will be serialized like this:

Length = 4 Bytes
Type = 1
uint8 Padding 0x00 Padding 0x00 Padding 0x00

c

[TR_SOMEIP_00134] d A uint16 will be serialized like this:

Length = 4 Bytes
Type = 2
uint16 Padding 0x00 Padding 0x00

c

6.2.4.10 Example Map / Dictionary

[TR_SOMEIP_00135] d Maps or dictionaries can be easily described as an array of
key-value-pairs. The most basic way to implement a map or dictionary would be an
array of a struct with two fields: key and value. Since the struct has no length field, this
is as efficient as a special map or dictionary type could be. When choosing key and
value as uint16, a serialized map with 3 entries looks like this:

29 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Length = 12 Bytes
key0 value0
key1 value1
key2 value2

c

6.3 RPC Protocol specification

This chapter describes the RPC protocol of SOME/IP.

6.3.1 Transport Protocol Bindings

[TR_SOMEIP_00137] d In order to transport SOME/IP messages of IP different trans-
port protocols may be used. SOME/IP currently supports UDP and TCP. Their bindings
are explained in the following sections, while Chapter 6.4 discusses which transport
protocol to choose. c

[TR_SOMEIP_00138] d If a server runs different instances of the same service, mes-
sages belonging to different service instances shall be mapped to the service instance
by the transport protocol port on the server side. c

6.3.1.1 UDP Binding

[TR_SOMEIP_00139] d The UDP binding of SOME/IP is straight forward by trans-
porting SOME/IP messages in UDP packets. The SOME/IP messages shall not be
fragmented. Therefore care shall be taken that SOME/IP messages are not too big,
i.e. up to 1400 Bytes of SOME/IP payload. Messages with bigger payload shall not be
transported over UDP but with e.g. TCP. c

[TR_SOMEIP_00140] d The header format allows transporting more than one
SOME/IP message in a single UDP packet. The SOME/IP implementation can easily
identify the end of a SOME/IP message by means of the SOME/IP length field. Based
on the UDP lengths field SOME/IP can determine if there are additional SOME/IP mes-
sages in the UDP packet. c

[TR_SOMEIP_00141] d Each SOME/IP payload shall have its own SOME/IP header.
c

[TR_SOMEIP_00142] d The receiving SOME/IP implementation must be able to re-
ceive unaligned SOME/IP messages transported by UDP or TCP. c

30 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Rationale: When transporting multiple SOME/IP payloads in UDP or TCP the alignment
of the payloads can be only guaranteed, if the length of every payloads is a multiple of
the alignment size (e.g. 32 bits).

6.3.1.1.1 AUTOSAR specific

[TR_SOMEIP_00145] d Based on the Socket Adaptor concept AUTOSAR can divide
an incoming UDP packet into different I-PDUs. However, not all AUTOSAR implemen-
tations are currently able to combine different I-PDUs and send an UDP-Packet with
more than one SOME/IP message. c

6.3.1.2 TCP Binding

[TR_SOMEIP_00146] d The TCP binding of SOME/IP is heavily based on the UDP
binding. In contrast to the UDP binding, the TCP binding allows much bigger SOME/IP
messages and the transport of SOME/IP messages after each other (pipelining). c

[TR_SOMEIP_00147] d Every SOME/IP payload shall have its own SOME/IP header.
c

[TR_SOMEIP_00148] d In order to lower latency and reaction time, Nagle’s algorithm
shall be turned off (TCP_NODELAY). c

[TR_SOMEIP_00149] dWhen the TCP connection is lost, outstanding requests should
be handled as timeouts. Since TCP handles reliability, additional means of reliability
are not needed. Error handling is discussed in detail in Chapter 6.3.6. c

[TR_SOMEIP_00150] d The client and server shall use a single TCP connection for all
methods, events, and notifications of a service instance. When having more than one
instance of a service a TCP connection per services instance is needed. c

[TR_SOMEIP_00151] d The TCP connection shall be used for as many services as
possible to minimize the number of TCP connections between the client and the server
(basically only one connection per TCP port of server). c

[TR_SOMEIP_00152] d The TCP connection shall be opened by the client, when the
first method call shall be transport or the client tries to receive the first notifications.
Whatever happends first. c

[TR_SOMEIP_00153] d The client is responsible for reestablishing the TCP connection
whenever it fails. c

[TR_SOMEIP_00522] d The TCP connection shall be closed by the client, when the
TCP connection is not required anymore. c

[TR_SOMEIP_00523] d The TCP connection shall be closed by the client, when all
Services the TCP connections was used for are not available anymore (stopped or
time out). c

31 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00524] d The server shall not stop the TCP connection when stoppping
all services the TCP connection was used for but give the client enough time to process
the control data to shutdown the TCP connection itself. c

Rational:
When the server shutsdown the TCP connection before the client recognized that the
TCP is not needed anymore, the client will try to reestablish the TCP connection.

6.3.1.2.1 Allowing resync to TCP stream using Magic Cookies

[TR_SOMEIP_00154] d In order to allow resynchronization to SOME/IP over TCP in
testing and integration scenarios the SOME/IP Magic Cookie Message (Figure 6.7)
shall be used between SOME/IP messages over TCP. c

[TR_SOMEIP_00155] d Before the first SOME/IP message transported in a TCP seg-
ment the SOME/IP Magic Cookie Message shall be included. c

[TR_SOMEIP_00156] d The implementation shall only include up to one SOME/IP
Magic Cookie Message per TCP segment. c

[TR_SOMEIP_00157] d If the implementation has no appropriate access to the mes-
sage segmentation mechanisms and therefore cannot fullfill [TR_SOMEIP_00155] and
[TR_SOMEIP_00156], the implementation shall include SOME/IP Magic Cookie Mes-
sages based on the following heuristic: c

[TR_SOMEIP_00158] d Add SOME/IP Magic Cookie Message once every 10 seconds
to the TCP connection as long as messages are transmitted over this TCP connection.
c

[TR_SOMEIP_00159] d The layout of the Magic Cookie Message is based on
SOME/IP. The fields are set as follows:

• Service ID = 0xFFFF

• Method ID = 0x0000 (for the direction Client to Server)

• Method ID = 0x8000 (for the direction Server to Client)

• Length = 0x0000 0008

• Client ID = 0xDEAD

• Session ID = 0xBEEF

• Protocol Version as specified above ([TR_SOMEIP_00052])

• Interface Version = 0x01

• Message Type = 0x01 (for Client to Server Communication) or 0x02 (for Server
to Client Communication)

• Return Code = 0x00

32 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

c

[TR_SOMEIP_00160] d The layout of the Magic Cookie Messages is shown in
Figure 6.7. c

[TR_SOMEIP_00161] d

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x01

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

= 0xDEAD BEEF

Length [32 bit]

= 0x0000 0008

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 0000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o
ve

re
d

b
y

L
e
n
g
th

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

= 0xDEAD BEEF

Length [32 bit]

= 0x0000 0008

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 8000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
ov

e
re

d
by

 L
e
n
gt

h

Client � Server:

Server � Client:

Figure 6.7: SOME/IP Magic Cookie Message for SOME/IP

c

6.3.1.3 Multiple Service-Instances

[TR_SOMEIP_00162] d Service-Instances of the same Service are identified through
different Instance IDs. Multiple Service-Instances may reside on different ECUs and
also multiple Service-Instances of one or more Services may reside on one single ECU.
c

[TR_SOMEIP_00163] d While different Services can share the same L4-port number,
multiple Service-Instances of the same service on one single ECU shall listen on dif-
ferent ports per Service-Instance. c

Rationale: While Instance IDs are used for Service Discovery, they are not contained
in the SOME/IP header, where the data is transported.

[TR_SOMEIP_00165] d A Service Instance can be identified through the combina-
tion of the Service ID combined with the socket (i.e. IP-address, transport protocol

33 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

(UDP/TCP), and port number). It is recommended that instances use the same port
number for UDP and TCP. If a service instance uses UDP port x, only this instance of
the service and not another instance of the same service should use exactly TCP port
x for its services. c

6.3.2 Request/Response Communication

[TR_SOMEIP_00166] d One of the most common communication patterns is the re-
quest/response pattern. One communication partner (in the following called the client)
sends a request message, which is answered by another communication partner (the
server). c

[TR_SOMEIP_00167] d For the SOME/IP request message the client has to do the
following for payload and header:

• Construct the payload

• Set the Message ID based on the method the client wants to call

• Set the Length field to 8 bytes (for the second part of the SOME/IP header) +
length of the serialized payload

• Optionally set the Request ID to a unique number (shall be unique for client only)

• Set the Protocol Version according [TR_SOMEIP_00052]

• Set the Interface Version according to the interface definition

• Set the Message Type to Request (i.e. 0x00)

• Set the Return Code to 0x00

c

[TR_SOMEIP_00168] d The server builds it header based on the header of the client
and does in addition:

• Construct the payload

• Set the length to the 8 Bytes + new payload size

• Set the Message Type to RESPONSE (i.e. 0x80) or ERROR (i.e. 0x81)

• Set the Return Code.

c

6.3.2.1 AUTOSAR Specific

[TR_SOMEIP_00169] d AUTOSAR may implement Request-Response by means of
the Client/Server-Functionality. For some implementations it might be necessary to im-

34 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

plement the inter-ECU communication by means of the Sender/Receiver-Functionality.
In this case the semantics and syntax of the PDU shall not differ to this specification. c

6.3.3 Fire&Forget Communication

[TR_SOMEIP_00170] d Requests without response message are called fire&forget.
The implementation is basically the same as for Request/Response with the following
differences:

• There is no response message.

• The message type is set to REQUEST_NO_RETURN (i.e. 0x01)

c

[TR_SOMEIP_00171] d fire&forget messages do no return an error. Error handling
and return codes shall be implemented by the application when needed. c

6.3.3.1 AUTOSAR Specific

[TR_SOMEIP_00172] d fire&forget should be implemented using the Sender/Receiver-
Functionality. c

6.3.4 Notification

[TR_SOMEIP_00173] d Notifications describe a general Publish/Subscribe-Concept.
Usually the server publishes a service to which a client subscribes. On certain events
the server will send the client a event, which could be for example an updated value or
an event that occurred. c

[TR_SOMEIP_00174] d SOME/IP is used only for transporting the updated value and
not for the publishing and subscription mechanisms. These mechanisms are imple-
mented by SOME/IP-SD and are explained in Chapter 6.3.4.2. c

[TR_SOMEIP_00175] d When more than one subscribed client on the same ECU ex-
ists, the system shall handle the replication of notifications in order to save transmis-
sions on the communication medium. This is especially important, when notifications
are transported using multicast messages. c

6.3.4.1 Strategy for sending notifications

[TR_SOMEIP_00176] d For different use cases different strategies for sending notifica-
tions are possible and shall be defined in the service interface. The following examples
are common:

35 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• Cyclic update — send an updated value in a fixed interval (e.g. every 300 ms)

• Update on change — send an update as soon as a "value" changes (e.g. door
open)

• Epsilon change — only send an update when the difference to the last value is
greater than a certain epsilon. This concept may be adaptive, i.e. the prediction is
based on a history; thus, only when the difference between prediction and current
value is greater than epsilon an update is transmitted.

c

6.3.4.2 Publish/Subscribe Handling

[TR_SOMEIP_00177] d Publish/Subscribe handling shall be implemented according
to Chapter 6.7.7. c

6.3.4.3 AUTOSAR Specific

[TR_SOMEIP_00178] d Notifications are transported with AUTOSAR
Sender/Receiver-Functionality. In case of different notification receivers within
an ECU, the replication of notification messages can be done for example in the RTE.
This means a event/notification message shall be only sent once to ECU with multiple
receipients. c

6.3.5 Fields

[TR_SOMEIP_00179] d A field shall be a combination of an optional getter, an optional
setter, and an optional notification event. c

[TR_SOMEIP_00180] d A field shall have at least 1 getter or 1 setter or 1 notification
event. c

[TR_SOMEIP_00181] d The getter of a field shall be a request/response call that has
an empty payload in the request mesage and the value of the field in the payload of
the response message. c

[TR_SOMEIP_00182] d The setter of a field shall be a request/response call that has
the desired valued of the field in the payload of the request message and the value that
was set to field in the payload of the response message. c

[TR_SOMEIP_00183] d The notfier shall sent an event message that transports the
value of a field on change and follows the rules for events. c

36 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.3.6 Error Handling

[TR_SOMEIP_00184] d The error handling can be done in the application or the com-
munication layer below. Therefore different possible mechanisms exist. c

6.3.6.1 Transporting Application Error Codes and Exceptions

[TR_SOMEIP_00185] d For the error handling two different mechanisms are sup-
ported. All messages have a return code field to carry the return code. However,
only responses (Message Types 0x80 and 0x81) use this field to carry a return code
to the request (Message Type 0x00) they answer. All other messages set this field to
0x00 (see Chapter 6.2.3.7). For more detailed errors the layout of the Error Message
(Message Type 0x81) can carry specific fields for error handling, e.g. an Exception
String. Error Messages are sent instead of Response Messages. c

[TR_SOMEIP_00186] d This can be used to handle all different application errors that
might occur in the server. In addition, problems with the communication medium or
intermediate components (e.g. switches) may occur, which have to be handled e.g. by
means of reliable transport. c

6.3.6.2 Return Code

[TR_SOMEIP_00187] d The Error Handling is based on an 8 Bit Std_returnType of
AUTOSAR. The two most significant bits are reserved and shall be set to 0. The
receiver of a return code shall ignore the values of the two most significant bits. c

[TR_SOMEIP_00188] d The system shall not return an error message for events/noti-
fications. c

[TR_SOMEIP_00189] d The system shall not return an error message for fire&forget
methods. c

[TR_SOMEIP_00190] d For request/response methods the error message shall copy
over the fields of the SOME/IP header (i.e. Message ID, Request ID, Protocol Version,
and Interface Version) but not the payload. In addition Message Type and Return Code
have to be set to the appropriate values. c

[TR_SOMEIP_00191] d The following Return Codes are currently defined and shall be
implemented as described:

ID Name Description
0x00 E_OK No error occurred
0x01 E_NOT_OK An unspecified error occurred
0x02 E_UNKNOWN_SERVICE The requested Service ID is unknown.
0x03 E_UNKNOWN_METHOD The requested Method ID is unknown. Ser-

vice ID is known.

