
 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

1 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 
 

Document Change History 
Date Version Changed by Change Description 

31.03.2014 1.2.0 AUTOSAR 
Release 
Management 

 Editorial changes 

 More detailed endpoint handling 

 More detailed message building 

31.10.2013 1.1.0 AUTOSAR 
Release 
Management 

 No major changes have been made 

 Editorial changes 

 Removed chapter(s) on change 
documentation 

26.02.2013 1.0.0 AUTOSAR 
Administration 

Initial Release 

 

Document Title Specification of Service 
Discovery 

Document Owner AUTOSAR 

Document Responsibility AUTOSAR 

Document Identification No 616 

Document Classification Standard 

  

Document Version 1.2.0 

Document Status Final 

Part of Release 4.1 

Revision 3 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

2 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Disclaimer 

 
This specification and the material contained in it, as released by AUTOSAR is for 
the purpose of information only. AUTOSAR and the companies that have contributed 
to it shall not be liable for any use of the specification. 
 
The material contained in this specification is protected by copyright and other types 
of Intellectual Property Rights. The commercial exploitation of the material contained 
in this specification requires a license to such Intellectual Property Rights.  
 
This specification may be utilized or reproduced without any modification, in any form 
or by any means, for informational purposes only.  
For any other purpose, no part of the specification may be utilized or reproduced, in 
any form or by any means, without permission in writing from the publisher.  
 
The AUTOSAR specifications have been developed for automotive applications only. 
They have neither been developed, nor tested for non-automotive applications. 
 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 
 
 
Advice for users  
 
AUTOSAR Specification Documents may contain exemplary items (exemplary 
reference models, "use cases", and/or references to exemplary technical solutions, 
devices, processes or software).  
 
Any such exemplary items are contained in the Specification Documents for 
illustration purposes only, and they themselves are not part of the AUTOSAR 
Standard. Neither their presence in such Specification Documents, nor any later 
documentation of AUTOSAR conformance of products actually implementing such 
exemplary items, imply that intellectual property rights covering such exemplary 
items are licensed under the same rules as applicable to the AUTOSAR Standard.  
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

3 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Table of Contents 
 

1 Introduction and functional overview ................................................................... 6 

2 Acronyms and abbreviations ............................................................................... 7 

3 Related documentation........................................................................................ 8 

3.1 Input documents ........................................................................................... 8 
3.2 Related standards and norms ...................................................................... 8 

4 Constraints and assumptions .............................................................................. 9 

4.1 Limitations .................................................................................................... 9 
4.2 Applicability to car domains .......................................................................... 9 

5 Dependencies to other modules ........................................................................ 10 

5.1 AUTOSAR BSW Scheduler ........................................................................ 10 
5.2 AUTOSAR BSW Mode Manager ................................................................ 10 

5.3 AUTOSAR Socked Adaptor ....................................................................... 10 

5.4 AUTOSAR Development Error Tracer ........................................................ 10 
5.5 AUTOSAR Diagnostic Event Manager ....................................................... 10 

5.6 File structure .............................................................................................. 11 
5.6.1 Code file structure ................................................................................. 11 
5.6.2 Header file structure .............................................................................. 11 

6 Requirements traceability .................................................................................. 12 

7 Functional specification ..................................................................................... 15 

7.1 Background & Rationale ............................................................................. 15 
7.2 Requirements ............................................................................................. 17 

7.2.1 General requirements ........................................................................... 17 
7.2.2 Ethernet Communication ...................................................................... 19 

7.2.3 State Handling ...................................................................................... 20 
7.2.4 Interaction with Socket Adaptor ............................................................ 21 

7.3 Message format.......................................................................................... 22 
7.3.1 Request ID ............................................................................................ 23 

7.3.2 Protocol Version field ............................................................................ 24 
7.3.3 Interface Version field ........................................................................... 24 

7.3.4 Message Type field ............................................................................... 24 
7.3.5 Return Code field .................................................................................. 24 
7.3.6 Flags field ............................................................................................. 25 
7.3.7 Reserved field ....................................................................................... 26 
7.3.8 Entries Array ......................................................................................... 26 

7.3.9 Options Array ........................................................................................ 33 
7.3.10 Entries referencing Options ............................................................... 41 