37 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

0x04 E_NOT_READY Service ID and Method ID are known. Ap-
plication not running.

0x05 E_NOT_REACHABLE System running the service is not reach-
able (internal error code only).

0x06 E_TIMEOUT A timeout occurred (internal error code
only).

0x07 E_WRONG_PROTOCOL_
VERSION

Version of SOME/IP protocol not supported

0x08 E_WRONG_INTERFACE_
VERSION

Interface version mismatch

0x09 E_MALFORMED_MESSAGE Deserialization error. (e.g. length or type
incorrect).

0x09 -
0x1f

RESERVED Reserved for generic SOME/IP errors.
These errors will be specified in future ver-
sions of this document.

0x20 -
0x3f

RESERVED Reserved for specific errors of services and
methods. These errors are specified by the
interface specification.

c

[TR_SOMEIP_00192] d Generation and handling of return codes shall be configurable.
c

6.3.6.3 Error Message Format

[TR_SOMEIP_00194] d For a more flexible error handling, SOME/IP allows the user
to specify a message layout specific for errors instead of using the message layout for
response messages. This is defined by the interface specification and can be used to
transport exceptions of higher level programming languages. c

[TR_SOMEIP_00195] d The recommended layout for the exception message is the
following:

• Union of specific exceptions. At least a generic exception without fields needs to
exist.

• Dynamic Length String for exception description.

c

[TR_SOMEIP_00196] d The union gives the flexibility to add new exceptions in the
future in a type-safe manner. The string is used to transport human readable exception
descriptions to ease testing and debugging. c

38 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.3.6.4 Communication Errors and Handling of Communication Errors

[TR_SOMEIP_00197] d When considering the transport of RPC messages different
reliability semantics exist:

• Maybe — the message might reach the communication partner

• At least once — the message reaches the communication partner at least once

• Exactly once — the message reaches the communication partner exactly once

c

[TR_SOMEIP_00198] d When using these terms in regard to Request/Response the
term applies to both messages (i.e. request and response or error). c

[TR_SOMEIP_00199] d While different implementations may implement different ap-
proaches, SOME/IP currently achieves "maybe" reliability when using the UDP binding
and "exactly once" reliability when using the TCP binding. Further error handling is left
to the application. c

[TR_SOMEIP_00200] d For "maybe" reliability, only a single timeout is needed, when
using request/response communication in combination of UDP as transport protocol.
Figure 6.8 shows the state machines for "maybe" reliability. The client’s SOME/IP
implementation has to wait for the response for a specified timeout. If the timeout
occurs SOME/IP shall signal E_TIMEOUT to the client. c

[TR_SOMEIP_00201] d

processing

reqReceived

waitingForResponse

/ sendReq rspReceived

rspTimeout

/ sendRsp

Error: NoResponse

Client

Server

Figure 6.8: State Machines for Reliability "Maybe"

c

[TR_SOMEIP_00202] d For "exactly once" reliability the TCP binding may be used,
since TCP was defined to allow for reliable communication. c

[TR_SOMEIP_00203] d Additional mechanisms to reach higher reliability may be im-
plemented in the application or in a SOME/IP implementation. Keep in mind that the

39 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

communication does not have to implement these features. Chapter 6.3.6.4.1 de-
scribes such optional reliability mechanisms. c

6.3.6.4.1 Application based Error Handling

[TR_SOMEIP_00204] d The application can easily implement "at least once" reliability
by using idempotent operations (i.e. operation that can be executed multiple times
without side effects) and using a simple timeout mechanism. Figure 6.9 shows the
state machines for "at least once" reliability using implicit acknowledgements. When
the client sends out the request it starts a timer with the timeout specified for the specific
method. If no response is received before the timer expires (round transition at the
top), the client will retry the operation. A Typical number of retries would be 2, so that
3 requests are sent. c

[TR_SOMEIP_00205] d The number of retries, the timeout values, and the timeout
behavior (constant or exponential back off) are outside of the SOME/IP specification
and may be added to the interface definition. c

[TR_SOMEIP_00206] d

processing

reqReceived

/ sendReq,setResTimer,trCnt=0

waitingForResponse

rspReceived

Error: NoResponse

[n==timeoutCounter]

[n>timeoutCounter++] / sendReq,resetResTimer

/ sendRsp

Client

Server

Figure 6.9: State Machines for Reliability "At least once" (idempotent operations)

c

6.4 Guidelines on SOME/IP

6.4.1 Choosing the transport protocol

[TR_SOMEIP_00207] d SOME/IP directly supports the two most used transport proto-
cols of the Internet: User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP). While UDP is a very lean transport protocol supporting only the most important
features (multiplexing and error detecting using a checksum), TCP adds additional fea-

40 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

tures for achieving a reliable communication. TCP can not only handle bit errors but
also segmentation, loss, duplication, reordering, and network congestion; thus, TCP is
the more powerful transport protocol. c

[TR_SOMEIP_00208] d For use inside the vehicle, requirements are not the same as
for the Internet. For many applications, we require a very short timeout to react in a
very short time. These requirements are better met using UDP because the application
itself can handle the unlikely event of errors. For example, in use cases with cyclic
data it is often the best approach to just wait for the next data transmission instead of
trying to repair the last one. The major disadvantage of UDP is that it does not handle
segmentation; thus, only being able to transport smaller chunks of data. c

[TR_SOMEIP_00209] d Guideline:

• Use UDP if very hard latency requirements (<100ms) in case of errors is needed

• Use TCP only if very large chunks of data need to be transported (> 1400 Bytes)
and no hard latency requirements in the case of errors exists

• Try using external transport (Network File System, APIX link, 1722, ...) when
more suited for the use case. Just transport file handle or similar. This gives the
designer more freedom (caching etc).

c

[TR_SOMEIP_00210] d The transport protocol used is specified by the interface spec-
ification on a per-message basis. Methods, Events, and Fields should commonly only
use a single transport protocol. c

6.4.2 Implementing Advanced Features in AUTOSAR Applications

[TR_SOMEIP_00211] d Unfortunately, not all features of SOME/IP can be directly sup-
ported within this release of AUTOSAR (e.g. dynamic length arrays). In the uncommon
case that an advanced feature is needed within an AUTOSAR implementation not sup-
porting it directly, a solution exists: The advanced feature shall be implemented inside
the application by passing the SOME/IP payload or parts of it by means of a uint8 buffer
through AUTOSAR. For AUTOSAR the fields seem to be just a dynamic length uint8
array and shall be configured accordingly. c

6.4.3 Serialization of Data Structures Containing Pointers

[TR_SOMEIP_00213] d For the serialization of data structures containing pointers (e.g.
a tree in memory), the pointers cannot be just transferred using a data type (e.g. uint8)
but shall be converted for transport. Different approaches for the serialization of point-
ers exist. We recommend the following approaches. c

41 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.4.3.1 Array of data structures with implicit ID

[TR_SOMEIP_00214] d When transporting a set of data structures with pointers that
is small enough to fit into a single RPC message:

• Store data structures (e.g. tree nodes) in array

• Use position in array as ID of stored data structure

• Replace pointers with IDs of the data structures pointed to

c

6.4.3.2 Array of data structures with explicit ID

[TR_SOMEIP_00215] dWith larger sets of data structures additional problems have to
be resolved. Since not all data structures fit into a single message the IDs have to be
unique over different messages. This can be achieved in different ways:

• Add an offset field to every message. The ID of an array element will be calcu-
lated by adding the offset to its position in the array. Keep in mind that the offset
needs to be carefully been chosen. If for example every message can contain up
to ten data structures (0-9), the offset could be chosen as 0, 10, 20, 30, and so
on.

• Store an explicit ID by using an array of structs. The first field in the struct will be
an ID (e.g. uint32) and the second field the data structure itself. For security and
reliability reasons the pointer (i.e. the memory address) should never be used
directly as ID.

c

6.5 Compatibility rules for Interface Design (informational)

[TR_SOMEIP_00216] d As for all serialization formats migration towards a newer ser-
vice interface is somewhat limited. Using a set of compatibility rules, SOME/IP allows
for evolution of service interfaces. One can do the following additions and enhance-
ments in a non-breaking way:

• Add new method to a service

– Shall be implemented at server first.

• Add parameter to the end of a method’s in or out parameters

– When the receiver adds them first, a default value has to be defined

– When the sender adds them first, the receiver will ignore them

42 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• Add an exception to the list of exceptions a method can throw

• Should update client first

• If exception is unknown, "unknown exception" needs to thrown. The exception
description string however can be copied over.

• Add new type to union

– Should update receiver first

– Can be skipped if unknown (sender updates first)

• Define a new data type for new methods

• Define a new exception for new methods

c

[TR_SOMEIP_00217] d Not of all these changes can be introduced at the client or
server side first. In some cases only the client or server can be changed first. For
example, when sending an additional parameter with a newer implementation, the older
implementation can only skip this parameter. c

[TR_SOMEIP_00218] d When the receiver of a message adds for example a new
parameter to be received, it has to define a default value. This is needed in the case of
a sender with an older version of the service sends the message without the additional
parameter. c

[TR_SOMEIP_00219] d Some changes in the interface specification can be imple-
mented in a non-breaking way:

• Delete Parameters in Functions

– Need to add default value first at receiver first and parameters need to be at
end of list

• Remove Exceptions from functions

– Trivial at server side

– Client needs to throw "unknown exception", if encountering old exception

• Renaming parameters, functions, and services is possible since the names are
not transmitted. The generated code only looks at the IDs and the ordering of
parameters, which shall not be changed in migration.

c

[TR_SOMEIP_00220] d If the struct is configured by the interface specification to have
a length field, the following is possible:

• Adding / deleting fields to/from the end of structs

c

43 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00221] d Currently not supported are the following changes:

• Reordering parameters

• Replace supertype by subtype (as in object oriented programming languages)

c

6.6 Transporting CAN and FlexRay Frames

[TR_SOMEIP_00222] d SOME/IP should not be used to simply transport CAN or
FlexRay frames. However, the Message ID space needs to be coordinated between
both use cases. c

[TR_SOMEIP_00223] d The full SOME/IP Header shall be used for transporting
CAN/FlexRay. c

[TR_SOMEIP_00224] d The AUTOSAR Socket-Adapter uses the Message ID and
Length to construct the needed internal PDUs but does not look at other fields. There-
fore, one has to encode the CAN ID (11 or 29 bits) or the FlexRay ID (6+6+11 bits) into
the Message ID field. The CAN ID shall be aligned to the least significant bit of the
Message ID. An 11 bit CAN identifier would be therefore transported in the bit position
21 to 31. Refer also to [TR_SOMEIP_00232] c

[TR_SOMEIP_00225] d Especially with the use of 29 Bit CAN-IDs or FlexRay-IDs a lot
of the Message ID space is used. In this case it is recommended to bind SOME/IP
and CAN/FlexRay transports to different transport protocol ports, so that different ID
spaces for the Message IDs exist. c

[TR_SOMEIP_00226] d Keep in mind that when transporting a CAN frame of 8 Byte
over Ethernet an overhead of up to 100 Bytes might be needed in the near future (using
IPv6 and/or security mechanisms). So it is recommended to use larger RPC calls as
shown in the first part of the document instead of small CAN like communication. c

[TR_SOMEIP_00227] d Client ID and Session ID shall be set to 0x0000. c

[TR_SOMEIP_00228] d Depending on the direction, the Message Type shall be set to
0x02 (service provider sends) or 0x00 (service provider receives). The Return Code
shall be always set to 0x00.

c

[TR_SOMEIP_00229] d At least for 11 Bit CAN-IDs the layout of the Message ID shall
be followed [TR_SOMEIP_00038] and [TR_SOMEIP_00040]. This means that the 16th
bit from the left shall be set to 0 or 1 according to the Message ID (0x00 or 0x02). c

[TR_SOMEIP_00230] d Protocol Version shall be set according to
[TR_SOMEIP_00052]. c

[TR_SOMEIP_00231] d Interface Version shall be set according to interface specifica-
tions. c

44 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00232] d If SOME/IP is used for transporting CAN messages with 11
Bits of CAN-ID, the following layout of the Message ID may be used (example):

• Service ID shall be set to a value defined by the system department, e.g. 0x1234

• Event ID is split into 4 Bits specifying the CAN bus, and 11 Bits for the CAN-ID.