7.4 Service Discovery Entry Types................................................................... 43 
7.4.1 Entries for Services (common requirements) ........................................ 43 
7.4.2 FindService entry .................................................................................. 45 

7.4.3 OfferService entry ................................................................................. 46 
7.4.4 Build OfferService entry ........................................................................ 47 

7.4.5 StopOfferService entry .......................................................................... 48 
7.4.6 Eventgroup Entries (Common requirements) ........................................ 49 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

4 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7.5 Sending and Receiving of Messages ......................................................... 52 

7.5.1 Sequence for message transmission .................................................... 52 
7.5.2 Sequence for message reception ......................................................... 53 
7.5.3 Receiving Entries .................................................................................. 54 

7.6 Timings and repetitions for Server Service and Event Handlers ................ 56 
7.6.1 Initial Wait Phase for Server Services ................................................... 57 

7.6.2 Repetition Phase for Server Services ................................................... 58 
7.6.3 Main Phase for Server Services ............................................................ 61 
7.6.4 Fan out control ...................................................................................... 63 

7.7 Timings and repetitions for Client Service and Consumed Eventgroups .... 64 
7.7.1 Down Phase for Client Services ............................................................ 65 

7.7.2 Initial Wait Phase for Client Services .................................................... 66 
7.7.3 Repetition Phase for Client Services ..................................................... 68 

7.7.4 Main Phase for Client Services ............................................................. 69 
7.8 Error classification ...................................................................................... 72 
7.9 Error detection ............................................................................................ 73 
7.10 Error notification ......................................................................................... 73 

7.11 Debugging .................................................................................................. 73 

8 API specification ................................................................................................ 75 

8.1.1 Imported Types ..................................................................................... 75 
8.2 Type definitions .......................................................................................... 75 

8.2.1 Sd_ServerServiceSetStateType ........................................................... 75 

8.2.2 Sd_ClientServiceSetStateType ............................................................. 75 

8.2.3 Sd_ConsumedEventGroupSetStateType ............................................. 76 
8.2.4 Sd_ClientServiceCurrentStateType ...................................................... 76 
8.2.5 Sd_ConsumedEventGroupCurrentStateType ....................................... 76 
8.2.6 Sd_EventHandlerCurrentStateType ...................................................... 76 

8.3 Function definitions .................................................................................... 76 
8.3.1 Sd_Init ................................................................................................... 77 

8.3.2 Sd_GetVersionInfo ................................................................................ 78 
8.3.3 Sd_ServerServiceSetState ................................................................... 78 

8.3.4 Sd_ClientServiceSetState ..................................................................... 79 
8.3.5 Sd_ConsumedEventGroupSetState ..................................................... 80 
8.3.6 Sd_LocalIpAddrAssignmentChg ........................................................... 81 

8.4 Call-back notifications ................................................................................ 82 
8.4.1 Sd_RxIndication .................................................................................... 82 

8.5 Scheduled functions ................................................................................... 83 
8.5.1 Sd_MainFunction .................................................................................. 83 

8.6 Expected Interfaces .................................................................................... 83 
8.6.1 Mandatory Interfaces ............................................................................ 84 
8.6.2 Optional Interfaces ................................................................................ 84 

9 Sequence diagrams .......................................................................................... 86 

9.1 CLIENT / SERVER: Sd_RxIndication ......................................................... 86 

9.2 SERVER: Response Behavior ................................................................... 87 
9.3 CLIENT: Response Behavior ..................................................................... 88 

9.4 SERVER: buildOfferServiceEntry ............................................................... 91 
9.5 CLIENT: buildSubscribeEventgroupEntry .................................................. 92 
9.6 SERVER: buildSubscribeEventgroupAckEntry .......................................... 93 
9.7 CLIENT/SERVER: TransmitSdMessage .................................................... 94 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

5 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.8 SERVER: AddClientToFanOut ................................................................... 95 

9.9 SERVER: Start ........................................................................................... 98 
9.10 CLIENT: Start ........................................................................................... 101 

10 Containers and configuration parameters .................................................... 104 

10.1 Variants .................................................................................................... 104 
10.1.1 VARIANT-PRE-COMPILE (Pre-compile Configuration)................... 104 