This is just an example and the actual layout shall be specified by the System Depart-
ment. c

6.6.1 AUTOSAR specific

[TR_SOMEIP_00233] d Some AUTOSAR-implementations currently do not allow for
sending more than one CAN or FlexRay frame inside an IP packet. All AUTOSAR
implementations shall allow receiving more than one CAN or FlexRay frame inside an
IP packet by use of the length field. c

6.7 SOME/IP Service Discovery (SOME/IP-SD)

6.7.1 General

[TR_SOMEIP_00234] d Service Discovery is used to locate service instances and to
detect if service instances are running as well as Publish/Subscribe handling. c

[TR_SOMEIP_00235] d Inside the vehicular network service instance locations are
commonly known; therefore, the state of the service instance is of primary concern.
The location of the service (i.e. IP-Address, transport protocol, and port number) are
of secondary concern. c

6.7.1.1 Terms and Definitions

[TR_SOMEIP_00236] d Server-Service-Instance-Entry shall include one Interface
Identifier of the interface the service is offered on. c

[TR_SOMEIP_00237] d Client-Service-Instance-Entry shall include one Interface Iden-
tifier of the interface the service is configured to be accessed with. c

[TR_SOMEIP_00238] d Multiple Server-Service-Instance-Entry entries shall be used,
if a service instance needs to be offered on multiple interfaces. c

[TR_SOMEIP_00239] d Multiple Client-Service-Instance-Entry entries shall be used,
if a service instance needs to be configured to be accessed using multiple different
interfaces. c

45 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.2 SOME/IP-SD ECU-internal Interface

[TR_SOMEIP_00240] d Service status shall be defined as up or down as well as re-
quired and released:

• A service status of up shall mean that a service instance is available; thus, it can
be accessed using the communication method specified and is able to fulfil its
specified function.

• A service status of down shall mean the opposite of the service status up.

• A service status of required shall mean that service instance is needed by another
software component in the system to function.

• A service status of released shall mean the opposite of the service status re-
quired.

• The combination of service status up/down with required/released shall be sup-
port. Four different valid combinations shall exist (up+required, up+released,
down+required, down+released).

c

[TR_SOMEIP_00241] d The Service Discovery Interface shall inform local software
components about the status of remote services (up/down). c

[TR_SOMEIP_00242] d The Service Discovery Interface shall offer the option to local
software component to require or release a remote service instance. c

[TR_SOMEIP_00243] d The Service Discovery Interface shall inform local software
components of the require/release status of local services. c

[TR_SOMEIP_00244] d The Service Discovery Interface shall offer the option to local
software component to set a local service status (up/down). c

[TR_SOMEIP_00245] d Eventgroup status shall be defined in the same way the service
status is defined. c

[TR_SOMEIP_00246] d Service Discovery shall be used to turn on/off the events and
notification events of a given eventgroup. Only if another ECU requires an eventgroup
the events and notification events of this eventgroup are sent. (See Subscribe Event
Group). c

[TR_SOMEIP_00247] d The Service Discovery shall be informed of link-up and link-
down events of logical, virtual, and physical communication interfaces that the Service
Discovery is bound to. c

46 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.3 SOME/IP-SD Message Format

6.7.3.1 General Requirements

[TR_SOMEIP_00248] d Service Discovery messages shall be supported over UDP. c

[TR_SOMEIP_00250] d Service Discovery Messages shall start with a SOME/IP
header as depicted Figure 6.10:

• Service Discovery messages shall use the Service-ID (16 Bits) of 0xFFFF.

• Service Discovery messages shall use the Method-ID (16 Bits) of 0x8100.

• Service Discovery messages shall use a uint32 length field as specified by
SOME/IP. That means that the length is measured in bytes and starts with the
first byte after the length field and ends with the last byte of the SOME/IP-SD
message.

• Service Discovery messages shall have a Client-ID (16 Bits) and handle it based
on SOME/IP rules.

• Service Discovery messages shall have a Session-ID (16 Bits) and handle it
based on SOME/IP requirements.

• The Session-ID (SOME/IP header) shall be incremented for every SOME/IP-SD
message sent.

• The Session-ID (SOME/IP header) shall start with 1 and be 1 even after wrapping.

• The Session-ID (SOME/IP header) shall not be set to 0.

• Service Discovery messages shall have a Protocol-Version (8 Bits) of 0x01.

• Service Discovery messages shall have a Interface-Version (8 Bits) of 0x01.

• Service Discovery messages shall have a Message Type (8 bits) of 0x02 (Notifi-
cation).

• Service Discovery messages shall have a Return Code (8 bits) of 0x00 (E_OK).

c

[TR_SOMEIP_00251] d

47 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

Length [32 bit]

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 8100)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

C
o
v
e
re

d
 b

y
L
e
n
g
th

Flags [8 bit] Reserved [24 bit]

Length of Entries Array [32 bit]

Entries Array

Length of Options Array [32 bit]

Options Array

C
o
ve

re
d
 b

y
L
e
n
g
th

C
o
ve

re
d
 b

y
L
e
n
g
th

S
O

M
E

/I
P

S
O

M
E

/I
P

 S
D

Figure 6.10: SOME/IP-SD Header Format

c

6.7.3.2 Header

[TR_SOMEIP_00252] d After the SOME/IP header the SOME/IP-SD Header shall fol-
low as depicted in Figure 6.10. c

[TR_SOMEIP_00253] d The SOME/IP-SD Header shall start out with an 8 Bit field
called Flags. c

[TR_SOMEIP_00254] d The first flag of the SOME/IP-SD Flags field (highest order bit)
shall be called Reboot Flag. c

[TR_SOMEIP_00255] d The Reboot Flag of the SOME/IP-SD Header shall be set to
one for all messages after reboot until the Session-ID in the SOME/IP-Header wraps
around and thus starts with 1 again. After this wrap around the Reboot Flag is set to 0.
c

[TR_SOMEIP_00256] d The information for the reboot flag and the Session ID shall be
kept for multicast and unicast separately. c

[TR_SOMEIP_00257] d SOME/IP-SD implementations shall be able to reliably detect
the reboots of their peer based on these informations. c

[TR_SOMEIP_00258] d The detection of a reboot may be done as follows (with new
the values of the current packet from the communication partner and old the last value

48 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

received before):

if old.reboot==0 and new.reboot==1 then Reboot detected
if old.reboot==1 and new.reboot==1 and old.session_id>=new.session_id then Reboot
detected

The following is not enough since we do not have reliable communication:
if new.reboot==1 and old.session_id>=new.session_id then Reboot detected
c

[TR_SOMEIP_00525] d When the system detects the reboot of a peer, it shall up-
date its state accordingly. Services and Subscriptions shall be expired if they are not
updated again. c

[TR_SOMEIP_00526] d When the system detects the reboot of a peer, it shall reset
the state of the TCP connections to this peer. The client shall reestablish the TCP as
required by the Publish/Subscribe process later. c

[TR_SOMEIP_00259] d The second flag of the SOME/IP-SD Flags (second highest
order bit) shall be called Unicast Flag and shall be set to 1 if SD message receiption
via unicast is supported. c

[TR_SOMEIP_00261] d After the Flags the SOME/IP-SD Header shall have a field of
24 bits called Reserved that is set to 0 until further notice. c

[TR_SOMEIP_00262] d After the SOME/IP-SD Header the Entries Array shall follow. c

[TR_SOMEIP_00263] d The entries shall be processed exactly in the order they arrive.
c

[TR_SOMEIP_00264] d After the Entries Array in the SOME/IP-SD Header an Option
Array shall follow. c

[TR_SOMEIP_00265] d The Entries Array and the Options Array of the SOME/IP-SD
message shall start with a length field as uint32 that counts the number of bytes of the
following data; i.e. the entries or the options. c

6.7.3.3 Entry Format

[TR_SOMEIP_00266] d The service discovery shall work on different entries that shall
be carried in the service discovery messages. The entries are used to synchronize the
state of services intances and the Publish/Subscribe handling. c

[TR_SOMEIP_00267] d Two types of entries exist: A Service Entry Type for Services
and an Eventgroup Entry Type for Eventgroups, which are used for different entries
each. c

[TR_SOMEIP_00268] d A Service Entry Type shall be 16 Bytes of size and include the
following fields in this order as shown in Figure 6.11:

49 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• Type Field [uint8]: encodes FindService (0x00) and OfferService (0x01).

• Index First Option Run [uint8]: Index of the option in the option array.

• Index Second Option Run [uint8]: Index of the option in the option array.

• Number of Options 1 [uint4]: Describes the number of options the first option run
uses.

• Number of Options 2 [uint4]: Describes the number of options the second option
run uses.

• Service-ID [uint16]: Describes the Service-ID of the Service or Service-Instance
concerned by the SD message.

• Instance ID [uint16]: Describes the Service-Instance-ID of the Service Instance
concerned by the SD message or is set to 0xFFFF if all service instances of a
service are meant.

• Major Version [uint8]: Encodes the major version of the service (instance).

• TTL [uint24]: Descibes the lifetime of the entry in seconds.

• Minor Version [uint32]: Encodes the minor version of the service.

c

[TR_SOMEIP_00269] d

Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Index 1st options Index 2nd options # of opt 1 # of opt 2

Service ID Instance ID

Major Version TTL

Minor Version

Figure 6.11: SOME/IP-SD Service Entry Type

c

[TR_SOMEIP_00270] d An Eventgroup Entry shall be 16 Bytes of size and include the
following fields in this order as shown in Figure 6.12:

• Type Field [uint8]: encodes Subscribe (0x06), and SubscribeAck (0x07).

• Index First Option Run [uint8]: Index of the option in the option array.

• Index Second Option Run [uint8]: Index of the option in the option array.

• Number of Options 1 [uint4]: Describes the number of options the first option run
uses.

50 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• Number of Options 2 [uint4]: Describes the number of options the second option
run uses.

• Service-ID [uint16]: Describes the Service-ID of the Service or Service-Instance
the Eventgroup of concern is part of.

• Instance ID [uint16]: Describes the Service-Instance-ID of the Service Instance
the Eventgroup of concern is part of or is set to 0xFFFF if all service instances of
a service are meant.

• Major Version [uint8]: Encodes the major version of the service instance this
eventgroup is part of.

• TTL [uint24]: Descibes the lifetime of the entry in seconds.

• Reserved [uint16]: Shall be set to 0x0000.

• Eventgroup ID [uint16]: Transports the ID of an Eventgroup.

c

[TR_SOMEIP_00271] d

Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Index 1st options Index 2nd options # of opt 1 # of opt 2

Service ID Instance ID

Major Version TTL

Reserved (0x0000) Eventgroup ID

Figure 6.12: SOME/IP-SD Eventgroup Entry Type

c

6.7.3.4 Options Format

[TR_SOMEIP_00272] d Options are used to transport additional information to the
entries. This can be for instance the information how a service instance is reachable
(IP-Address, Transport Protocol, Port Number). c

[TR_SOMEIP_00273] d In order to identify the option type every option shall start with:

• Length [uint16]: Specifies the length of the option in Bytes.

• Type [uint8]: Specifying the type of the option.

c

[TR_SOMEIP_00274] d The length field shall not cover the length field and type field.
c

51 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.3.4.1 Configuration Option

[TR_SOMEIP_00275] d The configuration option may be used to transport abitrary
configuration strings. This allows to encode additional information like the name of a
service or its configuration. c

[TR_SOMEIP_00276] d The format of the Configuration Option shall be as follows:

• Length [uint16]: Shall be set to the total number of bytes occupied by the config-
uration option, excluding the 16 bit length field and the 8 bit type flag.

• Type [uint8]: Shall be set to 0x01.

• Reserved [uint8]: Shall be set to 0x00.

• ConfigurationString [dyn length]: Shall carry the configuration string.

c

[TR_SOMEIP_00277] d The Configuration Option shall specify a set of name-value-
pairs based on the DNS TXT and DNS-SD format. c

[TR_SOMEIP_00278] d The format of the configuration string shall start with a single
byte length field that describes the number of bytes following this length field. c

[TR_SOMEIP_00279] d After each character sequence another length field and a fol-
lowing character sequence are expected until a length field set to 0x00. c

[TR_SOMEIP_00280] d After a length field set to 0x00 no characters follow. c

[TR_SOMEIP_00281] d A character sequence shall encode a key and an optionally a
value. c

[TR_SOMEIP_00282] d The character sequences shall contain an equal character
("=", 0x03D) to devide key and value. c

[TR_SOMEIP_00283] d The key shall not include an equal character and shall be at
least one non-whitespace character. The characters of "Key" shall be printable US-
ASCII values (0x20-0x7E), excluding ’=’ (0x3D). c

[TR_SOMEIP_00284] d The "=" shall not be the first character of the sequence. c

[TR_SOMEIP_00285] d For a character sequence without an ’=’ that key shall be in-
terpreted as present. c

[TR_SOMEIP_00286] d For a character sequence ending on an ’=’ that key shall be
interpreted as present with empty value. c

[TR_SOMEIP_00287] d Multiple entries with the same key in a single Configuration
Option shall be supported. c

[TR_SOMEIP_00288] d The configuration option shall be also used to encode host-
name, servicename, and instancename (if needed). c

52 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00289] d Figure 6.13 shows the format of the Configuration Option and
Figure 6.14 and example for the Configuration Option. c

[TR_SOMEIP_00290] d

Type (=0x01)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length

C
o
ve

re
d
 b

y
L
e
n
g
th

(i
n
cl

.
R

e
s
er

ve
d
)

Zero-terminated Configuration String

([len]id=value[len]id=value[0])

Figure 6.13: SOME/IP-SD Configuration Option

c

[TR_SOMEIP_00291] d

Type (=0x01)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0010)

C
o
ve

re
d
 b

y
L
e
n
g
th

(i
nc

l.
R

e
se

rv
e
d
)[5] cba

= d[7]x

e 1=f

2 [0]3

Figure 6.14: SOME/IP-SD Configuration Option Example

c

6.7.3.4.2 IPv4 Endpoint Option

[TR_SOMEIP_00304] d The IPv4 Endpoint Option shall be used by a SOME/IP-SD
instance to signal the relevant endpoint(s). Endpoints include the local IP address, the
transport layer protocol (e.g. UDP or TCP), and the port number of the sender.

These ports may be used for the events and notification events as well. When using
UDP the server uses the announced port as source port and with TCP the client needs
to open a connection to this port before subscription, so that the server can use this
TCP connection. c

[TR_SOMEIP_00305] d The IPv4 Endpoint Option shall use the Type 0x04. c

[TR_SOMEIP_00306] d The IPv4 Endpoint Option shall specify the IPv4-Address, the
transport layer protocol (ISO/OSI layer 4) used, and its Port Number. c

[TR_SOMEIP_00307] d The Format of the IPv4 Endpoint Option shall be as follows:

53 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• Length [uint16]: Shall be set to 0x0009.

• Type [uint8]: Shall be set to 0x04.

• Reserved [uint8]: Shall be set to 0x00.

• IPv4-Address [uint32]: Shall transport the IP-Address as four Bytes.

• Reserved [uint8]: Shall be set to 0x00.

• L4-Proto [uint8]: Shall be set to the transport layer protocol (ISO/OSI layer 4)
based on the IANA/IETF types (0x06: TCP, 0x11: UDP).

• L4-Port [uint16]: Shall be set to the port of the transport layer protocol (ISO/OSI
layer 4).

c

[TR_SOMEIP_00308] d Figure 6.15 shows the format of the IPv4 Endpoint Option. c

[TR_SOMEIP_00309] d

Type (=0x04)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0009)

C
ov

e
re

d
 b

y
L
e
n
g
th

(in
c
l.

R
e
se

rv
e
d
)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (TCP/UDP/) Port Number

Figure 6.15: SOME/IP-SD IPv4 Endpoint Option

c

[TR_SOMEIP_00310] d The server shall use the IPv4 Endpoint Option with Offer Ser-
vice entries to signal the endpoints he serves the service on. That is upto one UDP
endpoint and upto one TCP endpoint. c

[TR_SOMEIP_00311] d The endpoints the server referenced with an Offer Service
entry shall also be used source of events. That is source IP address and source port
numbers for the transport protocols in the endpoint option. c

[TR_SOMEIP_00312] d The client shall use the IPv4 Endpoint Options with Subscribe
Eventgroup entries to signal his IP address and his UDP and/or TCP port numbers, he
is ready to receive the events with. c

6.7.3.4.3 IPv6 Endpoint Option

[TR_SOMEIP_00313] d The IPv6 Endpoint Option shall be used by a SOME/IP-SD
instance to signal the relevant endpoint(s). Endpoints include the local IP address, the
transport layer protocol (e.g. UDP or TCP), and the port number of the sender.

54 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

These ports may be used for the events and notification events as well. When using
UDP the server uses the announced port as source port and with TCP the client needs
to open a connection to this port before subscription, so that the server can use this
TCP connection. c

[TR_SOMEIP_00314] d The IPv6 Endpoint Option shall use the Type 0x06. c

[TR_SOMEIP_00315] d The IPv6 Endpoint Option shall specify the IPv6-Address, the
Layer 4 Protocol used, and the Layer 4 Port Number. c

[TR_SOMEIP_00316] d The Format of the IPv6 Endpoint Option shall be as follows:

• Length [uint16]: Shall be set to 0x0015.

• Type [uint8]: Shall be set to 0x06.

• Reserved [uint8]: Shall be set to 0x00.

• IPv6-Address [uint128]: Shall transport the IP-Address as 16 Bytes.

• Reserved [uint8]: Shall be set to 0x00.

• L4-Proto [uint8]: Shall be set to the transport layer protocol (ISO/OSI layer 4)
based on the IANA/IETF types (0x06: TCP, 0x11: UDP).

• L4-Port [uint16]: Shall be set to the port of the transport layer protocol (ISO/OSI
layer 4).

c

[TR_SOMEIP_00317] d Figure 6.16 shows the format of the IPv6 Endpoint Option. c

[TR_SOMEIP_00318] d

Type (=0x06)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0015)

C
o
v
e
re

d
 b

y
L
e
n
g
th

(i
n
c
l.

R
e
se

rv
e
d
)

Reserved (=0x00) L4-Proto (TCP/UDP+) Port Number

IPv6-Address [128bit]

Figure 6.16: SOME/IP-SD IPv6 Endpoint Option

c

[TR_SOMEIP_00319] d The server shall use the IPv6 Endpoint Option with Offer Ser-
vice entries to signal the endpoints he serves the service on. That is upto one UDP
endpoint and upto one TCP endpoint. c

55 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00320] d The endpoints the server referenced with an Offer Service
entry shall also be used source of events. That is source IP address and source port
numbers for the transport protocols in the endpoint option. c

[TR_SOMEIP_00321] d The client shall use the IPv6 Endpoint Option with Subscribe
Eventgroup entries to signal his IP address and his UDP and/or TCP port numbers, he
is ready to receive the events with. c

6.7.3.4.4 IPv4 Multicast Option

[TR_SOMEIP_00322] d The IPv4 Multicast Option is used by the server to announce
the IPv4 multicast address, the transport layer protocol (ISO/OSI layer 4), and the port
number the multicast events and multicast notification events are sent to. As transport
layer protocol currently only UDP is supported. c

[TR_SOMEIP_00323] d The IPv4 Multicast Option and not the IPv4 Endpoint Option
shall be referenced by SubscribeEventgroupAck messages. c

[TR_SOMEIP_00324] d The IPv4 Multicast Option shall use the Type 0x14. c

[TR_SOMEIP_00325] d The IPv4 Multicast Option shall specify the IPv4-Address, the
transport layer protocol (ISO/OSI layer 4) used, and its Port Number. c

[TR_SOMEIP_00326] d The Format of the IPv4 Endpoint Option shall be as follows:

• Length [uint16]: Shall be set to 0x0009.

• Type [uint8]: Shall be set to 0x14.

• Reserved [uint8]: Shall be set to 0x00.

• IPv4-Address [uint32]: Shall transport the multicast IP-Address as four Bytes.

• Reserved [uint8]: Shall be set to 0x00.

• L4-Proto [uint8]: Shall be set to the transport layer protocol (ISO/OSI layer 4)
based on the IANA/IETF types (0x11: UDP).

• L4-Port [uint16]: Shall be set to the port of the layer 4 protocol.

c

[TR_SOMEIP_00327] d Figure 6.17 shows the format of the IPv4 Multicast Option. c

[TR_SOMEIP_00328] d

Type (=0x14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0009)

C
ov

e
re

d
 b

y
L
e
n
g
th

(in
c
l.

R
e
se

rv
e
d
)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (UDP//) Port Number

Figure 6.17: SOME/IP-SD IPv4 Multicast Option

56 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

c

[TR_SOMEIP_00329] d The server shall reference the IPv4 Multicast Option stating the
IPv4 Multicast Address and Port Number he will send multicast events and notification
events to. c

6.7.3.4.5 IPv6 Multicast Option

[TR_SOMEIP_00330] d The IPv6 Multicast Option is used by the server to announce
the IPv6 multicast address, the layer 4 protocol, and the port number the multicast
events and multicast notifications events are sent to. For the transport layer protocol
(ISO/OSI layer 4) currently only UDP is supported. c

[TR_SOMEIP_00331] d The IPv6 Multicast Option shall use the Type 0x16. c

[TR_SOMEIP_00332] d The IPv6 Multicast Option shall specify the IPv6-Address, the
transport layer protocol (ISO/OSI layer 4) used, and its Port Number. c

[TR_SOMEIP_00333] d The Format of the IPv6 Multicast Option shall be as follows:

• Length [uint16]: Shall be set to 0x0015.

• Type [uint8]: Shall be set to 0x16.

• Reserved [uint8]: Shall be set to 0x00.

• IPv6-Address [uint128]: Shall transport the multicast IP-Address as 16 Bytes.

• Reserved [uint8]: Shall be set to 0x00.

• L4-Proto [uint8]: Shall be set to the transport layer protocol (ISO/OSI layer 4)
based on the IANA/IETF types (0x11: UDP).

• L4-Port [uint16]: Shall be set to the port of thetransport layer protocol (ISO/OSI
layer 4).

c

[TR_SOMEIP_00334] d Figure 6.18 shows the format of the IPv6 Multicast Option. c

[TR_SOMEIP_00335] d

Type (=0x16)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0015)

C
o
v
e
re

d
 b

y
L
e
n
g
th

(i
n
c
l.

R
e
se

rv
e
d
)

Reserved (=0x00) L4-Proto (UDP/+) Port Number

IPv6-Address [128bit]

57 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Figure 6.18: SOME/IP-SD IPv6 Multicast Option

c

[TR_SOMEIP_00336] d The server shall reference the IPv6 Multicast Option stating the
IPv6 Multicast Address and Port Number he will send multicast events and notification
events to. c

6.7.3.5 Referencing Options from Entries

[TR_SOMEIP_00337] d Using the following fields of the entries, options are referenced
by the entries: c

[TR_SOMEIP_00338] d

• Index First Option Run: Index into array of options for first option run. Index 0
means first of SOME/IP-SD packet.

• Index Second Option Run: Index into array of options for second option run. Index
0 means first of SOME/IP-SD packet.

• Number of Options 1: Length of first option run. Length 0 means no option in
option run.

• Number of Options 2: Length of second option run. Length 0 means no option in
option run.

c

[TR_SOMEIP_00339] d Two different option runs exist: First Option Run and Second
Option Run. c

Rationale for the support of two option runs: Two different types of options are ex-
pected: options common between multiple SOME/IP-SD entries and options different
for each SOME/IP-SD entry. Supporting to different options runs is the most efficient
way to support these two types of options, while keeping the wire format highly efficient.

[TR_SOMEIP_00341] d Each option run shall reference the first option and the number
of options for this run. c

[TR_SOMEIP_00342] d If the number of options is set to zero, the option run is con-
sidered empty. c

[TR_SOMEIP_00343] d For empty runs the Index (i.e. Index First Option Run and/or
Index Second Option Run) shall be set to zero. c

[TR_SOMEIP_00344] d Implementations shall accept and process incoming SD mes-
sages with option run length set to zero and option index not set to zero. c

58 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.3.6 Example

[TR_SOMEIP_00345] d Figure 6.19 shows an example SOME/IP-SD PDU. c

[TR_SOMEIP_00346] d

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

Length [32 bit]

= 64

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 8100)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Flags [8 bit] = 0x80 Reserved [8 bit =0x00]

Length of Entries Array in Bytes [32 bit]

=0x0000 0020

Length of Options Array in Bytes

=12

Type

=0x00 (Find)

Index 1st options

=0

Index 2nd options

=0

of opt 1

=0 (none)

of opt 2

= 0 (none)

Service ID

=0x4711

Instance ID

=0xFFFF (all)

Major Version

=0xff (any)

TTL

=3600 (search is valid for 1h)

Minor Version

=0xFFFF FFFF (any)

Type

=0x01 (Offer)

Index 1st options

=0

Index 2nd options

=0

of opt 1

=1

of opt 2

=0 (none)

Service ID

=0x1234

Instance ID

=0x0001

Major Version

=0x01

TTL

=3 (offer is valid for 3 seconds)

Minor Version

=0x00000032

Type

=0x04 (IPv4 Endpoint)

Reserved

=0x00

Length

=0x0009

IPv4-Address = 192.168 .0.1

Reserved

=0x00

L4-Proto

=0x11 (UDP)

Port Number

=0xD903 (=55555)

S
O

M
E

/I
P

S
O

M
E

/I
P

 S
D

Figure 6.19: SOME/IP-SD Example PDU

c

59 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.4 Service Discovery Messages

[TR_SOMEIP_00347] d Using the previously specified header format, different entries
and messages consisting of one or more entries can be built. The specific entries and
there header layouts are explained in the following sections. c

[TR_SOMEIP_00348] d For all entries the following shall be true:

• Index First Option Run, Index Second Option Run, Number of Options 1, and
Number of Options 2 shall be set according to the chained options.

c

6.7.4.1 Service Entries

[TR_SOMEIP_00349] d Entries concerned with services shall be based on the Service
Entry Type Format as specified in [TR_SOMEIP_00268]. c

6.7.4.1.1 Find Service Entry

[TR_SOMEIP_00350] d The Find Service entry type shall be used for finding service
instances and shall only be sent if the current state of a service is unknow (no current
Service Offer was received and is still being valid). c

[TR_SOMEIP_00351] d Find Service entries shall set the entry fields in the following
way:

• Type shall be set to 0x00 (FindService).