10.1.2 VARIANT-LINK-TIME (Link-time Configuration) .............................. 104 
10.1.3 VARIANT-POST-BUILD (Post-build Configuration) ......................... 104 
10.1.4 Sd .................................................................................................... 105 
10.1.5 SdGeneral ....................................................................................... 106 

10.1.6 SdConfig .......................................................................................... 107 
10.1.7 SdInstance ....................................................................................... 107 
10.1.8 SdClientTimer .................................................................................. 108 

10.1.9 SdServerTimer ................................................................................ 110 
10.1.10 SdInstanceTxPdu ............................................................................ 113 
10.1.11 SdInstanceMulticastRxPdu .............................................................. 114 
10.1.12 SdInstanceUnicastRxPdu ................................................................ 114 

10.1.13 SdServerService .............................................................................. 115 
10.1.14 SdClientService ............................................................................... 117 

10.1.15 SdClientCapabilityRecord ................................................................ 120 
10.1.16 SdConsumedEventGroup ................................................................ 121 
10.1.17 SdConsumedMethods ..................................................................... 124 

10.1.18 SdEventHandler .............................................................................. 125 

10.1.19 SdEventHandlerMulticast ................................................................ 128 
10.1.20 SdEventHandlerTcp......................................................................... 128 
10.1.21 SdEventHandlerUdp ........................................................................ 129 
10.1.22 SdProvidedMethods ........................................................................ 130 
10.1.23 SdServerCapabilityRecord .............................................................. 130 

10.2 Published Information ............................................................................... 131 

 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

6 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

1 Introduction and functional overview 

The AUTOSAR Service Discovery module offers functionality to detect and offer 
available services – i.e. functional entities – within the vehicle network. To do so, it 
makes use of the IP Multicast and so called SOME/IP-SD messages. 
 
The Service Discovery module (Sd) is located between the AUTOSAR BSW Mode 
Manager module (BswM) and the AUTOSAR Socket Adaptor module (SoAd). 
 

 

Figure 1 – Interaction of the AUTOSAR Service Discovery module 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

7 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

2 Acronyms and abbreviations 

 

Abbreviation / 
Acronym: 

Description: 

BswM Basis software manager 

ECU Electronic Control Unit 

DEM Diagnostic Event Manager 

DET Development Error Tracer 

SD Service Discovery 

Sd Service Discovery Module in AUTOSAR 

SoAd Socket Adaptor 

SOME/IP Scalable service-Oriented MiddlwarE over IP 

SOME/IP-SD SOME/IP Service Discovery 

 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

8 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

3 Related documentation 

3.1 Input documents  

[1] AUTOSAR Layered Software Architecture: 
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf 
 

[2] AUTOSAR Basis Software Mode Manager: 
AUTOSAR_SWS_BSWModeManager.pdf 

 
[3] AUTOSAR Socket Adaptor: 

AUTOSAR_SWS_SocketAdaptor.pdf 
 

[4] AUTOSAR SRS BSW General 
AUTOSAR_SRS_BSWGeneral.pdf 

 
[5] AUTOSAR SRS Ethernet 

AUTOSAR_SRS_Ethernet.pdf 
 

3.2 Related standards and norms 

N/A 
 
 
  
 
 

http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/02_Auxiliary/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/01_Standard/AUTOSAR_SWS_BSWModeManager.pdf
http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/01_Standard/AUTOSAR_SWS_SocketAdaptor.pdf
http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/01_Standard/AUTOSAR_SRS_BSWGeneral.pdf
http://svn3.autosar.org/repos2/work/22_Releases/40_Release4.0R0003/02_Auxiliary/AUTOSAR_SRS_Ethernet.pdf


 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

9 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

4 Constraints and assumptions 

4.1 Limitations 

N/A 

4.2 Applicability to car domains 

 
N/A 
 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

10 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

5 Dependencies to other modules 

5.1 AUTOSAR BSW Scheduler 

The BSW Scheduler calls the main functions of the Service Discovery module, which 
is necessary for the cyclic processes of the Service Discovery. 

5.2 AUTOSAR BSW Mode Manager 

The BswM module provides the link between the generic mode requests and the 
service requests.  