• Service ID shall be set to the Service ID of the service that shall be found.

• Instance ID shall set to 0xFFFF, if all service instances shall be returned. It shall
be set to the Instance ID of a specific service instance, if just a single service
instance shall be returned.

• Major Version shall be set to 0xFF, that means that services with any version shall
be returned. If set to value different than 0xFF, services with this specific major
version shall be returned only.

• Minor Version shall be set to 0xFFFF FFFF, that means that services with any
version shall be returned. If set to a value diffent to 0xFFFF FFFF, services with
this specific minor version shall be returned only.

• TTL shall be set to the lifetime of the Find Service entry. After this lifetime the
Find Service entry shall be considered not existing.

• If set to 0xFFFFFF, the Find Service entry shall be considered valid until the next
reboot.

60 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• TTL shall not be set to 0x000000 since this is considered to be the Stop entry for
this entry.

c

6.7.4.1.2 Offer Service Entry

[TR_SOMEIP_00355] d The Offer Service entry type shall be used to offer a service to
other communication partners. c

[TR_SOMEIP_00356] d Offer Service entries shall set the entry fields in the following
way:

• Type shall be set to 0x01 (OfferService).

• Service ID shall be set to the Service ID of the service instance offered.

• Instance ID shall be set to the Instance ID of the service instance offered.

• Major Version shall be set to the Major Version of the service instance offered.

• Minor Version shall be set to the Minor Version of the service instance offered.

• TTL shall be set to the lifetime of the service instance. After this lifetime the
service instance shall considered not been offered.

• If set to 0xFFFFFF, the Offer Service entry shall be considered valid until the next
reboot.

• TTL shall not be set to 0x000000 since this is considered to be the Stop entry for
this entry.

c

[TR_SOMEIP_00357] d Offer Service entries shall always reference at least an IPv4
or IPv6 Endpoint Option to signal how the service is reachable. c

[TR_SOMEIP_00358] d For each L4 protocol needed for the service (i.e. UDP and/or
TCP) an IPv4 Endpoint option shall be added if IPv4 is supported. c

[TR_SOMEIP_00359] d For each L4 protocol needed for the service (i.e. UDP and/or
TCP) an IPv6 Endpoint option shall be added if IPv6 is supported. c

[TR_SOMEIP_00360] d The IP addresses and port numbers of the Endpoint Options
shall also be used for transporting events and notification events: c

[TR_SOMEIP_00361] d In the case of UDP this information is used for the source
address and the source port of the events and notification events. c

[TR_SOMEIP_00362] d In the case of TCP this is the IP address and port the client
needs to open a TCP connection to in order to receive events using TCP. c

61 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.4.1.3 Stop Offer Service Entry

[TR_SOMEIP_00363] d The Stop Offer Service entry type shall be used to stop offering
service instances. c

[TR_SOMEIP_00364] d Stop Offer Service entries shall set the entry fields exactly like
the Offer Service entry they are stopping, except:

• TTL shall be set to 0x000000.

c

6.7.4.2 Eventgroup Entry

[TR_SOMEIP_00374] d Entries concerned with services follow the Eventgroup Entry
Type Format as specified in [TR_SOMEIP_00270]. c

6.7.4.2.1 Subscribe Eventgroup Entry

[TR_SOMEIP_00385] d The Subscribe Eventgroup entry type shall be used to sub-
scribe to an eventgroup. This can be considered comparable to the Request Service
entry type. c

[TR_SOMEIP_00386] d Subscribe Eventgroup entries shall set the entry fields in the
following way:

• Type shall be set to 0x06 (SubscribeEventgroup).

• Service ID shall be set to the Service ID of the service instance that includes the
eventgroup subscribed to.

• Instance ID shall be set to the Instance ID of the service instance that includes
the eventgroup subscribed to.

• Major Version shall be set to the Major Version of the service instance of the
eventgroup subscribed to.

• Eventgroup ID shall be set to the Eventgroup ID of the eventgroup subscribed to.

• Major Version shall be set to the Major Version of the service instance that in-
cludes the eventgroup subscribed to.

• TTL shall be set to the lifetime of the eventgroup. After this lifetime the eventgroup
shall considered not been subscribed to.

• If set to 0xFFFFFF, the Subscribe Eventgroup entry shall be considered valid until
the next reboot.

• TTL shall not be set to 0x000000 since this is considered to be the Stop entry for
this entry.

62 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

c

[TR_SOMEIP_00387] d Subscribe Eventgroup entries shall reference one or two IPv4
and/or one or two IPv6 Endpoint Options (one for UDP, one for TCP). c

6.7.4.2.2 Stop Subscribe Eventgroup Entry

[TR_SOMEIP_00388] d The Stop Subscribe Eventgroup entry type shall be used to
stop subscribing to eventgroups. c

[TR_SOMEIP_00389] d Stop Subscribe Eventgroup entries shall set the entry fields
exactly like the Subscribe Eventgroup entry they are stopping, except:

• TTL shall be set to 0x000000.

c

6.7.4.2.3 Subscribe Eventgroup Acknowledgement (Subscribe Eventgroup
Ack) Entry

[TR_SOMEIP_00390] d The Request Eventgroup Acknowledgment entry type shall be
used to indicate that Suibscribe Eventgroup entry was accepted. c

[TR_SOMEIP_00391] d Subscribe Eventgroup Acknowledgment entries shall set the
entry fields in the following way:

• Type shall be set to 0x07 (SubscribeEventgroupAck).

• Service ID, Instance ID, Major Version, Eventgroup ID, TTL, and Reserved shall
be the same value as in the Subcribe that is being answered.

c

[TR_SOMEIP_00392] d Subscribe Eventgroup Ack entries referencing events and no-
tification events that are transported via multicast shall reference an IPv4 Multicast Op-
tion and/or and IPv6 Multicast Option. The Multicast Options state to which Multicast
address and port the events and notification events will be sent to. c

6.7.4.2.4 Subscribe Eventgroup Negative Acknowledgement (Subscribe Event-
group Nack) Entry

[TR_SOMEIP_00393] d The Subscribe Eventgroup Negative Acknowledgment entry
type shall be used to indicate that Subscribe Eventgroup entry was NOT accepted. c

[TR_SOMEIP_00394] d Subscribe Eventgroup Negative Acknowledgment entries shall
set the entry fields in the following way:

• Type shall be set to 0x07 (SubscribeEventgroupAck).

63 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• Service ID, Instance ID, Major Version, Eventgroup ID shall, and Reserved be the
same value as in the subscribe that is being answered.

• The TTL shall be set to 0x000000.

c

[TR_SOMEIP_00527] d When the client receives a SubscribeEventgroupNack as an-
swer on a SubscribeEventgroup for which a TCP connection is required, the client shall
check the TCP connection and shall restart the TCP connection if needed. c

Rational: The server might have lost the TCP connection and the client has not.

Checking the TCP connection might include the following:

• Checking whether data is received for e.g. other Eventgroups.

• Sending out a Magic Cookie message and waiting for the TCP ACK.

• Reestablishing the TCP connection.

6.7.5 Service Discovery Communication Behavior

6.7.5.1 Startup Behavior

[TR_SOMEIP_00395] d For each Service Instance or Eventgroup the Service Discov-
ery shall have at least these three phases in regard to sending entries:

• Initial Wait Phase

• Repetition Phase

• Main Phase

c

[TR_SOMEIP_00396] d An actual implemented state machine will need more than just
states for these three phases. E.g. local services can be still down, remote services
can be already found (no finds needed anymore). c

[TR_SOMEIP_00397] d As soon as the system has started and the link on a interface
needed for a Service Instance is up (server) or requested (client), the service discovery
enters the Initial Wait Phase for this service instance. c

[TR_SOMEIP_00398] d Systems has started means here the needed applications and
possible external sensors and actuators as well. Basically the functionality needed by
this service instance has to be ready to offer a service and finding a service makes
only sense after some application already needs it. c

[TR_SOMEIP_00399] d The Service Discovery implementation shall wait based on
the INITIAL_DELAY after entering the Initial Wait Phase and before sending the first
messages for the Service Instance. c

64 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00400] d INITIAL_DELAY shall be defined as a minimum and a maxi-
mum delay. c

[TR_SOMEIP_00401] d The wait time shall be determined by choosing a random value
between the minimum and maximum of INITIAL_DELAY. c

[TR_SOMEIP_00402] d The Service Discovery shall use the same random value for
multiple entries of different types in order to pack them toghether for a reduced number
of messages. c

[TR_SOMEIP_00403] d The Service Discovery shall also pack entries together, when
no random delay is involved. For example shall all SubscribeEventgroup entries of a
message be answered together in one message. c

[TR_SOMEIP_00404] d After sending the first message the Repetition Phase of this
Service Instance/these Service Instances is entered. c

[TR_SOMEIP_00405] d The Service Discovery implementation shall wait in the Repe-
titions Phase based on REPETITIONS_BASE_DELAY. c

[TR_SOMEIP_00406] d After each messages sent in the Repetition Phase the delay
is doubled. c

[TR_SOMEIP_00407] d The Service Discovery shall send out only up to REPETI-
TIONS_MAX entries during the Repetition Phase. c

[TR_SOMEIP_00408] d Sending Find entries shall be stopped after receiving the cor-
responding Offer entries by jumping to the Main Phase in which no Find entries are
sent. c

[TR_SOMEIP_00409] d If REPETITIONS_MAX is set to 0, the Repetition Phase shall
be skipped and the Main Phase is entered for the Service Instance after the Initial Wait
Phase. c

[TR_SOMEIP_00410] d After the Repetition Phase the Main Phase is being entered
for a Service Instance. c

[TR_SOMEIP_00411] d After entering the Main Phase 1*CYCLIC_OFFER_DELAY is
waited before sending the first message. c

[TR_SOMEIP_00412] d In the Main Phase Offer Messages and Publish Messages
shall be sent cyclically if a CYCLIC_OFFER_DELAY is configured. c

[TR_SOMEIP_00413] d After a message for a specific Service Instance the Service
Discovery waits for 1*CYCLIC_OFFER_DELAY before sending the next message for
this Service Instance. c

[TR_SOMEIP_00414] d For Requests/Subscriptions the same cyclic behavior
in Main Phase as for the Offers shall be implemented with the parameter
CYCLIC_REQUEST_DELAY instead of CYCLIC_OFFER_DELAY. c

[TR_SOMEIP_00415] d For Find entries (Find Service and Find Eventgroup) no cyclic
messages are allowed in Main Phase. c

65 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00416] d Example:

Initial Wait Phase:

• Wait for random_delay in Range(INITIAL_DELAY_MIN, _MAX)

• Send message

Repetition Phase (REPETITIONS_BASE_DELAY=100ms, REPETITIONS_MAX=2):

• Wait 20 ∗ 100ms

• Send message

• Wait 21 ∗ 100ms

• Send message

• Wait 22 ∗ 100ms

Main Phase (as long message is active and CYCLIC_OFFER_DELAY is defined):

• Send message

• Wait CYCLIC_OFFER_DELAY

c

6.7.5.2 Server Answer Behavior

[TR_SOMEIP_00417] d The Service Discovery shall delay answers to entries that were
transported in a multicast/broadcast SOME/IP-SD message using the configuration
item REQUEST_RESPONSE_DELAY.

This applies to FindService entries.

c

[TR_SOMEIP_00418] d The REQUEST_REPONSE_DELAY shall also apply to unicast
messages triggered by multicast meessages (e.g. Subscribe Eventgroup after Offer
Service). c

[TR_SOMEIP_00419] d The REQUEST_RESPONSE_DELAY shall not apply if unicast
messages are answered with unicast messages. c

[TR_SOMEIP_00420] d REQUEST_RESPONSE_DELAY shall be specified by a mini-
mum and a maximum. c

[TR_SOMEIP_00421] d The actual delay shall be randomly chosen between minimum
and maximum of REQUEST_RESPONSE_DELAY. c

[TR_SOMEIP_00422] d For basic implementations all Find Service entries (no matter
of the state of the Unicast Flag) shall be answered with Offer Service entries trans-
ported using unicast. c

66 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00423] d As optimization the following behavior shall be activatable: c

[TR_SOMEIP_00424] d Find messages received with the Unicast Flag set to 1, shall
be answered with a unicast response if the last offer was sent when the last message
was sent less than 1/2 CYCLIC_OFFER_DELAY (for requests/subscribes this is 1/2
CYCLIC_REQUEST_DELAY) ago. c

[TR_SOMEIP_00425] d Find messages received with the Unicast Flag set to
1, shall be answered with a multicast reponse if the last offer was sent
1/2 CYCLIC_OFFER_DELAY or longer ago (for requests/subscribes this is 1/2
CYCLIC_REQUEST_DELAY or longer). c

[TR_SOMEIP_00426] d Find messages received with Unicast Flag set to 0 (multicast),
shall answered with a multicast response. c

6.7.5.3 Shutdown Behavior

[TR_SOMEIP_00427] d When a server service instance of an ECU is being stopped,
a Stop Offer Service entry shall be sent out. c

[TR_SOMEIP_00428] d When a server sends out a Stop Offer Service entry all sub-
scriptions for this service instance shall be deleted on the server side. c

[TR_SOMEIP_00429] d When a server sends out a Stop Offer Service entry all sub-
scriptions for this service instance shall be deleted on the client side. c

[TR_SOMEIP_00430] d When a client receives a Stop Offer Service entry, the client
shall not sent out finds but wait for offers or change of status (application, network
management, ethernet link, or similar). c

[TR_SOMEIP_00431] d When a client service instance of an ECU is being stopped
(i.e. the service instance is released), the SD shall sent out Stop Subscribe Eventgroup
entries for all subscribed Eventgroups. c

[TR_SOMEIP_00432] d When the whole ECUs is being shut down Stop Offer Service
entries shall be sent out for all service entries and Stop Subscribe Eventgroup entries
for Eventgroups. c

6.7.5.4 State Machines

[TR_SOMEIP_00433] d In this section the state machines of the client and server are
shown. c

[TR_SOMEIP_00434] d

67 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

 stm SD Serv er State Machine (Serv ices)

SD Serv er State Machine (Serv ices)

Initial

Not Ready

Ready

Initial Wait Phase

Repetition Phase

Main Phase

Ini tial

Initial
Timer set

Initial

Timer set

Initial Timer set

Timer expired [run<REPETITIONS_MAX]

/send(OfferService)

run++

setTimer((2^run)*REPETITIONS_BASE_DELAY)

[ifstatus==up_and_configured

and service-status==up]

if-status-changed() or service-status-changed()

[i fstatus==up_and_configured and

service-status==up]

SetTimerInRange(INITIAL_DELAY_MIN,

INITIAL_DELAY_MAX)

Timer expired

/send(OfferService)

[ifstatus!=up_and_configured

or service-status==down]

[REPETITIONS_MAX>0]

/run=0

setTimer((2^run)*REPETITIONS_BASE_DELAY)

service-status==down

/clearAllTimers()

send(StopOfferService)

Timer expired

[run==REPETITIONS_MAX]

receive(FindService)

/waitAndSend(OfferService)

resetTimer()

/setTimer(CYCLIC_ANNOUNCE_DELAY)

send(OfferService)

Timer expired

/setTimer(CYCLIC_ANNOUNCE_DELAY)

send(OfferService)

i f-status-changed [i fstatus!=up_and_configured]

/clearAllTimers()

receive(FindService)

/waitAndSend(OfferService)

ResetTimer()

[REPETITIONS_MAX==0]

Figure 6.20: SOME/IP Service State Machine Server

c

[TR_SOMEIP_00435] d

68 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

 stm SD Client State Machine (Serv ices)

SD Client State Machine (Serv ices)

Searching for Serv ice

Initial Wait Phase

Initial

Not Requested

Serv ice Not Seen Serv ice Seen

Requested_but_not_Ready

Serv ice Ready

Initial
Timer Set

Repetition Phase

Initial

Timer Set

Initial

Initial

Stopped

i f-status-changed()

[ifstatus==up_and_configured]

receive(StopServiceOffer)

Timer expired (TTL)

[ServiceNotRequested]

InternalServiceRequest

[ifstatus!=up_and_configured]

[ServiceRequested and

ifstatus!=up_and_configured]

[ServiceRequested and

ifstatus==up_and_configured]

if-status-changed() [ifstatus!=up_and_configured]

InternalServiceRequest

[ifstatus==up_and_configured]

receive(OfferService)

/setTimer(TTL)

receive(ServiceOffer)

/resetTimer(TTL)

receive(OfferService)

/setTimer(TTL)

/setTimerInRange(INITIAL_DELAY_MIN,

INITIAL_DELAY_MAX)

Timer Expired

/send(FindService)

[REPETITIONS_MAX>0]

/run=0

setTimer((2^run)*REPETITIONS_BASE_DELAY)

[run<REPETITIONS_MAX]

/send(FindService)

run++

setTimer((2^run)*REPETITIONS_BASE_DELAY)

if-status-changed()

[ifstatus!=up_and_configured]

/cancelTimer(TTL)
Timer expired (TTL)

receive(StopOfferService)

/cancelTimer(TTL)

receive(OfferService)

/resetTimer(TTL)
receive(OfferService)

/resetTimer(TTL)

Figure 6.21: SOME/IP Service State Machine Client

c

6.7.6 Announcing non-SOME/IP protocols with SOME/IP-SD

[TR_SOMEIP_00436] d Besides SOME/IP other communication protocols are used
within the vehicle; e.g. for Network Management, Diagnosis, or Flash Updates. Such
communications protocols might need to communicate a service instance or have
eventgroups as well. c

69 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00437] d For Non-SOME/IP protocols a special Service-ID shall be used
and further informationen shall be added using the configuration option:

• Service-ID shall be set to 0xFFFE (reserved)

• Instance-ID shall be used as described for SOME/IP services and eventgroups.

• The Configuration Option shall be added and shall contain at least a entry with
key "otherserv" and a configurable non-empty value that is determined by the
system department.

c

[TR_SOMEIP_00438] d SOME/IP services shall not use the otherserv-string in the
Configuration Option. c

[TR_SOMEIP_00439] d For Find Service/Offer Service/Request Service entries the
otherserv-String shall be used when announcing non-SOME/IP service instances. c

[TR_SOMEIP_00440] d Example for valid otherserv-string: "otherserv=internaldiag".
Example for a unvalid otherserv-string: "otherserv".
Example for a unvalid otherserv-string: "otherserv=". c

[TR_SOMEIP_00441] d

70 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

Length [32 bit]

= 0x0000 005 C (92)

Message ID (Service ID / Method ID) [32 bit]

(= 0xFFFF 8100)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Flags [8 bit] = 0x80 Reserved [8 bit =0x00]

Length of Entries Array in Bytes [32 bit]

=0x0000 0020 (32)

Length of Options Array in Bytes

= 0x0000 0028 (40)

Type

=0x00 (Find)

Index 1st options

=0

Index 2nd options

=0

of opt 1

=0 (none)

of opt 2

= 0 (none)

Service ID

=0x1001

Instance ID

=0xFFFF (all)

Major Version

=0xff (any)

TTL

=3600 (search is valid for 1h)

Minor Version

=0xFFFF FFFF (any)

Type

=0x01 (Offer)

Index 1st options

=0

Index 2nd options

=0

of opt 1

=2

of opt 2

=0 (none)

Service ID

=0xFFFE

Instance ID

=0x0001

Major Version

=0x01

TTL

=3 (offer is valid for 3 seconds)

Minor Version

=0x00000032

Type

=0x04 (IPv4 Endpoint)

Reserved

=0x00

Length

=0x0009

IPv4-Address = 192.168 .0.1

Reserved

=0x00

L4-Proto

=0x06 (TCP)

S
O

M
E

/I
P

S
O

M
E

/I
P

 S
D

[0x16]otherserv=internaldiag [0]

Type

=0x01 (Config)

Reserved

=0x00

Length

=0x0025

Port Number

=0x1A91 (Port 6801)

Figure 6.22: SOME/IP-SD Example PDU for Non-SOME/IP-SD

c

71 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.7 Publish/Subscribe with SOME/IP and SOME/IP-SD

[TR_SOMEIP_00442] d In contrast to the SOME/IP request/response mechanism
there may be cases where a client requires a set of parameters from a server, but
does not want to request that information each time it is required. These are called
notifications and concern events and fields. c

[TR_SOMEIP_00443] d Clients may register using the SOME/IP-SD at run-time with a
server in order to receive notifications. c

[TR_SOMEIP_00444] d

Client Server

SOME/IP-SD: SubscribeEventgroup ()

SOME/IP: Event()

SOME/IP: Event()

SOME/IP: Event()

SOME/IP: Event()

SOME/IP-SD: SubscribeEventgroupAck ()

Figure 6.23: Notification interaction

c

[TR_SOMEIP_00445] d This feature is comparable but NOT identical to the MOST
notification mechanism. c

[TR_SOMEIP_00446] d With the SOME/IP-SD entry Offer Service the server offers to
push notifications to clients; thus, it may substitute the Publish Eventgroup as trigger
for Subscriptions. c

[TR_SOMEIP_00447] d When a server of a notification service starts up (e.g. after
reset), it shall send a SOME/IP-SD Offer Service into the network to discover all in-
stances interested in the events and fields offered. c

[TR_SOMEIP_00448] d Each client in SD based notification implements the specific
service-interfaces for the notification they wish to receive and signal their wish of re-
ceiving such notifications using the SOME/IP-SD Subscribe Eventgroup entries. c

[TR_SOMEIP_00449] d Each client shall respond to a SOME/IP-SD Offer Service entry
from the server with a SOME/IP-SD Subscribe Eventgroup entry as long as the client
is still interested in receiving the notifications/events of this eventgroup.

72 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

If the client is able to reliable detect the reboot of the server using the SOME/IP-SD
messages reboot flag, the client may choose to only answer Offer Service messages
after the server reboots. The client make sure that this works reliable even when the
SOME/IP-SD messages of the server are lost. c

[TR_SOMEIP_00450] d

 sd SEQ-LinkLossClient

Server Client

No registrations.

Client Reboot

Detected!

OfferService()

SubscribeEventgroup()

updateRegistration()

SubscribeEventgroupAck + Events()

l inkDown()

deleteEntries()

l inkUp()

OfferService()

SubscribeEventgroup() [Session ID=1, Reboot=1]

updateRegistration()

SubscribeEventgroupAck + Events()

Figure 6.24: Publish/Subscribe with link loss at client (figure ignoring timings)

c

[TR_SOMEIP_00451] d The server sending Publish Eventgroup entries or Offer Ser-
vice entries as implicit Publishes has to keep state of Subscribe Eventgroup messages
for this eventgroup instance in order to know if notifications/events have to be sent. c

[TR_SOMEIP_00452] d A client can deregister from a server by sending a SOME/IP-
SD Subscribe Eventgroup message with TTL=0 (Stop Offer Service). c

[TR_SOMEIP_00453] d

73 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

 sd SEQ-Registration-Deregistration

Server Client 2Client 1

OfferService()OfferService()

SubscribeEventgroup()

updateRegistration()

SubscribeEventgroupAck + Events()

Event()

SubscribeEventgroup()

updateRegistration()
SubscribeEventgroupAck + Events()

Event()Event()

Event()Event()

StopSubscribeEventgroup()

updateRegistration()

Event()

Figure 6.25: Publish/Subscribe Registration/Deregistration behavior (figure ignoring
timings)

c

[TR_SOMEIP_00454] d The SOME/IP-SD on the server shall delete the subscription,
if a relevant SOME/IP error is received after sending the push-message. c

[TR_SOMEIP_00455] d If the server loses its link on the Ethernet link, it SHALL delete
all the registered notifications and close the TCP connection for those notifications as
well. c

[TR_SOMEIP_00456] d If the Ethernet link of the server comes up again, it shall trigger
a SOME/IP-SD Offer Service message.

c

[TR_SOMEIP_00457] d

74 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

 sd SEQ-LinkLossServ er

ClientServer

No registration.

Reboot

detected!

OfferService()

SubscribeEventgroup()

updateRegistration()

SubscribeEventgroupAck + Events()

l inkDown()

deleteRegistrations()

l inkUp()

OfferService() [Session ID=1, Reboot=1]

SubscribeEventgroup()

updateRegistration()

SubscribeEventgroupAck + Events()

Figure 6.26: Publish/Subscribe with link loss at server (figure ignoring timings)

c

[TR_SOMEIP_00458] d After having not received an notification/event of an event-
group subscribed to for a certain timeout the ECU shall send a new Subscribe Event-
group entry. The timeout shall be configurable for each eventgroup. c

[TR_SOMEIP_00459] d This timeout feature might be based on cyclic messages or
message protected by Alive Counters (functional safety). c

[TR_SOMEIP_00460] d A link-up event on the clients Ethernet link shall start the Initial
Wait Phase (consider UDP-NM and others). SOME/IP-SD Subscribe Eventgroup entry
shall be sent out as described above. c

[TR_SOMEIP_00461] d The client shall open an TCP connection to the server before
sending the Subscribe Eventgroup entry, if reliable events and notification events exists
in the IDL. c

75 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00462] d After a client has sent a Subscribe Eventgroup entry the server
shall send a Subscribe Eventgroup Ack entry considering the specified delay behavior.
c

[TR_SOMEIP_00463] d The client shall wait for the Subscribe Eventgroup Ack ac-
knowledging an Subscribe Eventgroup entry. If this Subscribe Eventgroup Ack does
not arrive before the next Subscribe Eventgroup is sent, the client shall sent a Stop
Stubscribe Eventgroup and an Subscribe Eventgroup in the SOME/IP-SD message
the Subscribe Eventgroup would have been sent with. c

[TR_SOMEIP_00464] d If the initial value is of concern - i.e. for fields - the server
shall immediately send the first notification/event; i.e. event. The client shall repeat the
Subscribe Eventgroup entry, if he did not receive the notification/event in a configurable
timeout. c

[TR_SOMEIP_00465] d This means:

• It is not allowed to send initial values of events upon subscriptions (pure event
and not field).

• The event messages of field notifiers must be sent on subscriptions (field and not
pure event).

c

[TR_SOMEIP_00466] d

stm Serv ice Discovery Eventgroup Pub/Sub (Unicast)

Eventgroup_PubSub (Unicast Eventgroup)

Initial
Serv ice Down

Serv ice Up

SubscribedNot SubscribedInitial

OfferService is implicit

PublishEventgroup

AUTOSAR:

• enableEvents = enableTxRoutingGroup

• disableEvents = disableTxRoutingGroup

ServiceDown

ServiceUp

receive(SubscribeEventgroup)

/enableEvents()

send(SubscribeEventgroupAck)

receive(StopSubscribeEventgroup)

/disableEvents()

TTL_expired [SubscriptionCounter==1]

/disableEvents()

receive(SubscribeEventgroup)

/send(SubscribeEventgroupAck)

[Service==Up]

[Service==Down]

76 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

Figure 6.27: Publish/Subscribe State Diagram (server behavior for unicast eventgroups)

c

[TR_SOMEIP_00467] d

stm Serv ice Discovery Eventgroup Pub/Sub (Multicast)

Ev entgroup_PubSub (Multicast Ev entgroup)

Initial
Serv ice Down

Serv ice Up

SubscribedNot Subscribed
Initial

OfferService is implicit

PublishEventgroup

AUTOSAR:

• enableEvents = enableTxRoutingGroup

• disableEvents = disableTxRoutingGroup

ServiceDown

[Service==Up]

ServiceUp

receive(StopSubscribeEventgroup) [SubscriptionCounter>1]

/SubscriptionCounter--

TTL_expired [SubscriptionCounter>1]

/SubscriptionCounter--

receive(SubscribeEventgroup)

/SubscriptionCounter++

send(SubscribeEventgroupAck)

receive(StopSubscribeEventgroup) [SubscriptionCounter==1]

/SubscriptionCounter--

disableEvents()

TTL_expired [SubscriptionCounter==1]

/SubscriptionCounter--

disableEvents()

receive(SubscribeEventgroup)

/enableEvents()

SubscriptionCounter++

send(SubscribeEventgroupAck)

[Service==Down]

Figure 6.28: Publish/Subscribe State Diagram (server behavior for multicast event-
groups)

c

[TR_SOMEIP_00468] d

77 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

 stm Serv ice Discov ery Ev entgroup Pub/Sub (Unicast to Multicast)

Ev entgroup_PubSub (Unicast-to-Multicast Ev entgroup)

Ini tial
Serv ice Down

Subscribed

(Unicast)

Not Subscribed

Initial

AUTOSAR:

• enableEvents = enableTxRoutingGroup

• disableEvents = disableTxRoutingGroup

Subscribed (Multicast)

Receiving SubscribeEventgroup triggers sendInitialEvents

[Service==Up]

receive(SubscribeEventgroup)

[UnicastLimit>SubscriptionCounter]

/SubscriptionCounter++

send(SubscribeEventgroupAck)

TTL_expired

[SubscriptionCounter>1]

/SubscriptionCounter--

receive(StopSubscribeEventgroup)

[SubscriptionCounter>1]

/SubscriptionCounter--

TTL_expired

[SubscriptionCounter==1]

/SubscriptionCounter--

disableEvents()

receive(StopSubscribeEventgroup)

[SubscriptionCounter==1]

/SubscriptionCounter--

disableEvents()

receive(SubscribeEventgroup)

[UnicastLimit>0]

/enableEvents()

SubscriptionCounter++

send(SubscribeEventgroupAck)

[Service==Down]

ServiceDown

TTL_expired

[SubscriptionCounter>UnicastLimit+1]

/SubscriptionCounter--

receive(SubscribeEventgroup)

[UnicastLimit==0]

/enableMulticastEvents()

SubscriptionCounter++

send(SubscribeEventgroupAck)

TTL_expired

[SubscriptionCounter==UnicastLimit+1]

/switchToUnicastEvents()

SubscriptionCounter--

receive(SubscribeEventgroup)

[SubscriptionCounter>=UnicastLimit]

/SubscriptionCounter++

send(SubscribeEventgroupAck)

switchToMulticastEvents()

TTL_expired

[SubscriptionCounter==1 &&

UnicastLimit==0]

/SubscriptionCounter--

disableMulticastEvents()

receive(SubscribeEventgroup)

/SubscriptionCounter++

receive(StopSubscribeEventgroup)

[SubscriptionCounter>UnicastLimit+1]

/SubscriptionCounter--

ServiceUp

receive(StopSubscribeEventgroup)

[SubscriptionCounter==1 &&

UnicastLimit==0]

/SubscriptionCounter--

disableMulticastEvents()

receive(StopSubscribeEventgroup)

[SubscriptionCounter==UnicastLimit+1]

/switchToUnicastEvents()

SubscriptionCounter--

Figure 6.29: Publish/Subscribe State Diagram (server behavior for adaptive unicast/mul-
ticast eventgroups)

c

[TR_SOMEIP_00469] d

78 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

stm STATE-SD-Notification

NotificationServ er

Start

Ready / No

registration

NotificationClient

Start

Ready (Waiting for Notifications)

Registration Sent

Notification Registered

Waiting for ACK

Link is down

Not registered / Registration stale

Link is

down

Option A: "with ACK"

Option B: "without ACK"

Option A

Option B

Option BOption A

noNotifyReceivedTimeout

much greater than

ACKNotReceivedTimeout

(e.g. 2.5 times)

Simplification!

Not covered:

Initial Wait Phase

Repetition Phase

Main Phase

Simplification!

Not covered:

Initial Wait Phase

Repetition Phase

Main Phase

receiveSubscribeEventgroup

/sendNotify

[ifLinkUp]
receiveRPC-Notify

/sendRPC-MethodNotImplemented

receiveNotify

/sendACK

ifLinkDown

ACKNotReceivedTimeout

/sendPublishEventgroup

missedAckCtr++

ifLinkDown

/deleteRegistration

appTrigger

/sendStopSubscribeEventgroup

appTrigger

/sendSubscribeEventgroup

onUpdateTimeout

/sendNotify

resetTimer

[ifLinkDown]

receiveNotify

receiveNotify

ifLinkUp

/sendPublishEventgroup

receivePublishEventgroup

receiveACK

/missedAckCtr=0

onUpdateTimeout

/sendNotify

resetTimer

[ifLinkDown]

ifLinkDown

queryTimerEvent

/sendQuery

resetQueryTimer

ACKNotReceivedTimeout

[missedAckCtr>Threshold]

/sendPublishEventgroup

deleteRegistration

onChange

/sendNotify

onChange /sendNotify

ifLinkDown

receiveMethodNotImplemented

/sendPublishEventgroup, deleteRegistration

receiveNotify

/sendACK

ifLinkUp

receiveStopSubscribeEventgroup

/deleteRegistration

[ifLinkUp]

noNotifyReceivedTimeout

receiveSubscribeEventgroup

/sendNotify

ifLinkDown

noNotifyReceivedTimeout

/sendSubscribeEventgroup

Figure 6.30: Publish/Subscribe State Diagram (overall behavior)

c

[TR_SOMEIP_00470] d The registration of a client to receive notifications from a server
may be implicit. Meaning the mechanism is pre-configured. c

79 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00471] d To allow for cleanup of stale client registrations (to avoid that
the list of listeners fills over time), a cleanup mechanism is required. c

[TR_SOMEIP_00472] d The following entries shall be tranported by unicast only:

• Subscribe Eventgroup

• Stop Subscribe Eventgroup

• Subscribe Eventgroup Ack

• Subscribe Eventgroup Nack

c

[TR_SOMEIP_00473] d When sending an Subscribe Eventgroup entry as reaction of
receiving a Publish Eventgroup entry or an Offer Service entry, the timer controlling
cyclic Subscribe Eventgroups entries shall be reset. c

[TR_SOMEIP_00474] d If no cyclic Subscribe Eventgroups are configured, the timer
for cyclic Subscribe Eventgroups stays turned off. c

6.7.8 Endpoint Handling for Services and Events

[TR_SOMEIP_00475] d This section describes how the Endpoints encoded in the End-
point and Multicast Options shall be set and used. c

[TR_SOMEIP_00476] d The Service Discovery shall overwrite IP Addresses and Port
Numbers with those transported in Endpoint and Multicast Options if the statically con-
figured values are different from those in these options. c

6.7.8.1 Service Endpoints

[TR_SOMEIP_00477] d Offer Service entries shall reference up to 1 UDP Endpoint
Option and up to 1 TCP Endpoint Option. Both shall be of the same version Internet
Protocol (IPv4 or IPv6). c

[TR_SOMEIP_00478] d The referenced Endpoint Options of the Offer Service entries
denote the IP Address and Port Numbers the service instance can be reached at the
server. c

[TR_SOMEIP_00479] d The referenced Endpoint Options of the Offer Service entries
also denote the IP Address and Port Numbers the service instance sends the events
from. c

[TR_SOMEIP_00480] d Events of this service instance shall not be sent from any other
Endpoints than those given in the Endpoint Options of the Offer Service entries. c

80 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00481] d If an ECU offers multiple service instances, SOME/IP mes-
sages of these service instances shall be differentiated by the information transported
in the Endpoint Options referenced by the Offer Service entries. c

[TR_SOMEIP_00482] d Therefore transporting an Instance ID in the SOME/IP header
is not required. c

[TR_SOMEIP_00528] d A sender shall not reference Endpoint Options nor Multicast
Options in a Find Service Entry. c

[TR_SOMEIP_00529] d A receiver shall ignore Endpoint Options and Multicast Options
in a Find Service Entry. c

[TR_SOMEIP_00530] d Other Options, non Endpoint or Multicast Options, shall still be
allowed to be used in a Find Service Enty. c

6.7.8.2 Eventgroup Endpoints

[TR_SOMEIP_00483] d Subscribe Eventgroup entries shall reference up to 1 UDP
Endpoint Option and up to 1 TCP Endpoint Option for the Internet Protocol used (IPv4
or IPv6). c

[TR_SOMEIP_00484] d The Endpoint Options referenced in the Subscribe Eventgroup
entries is used to send unicast UDP or TCP SOME/IP events for this Service Instance
to. c

[TR_SOMEIP_00485] d Thus the Endpoint Options referenced in the Subscribe Event-
group entries are the IP Address and the Port Numbers on the client side. c

[TR_SOMEIP_00486] d TCP events are transported using the TCP connection the
client has opened to the server before sending the Subscribe Eventgroup entry. See
Chapter 6.7.3.4.2. c

[TR_SOMEIP_00487] d The initial events shall be transported using unicast from
Server to Client. c

[TR_SOMEIP_00488] d Subscribe Eventgroup Ack entries shall reference up to 1 Mul-
ticast Option for the Internet Protocol used (IPv4 or IPv6). c

[TR_SOMEIP_00489] d The Multicast Option shall be set to UDP as transport protocol.
c

[TR_SOMEIP_00490] d The client shall open the Endpoint specified in the Multicast
Option referenced by the Subscribe Eventgroup Ack entry as fast as possible to not
miss multicast events. c

[TR_SOMEIP_00491] d If the server has to send multicast events very shortly (< 5 ms)
after sending the Subscribe Eventgroup Ack entry, the server shall try to delay these
events, so that the client is not missing it. If this event was sent as initial event anyhow,
the server may sent this event using unicast as well. c

81 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

6.7.8.3 Example

[TR_SOMEIP_00492] d Figure 6.31 shows an example with the different Endpoint and
a Multicast Option:

• The Server offers the Service Instance on UDP-Endpoint SU and TCP-Endpoint
ST

• The Client opens a TCP connection

• The Client sends a Subscribe Eventgroup entry with UDP-Endpoint CU (unicast)
and a TCP-Endpoint CT.

• The Server answers with a Subscribe Eventgroup Ack entry with Multicast MU

Then the following operations happen:

• The Clients calls FunctionA() on the Server

• Request is sent from CU to SU and Response from SU to CU

• For TCP this would be: Request dyn to ST and Reponse from ST to CT

• The Server sends an Unicast UDP Event: SU to CU

• The Server sends an Unicast TCP Event: ST to CT

• The Server sends an Multicast UDP Event: SU to MU

Keep in mind that Multicast Endpoints use a Multicast IP Address on the receiver side,
i.e. the client, and TCP cannot be used for Multicast communication.

c

[TR_SOMEIP_00493] d

82 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

 sd SEQ-Endpoints

Server Client

No Registrations!

Registration!

Open TCP connection

before SubscribeEventgroup

(if rel iable events exist)

The dynamic cl ient port is

called CT.

Function call

UDP Event (unicast)

TCP Event

UDP Event (multicast)

Initial Events UDP Unicast

Initial Events TCP

OfferService(Endpoint UDP: SU, Endpoint TCP: ST) [30490-->30490]

TCP.SYN() [CT-->ST]

TCP.SYN/ACK() [ST-->CT]

TCP.ACK() [CT-->ST]

SubscribeEventgroup(Endpoint UDP: CU, Endpoint TCP: CT) [30490-->30490]

SubscribeEventgroupAck(Multicast UDP: MU) [30490-->30490]

InitialEvents() [SU-->CU]

InitialEvents() [ST-->CT]

FunctionA() [CU-->SU]

FunctionA() returns [SU-->CU]

Event() [SU-->CU]

Event() [ST-->CT]

Event() [SU-->MU]

Figure 6.31: Publish/Subscribe Example for Endpoint Options and the usage of ports

c

6.7.9 Mandatory Feature Set and Basic Behavior

[TR_SOMEIP_00494] d In this section the mandatory feature set of the Service Dis-
covery and the relevant configuration contraints are discussed. This allow for bare
minimum implementations without optional or informational features that might not be
required for current use cases. c

[TR_SOMEIP_00495] d The following information can be also seen as check list(s) for
compliance. If a feature is not implement, the implementation is consider not to comply
to SOME/IP-SDs basic feature set. c

[TR_SOMEIP_00496] d The following entry types shall be implemented:

• Find Service

• Offer Service

• Stop Offer Service

83 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• Subscribe Eventgroup

• Stop Subscribe Eventgroup

• Subscribe Eventgroup Ack

• Subscribe Eventgroup Nack

c

[TR_SOMEIP_00497] d The following option types shall be implemented, when IPv4
is required:

• IPv4 Endpoint Option

• IPv4 Multicast Option

• Configuration Option

c

[TR_SOMEIP_00498] d The following option types shall be implemeted, if IPv6 is re-
quired:

• IPv6 Endpoint Option

• IPv6 Multicast Option

• Configuration Option

c

[TR_SOMEIP_00499] d The following option types shall be implemented, if non-
SOME/IP services or additional configuration parameters are required:

• Configuration Option

c

[TR_SOMEIP_00500] d The following behaviors/reactions shall be implemented on the
Server side:

• The Server shall be able to offer services including the Initial Wait Phase, the
Repetition Phase, and the Main Phase depending on the configuration.

• The Server shall offer services using Multicast (Repetition Phase and Main
Phase).

• The Server does not need to answer a Find Service in the Repetition Phase.

• The Server shall answer a Find Service in the Main Phase with an Offer Service
using Unicast (no optimization based on unicast flag).

• The Server shall sent a Stop Offer Service when shutting down.

• The Server shall be able to receive a Subscribe Eventgroup as well as a Stop
Subscribe Eventgroup and react according to this specification.

84 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• The Server shall sent a Subscribe Eventgroup Ack and Subscribe Eventgroup
Nack using unicast.

• The Server shall support controlling the "fan out" of SOME/IP event messages
based on the subscriptions of SOME/IP-SD. This might include sending events
based on Multicast.

• The Server shall support the triggering of initial SOME/IP event messages.

c

[TR_SOMEIP_00501] d The following behaviors/reactions shall be implemented on the
Client side:

• The Client shall find services using a Find Service entry and Multicast.

• The Client shall stop finding a service if the regular Offer Service arrives.

• The Client shall react to the Servers Offer Service with an unicast SD message
including all Subscribe Eventgroups of the services offered in the message of the
Server.

• The Client shall interpret and react to the Subscribe Eventgroup Ack and Sub-
scribe Eventgroup Nack as specified in this document.

c

[TR_SOMEIP_00502] d The following behavior and configuration constraints shall be
supported by the Client:

• The Client shall be able to handle Eventgroups if only the TTL of the SD Timings
is specified. This means that of all the timings for the Initial Wait Phase, the
Repetition Phase, and the Main Phase only TTL is configured. This means the
client shall only react on the Offer Service by the Server.

• The Client shall be able to answer to an Offer Service with an Subscribe Event-
group even without configuration of the Request-Response-Delay, meaning it
should not wait but answer instantaneously.

c

[TR_SOMEIP_00503] d The Client and Server shall implement the Reboot Detection
as specified in this document and react accordingly. This includes but is not limited to:

• Setting Session ID and Reboot Flag according to this specification.

• Keeping a Session ID counter only used for sending Multicast SD messages.

• Understanding Session ID and Reboot Flag according to this specification.

• Keeping a Multicast Session ID counter per ECU that exchanges Multicast SD
messages with this ECU.

• Detecting reboot based on this specification and reaction accordingly.

85 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

c

[TR_SOMEIP_00504] d The Client and Server shall implement the "Endpoint Handling
for Service and Events". This includes but is not limited to:

• Adding 1 Endpoint Option UDP to an Offer Services if UDP is needed.

• Adding 1 Endpoint Option TCP to an Offer Service if TCP is needed.

• Adding 1 Endpoint Option UDP to Subscribe Eventgroup if events over UDP are
required.

• Adding 1 Endpoint Option TCP to Subscribe Eventgroup if events over TCP are
required.

• Adding 1 Multicast Option UDP to Subscribe Eventgroup Ack if multicast events
are required.

• Understanding and acting according to the Endpoint and Multicast Options trans-
ported as described above.

• Overwritting preconfigured values (e.g. IP Addresses and Ports) with the infor-
mation of these Endpoint and Multicast Options.

c

6.7.10 SOME/IP-SD Mechanisms and Errors

[TR_SOMEIP_00505] d In this section SOME/IP-SD in cases of errors (e.g. lost or
corrupted packets) is discussed. This may also be understood as rationale for the
mechanisms used and the configuration possible. c

[TR_SOMEIP_00506] d Soft State Protocol:

SOME/IP-SD was designed as soft state protocol, that means that entries come with a
lifetime and need to be referesh to stay valid (this can be turned off by setting the TTL
to the maximum value).

Using cyclic Offer Service entries and the TTL as aging mechanism SOME/IP-SD can
cope with many different cases of errors. Some examples:

• If a client or server leaves without sending a Stop entry or this Stop entry got lost,
the system will fix itself after the TTL expiration.

• If an Offer Service entry does not arrive because the packet got lost, the system
will tolerate this based on the value of the TTL.

Example configuration parameter for fast healing: cyclic delays 1s and TTL 3s.

c

[TR_SOMEIP_00507] d Initial Wait Phase:

86 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

The Initial Wait Phase was introduced for two reasons: deskewing events of starting
ECUs to avoid traffic bursts and allowing ECUs to collect multiple entries in SD mes-
sages. c

[TR_SOMEIP_00508] d Repetition Phase:

The Repetition Phase was introduced to allow for fast synchronization of clients and
servers. If the clients startup later, it will find the server very fast. And if the server
starts up later, the client can be found very fast. The Repetition Phase increases the
time between two messages exponentially to avoid that overload situtaions keep the
system from synchronization.

An example configuration could be REPETITIONS_BASE_DELAY=30ms and REPTI-
TIONS_MAX=3. c

[TR_SOMEIP_00509] d Main Phase:

In the Main Phase the SD tries to stabilize the state and thus decreases the rate of
packets by sending no Find Services anymore and only offers in the cyclic interval
(e.g. every 1s). c

[TR_SOMEIP_00510] d Request-Response-Delay:

SOME/IP-SD can be configured to delay the answer to entries in multicast messages
by the Request-Response-Delay (in FIBEX called Query-Response-Delay). This is
useful in large systems with many ECUs. When sending a SD message with many
entries in it, a lot of answers from different ECUs may arrive and put a large stress on
the ECU receiving all these answers. c

6.8 Migration and Compatibility

6.8.1 Supporting multiple versions of the same service.

[TR_SOMEIP_00511] d In order to support migrations scenarios ECUs shall support
serving as well as using different incompatible versions of the same service. c

[TR_SOMEIP_00512] d In order to support a Service with more than one version the
following is required:

• The server shall offer the service instance of this service once per major version.

• The client shall find the service instances once per supported major version or
shall use the major version as 0xFF (all versions).

• The client shall subscribe to events of the service version it needs.

• All SOME/IP-SD entries shall use the same Service-IDs and Instance-IDs but
different Major-Version.

87 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

• The server has to demultiplex messages based on the socket it arrives, the
Message-ID, and the Major-Version.

c

[TR_SOMEIP_00513] d For AUTOSAR supporting more than one version might mean
that de/serialization might has to be done by an serializer or proxy component. c

6.9 Reserved and special identifiers for SOME/IP and SOME/IP-
SD.

In this chapter an overview of reserved and special identifiers are shown.

[TR_SOMEIP_00515] d Reserved and special Service-IDs:

Service-ID Description
0x0000 Reserved
0xFF00 -
0xFF1F

Reserved for Testing at OEM

0xFF20 -
0xFF3F

Reserved for Testing at Tier-1

0xFFFE Reserved for announcing non-SOME/IP service instances.
0xFFFF SOME/IP and SOME/IP-SD special service (Magic Cookie,

SOME/IP-SD, ...).

c

[TR_SOMEIP_00516] d Reserved and special Instance-IDs:

Instance-ID Description
0x0000 Reserved
0xFFFF All Instances

c

[TR_SOMEIP_00517] d Reserved and special Method-IDs/Event-IDs:

Method-ID Description
0x0000 Reserved
0x7FFF Reserved
0x8000 Reserved
0xFFFF Reserved

c

88 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

Example for a Serialization Protocol (SOME/IP)
V1.0.0

R4.1 Rev 1

[TR_SOMEIP_00531] d Reserved Evengroup-IDs:

Eventgroup-ID Description
0x0000 Reserved
0xFFFF All Eventgroups

c

[TR_SOMEIP_00519] d Method-IDs and Event-IDs of Service 0xFFFF:

Method-
ID/Event-ID

Description

0x0000 SOME/IP Magic Cookie Messages
0x8000 SOME/IP Magic Cookie Messages
0x8100 SOME/IP-SD messages (events)

c

[TR_SOMEIP_00520] d Besides "otherserv" many other names can be used in the
configuration option. The following list gives an overview of the reserved names:

Name Description
hostname Used to name a host or ECU.
instancename Used to name an instance of a service.
servicename Used to name a service.
otherserv Used for non-SOME/IP Services.

c

89 of 89
— AUTOSAR CONFIDENTIAL —

Document ID 637: AUTOSAR_TR_SomeIpExample

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Functional specification
	6.1 Definition of Identifiers
	6.2 Specification of the SOME/IP on-wire format
	6.2.1 Transport Protocol
	6.2.1.1 Message Length Limitations

	6.2.2 Endianess
	6.2.3 Header
	6.2.3.1 IP-Address / port numbers
	6.2.3.2 Message ID [32 Bit]
	6.2.3.3 Length [32 Bit]
	6.2.3.4 Request ID [32 Bit]
	6.2.3.5 Protocol Version [8 Bit]
	6.2.3.6 Interface Major Version [8 Bit]
	6.2.3.7 Message Type [8 Bit]
	6.2.3.8 Return Code [8 Bit]
	6.2.3.9 Payload [variable size]

	6.2.4 Serialization of Parameters and Data Structures
	6.2.4.1 Basic Datatypes
	6.2.4.2 Structured Datatypes (structs)
	6.2.4.3 Strings (fixed length)
	6.2.4.4 Strings (dynamic length)
	6.2.4.5 Arrays (fixed length)
	6.2.4.6 Optional Fields
	6.2.4.7 Dynamic Length Arrays
	6.2.4.8 Enumeration
	6.2.4.9 Union / Variant
	6.2.4.10 Example Map / Dictionary

	6.3 RPC Protocol specification
	6.3.1 Transport Protocol Bindings
	6.3.1.1 UDP Binding
	6.3.1.2 TCP Binding
	6.3.1.3 Multiple Service-Instances

	6.3.2 Request/Response Communication
	6.3.2.1 AUTOSAR Specific

	6.3.3 Fire&Forget Communication
	6.3.3.1 AUTOSAR Specific

	6.3.4 Notification
	6.3.4.1 Strategy for sending notifications
	6.3.4.2 Publish/Subscribe Handling
	6.3.4.3 AUTOSAR Specific

	6.3.5 Fields
	6.3.6 Error Handling
	6.3.6.1 Transporting Application Error Codes and Exceptions
	6.3.6.2 Return Code
	6.3.6.3 Error Message Format
	6.3.6.4 Communication Errors and Handling of Communication Errors

	6.4 Guidelines on SOME/IP
	6.4.1 Choosing the transport protocol
	6.4.2 Implementing Advanced Features in AUTOSAR Applications
	6.4.3 Serialization of Data Structures Containing Pointers
	6.4.3.1 Array of data structures with implicit ID
	6.4.3.2 Array of data structures with explicit ID

	6.5 Compatibility rules for Interface Design (informational)
	6.6 Transporting CAN and FlexRay Frames
	6.6.1 AUTOSAR specific

	6.7 SOME/IP Service Discovery (SOME/IP-SD)
	6.7.1 General
	6.7.1.1 Terms and Definitions

	6.7.2 SOME/IP-SD ECU-internal Interface
	6.7.3 SOME/IP-SD Message Format
	6.7.3.1 General Requirements
	6.7.3.2 Header
	6.7.3.3 Entry Format
	6.7.3.4 Options Format
	6.7.3.5 Referencing Options from Entries
	6.7.3.6 Example

	6.7.4 Service Discovery Messages
	6.7.4.1 Service Entries
	6.7.4.2 Eventgroup Entry

	6.7.5 Service Discovery Communication Behavior
	6.7.5.1 Startup Behavior
	6.7.5.2 Server Answer Behavior
	6.7.5.3 Shutdown Behavior
	6.7.5.4 State Machines

	6.7.6 Announcing non-SOME/IP protocols with SOME/IP-SD
	6.7.7 Publish/Subscribe with SOME/IP and SOME/IP-SD
	6.7.8 Endpoint Handling for Services and Events
	6.7.8.1 Service Endpoints
	6.7.8.2 Eventgroup Endpoints
	6.7.8.3 Example

	6.7.9 Mandatory Feature Set and Basic Behavior
	6.7.10 SOME/IP-SD Mechanisms and Errors

	6.8 Migration and Compatibility
	6.8.1 Supporting multiple versions of the same service.

	6.9 Reserved and special identifiers for SOME/IP and SOME/IP-SD.