5.3 AUTOSAR Socked Adaptor 

The Socked Adaptor hands over service requests between the Ethernet Stack and 
the Service Discovery Module. 
 
The Service Discovery module shall be able to activate and de-activate the PDU 
routing from and to TCP/IP-sockets and trigger the initial transport of events 
(triggered transmit). 
 
The SoAds Socket Connection Table needs to be pre-configured to receive the 
unicast and multicast messages sent by Service Discovery modules of other ECUs. 
As the ECU might be connected to multiple (virtual) networks, there can exist multiple 
Service Discovery Instances, which may have multiple Socket Connection Table 
entries. The triples of Unicast Rx, Multicast Rx, and Tx PduIDs for each (virtual) 
interface need to be configured in the SoAd and known to the Service Discovery 
module. 
 
Additionally the Service Discovery module updates endpoint information (IP address 
and port number) in socket connections (SoAdSocketConnection), which the Service 
Discovery module extracts from received Service Discovery messages. 

5.4 AUTOSAR Development Error Tracer 

In order to be able to report development errors, the Service Discovery module has 
to have access to the error hook of the Development Error Tracer. 

5.5 AUTOSAR Diagnostic Event Manager 

In order to be able to report production errors the Service Discovery module has to 
have access to the Diagnostic Event Manager. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

11 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

5.6 File structure 

5.6.1 Code file structure 

 [SWS_SD_00001]⌈ 
 
The code file structure shall not be defined within this specification completely. At this 
point it shall be pointed out that the code-file structure shall include the following files 
named:  

 Sd_Lcfg.c – for link time configurable parameters and 

 Sd_PBcfg.c – for post build time configurable parameters. 
These files shall contain all link time and post-build time configurable parameters. 
⌋() 

5.6.2 Header file structure 

 

SD.c

SchM_SD.hMemMap.h

SD.h

SD_Types.h

SD_Cfg.h

Dem.hBswM.h

Det.h

SoAd.h

DemIntError.h
 

 

Figure 5.1: Header file structure 

 
 
 
 

[SWS_SD_00003]⌈ 
 
The module shall include the Dem.h file. By this inclusion, the APIs to report errors 
as well as the required Event Id symbols are included.  
This specification defines the name of the Event Id symbols which are provided by 
XML to the DEM configuration tool. The DEM configuration tool assigns ECU 
dependent values to the Event Id symbols and publishes the symbols in 
Dem_IntErr.h. 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

12 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

6 Requirements traceability 

Document: AUTOSAR requirements on Basic Software, general [x] 
 
Requirement Satisfied by 

[BSW00344] Reference to link—time 
configuration 

Chapter 5 

[BSW00404] Reference to post build time 
configuration 

Chapter 5 

[BSW00405] Reference to multiple 
configuration sets 

SWS_SD_00119 

[BSW00345] Configuration at Compile 
time 

Chapter 10 

[BSW159] Automatic configuration Chapter 10 

[BSW167] Static configuration checking Chapter 10 

[BSW171] Configurability of optional 
functionality 

Chapter 10 

[BSW170] Data for reconfiguration of 
AUTOSAR SW—Components 

Not applicable 

[BSW00380] Separate C—Files for 
configuration parameters 

Not applicable 

[BSW00419] Separate C—Files for pre—
compile time configuration parameters 

Not applicable 

[BSW00381] Separate configuration 
header file for pre—compile time 
parameters 

Chapter 5 

[BSW00412] Separate H—File for 
configuration parameters 

Chapter 5 

[BSW00383] List dependencies of 
configuration files 

Chapter 5 

[BSW00384] List dependencies to other 
modules 

Chapter 5 

[BSW00387] Specify the configuration 
class of callback function 

Not applicable 

[BSW00388] Introduce containers Chapter 10 

[BSW00389] Containers shall have 
names 

Chapter 10 

[BSW00390] Parameter content shall be 
unique within the module 

Chapter 10 

[BSW00391] Parameter shall have 
unique names 

Chapter 10 

[BSW00392] Parameters shall have a 
type 

Chapter 10 

[BSW00393] Parameters shall have a 
range 

Chapter 10 

[BSW00394] Specify the scope of the 
parameters 

Chapter 10 

[BSW00395] List the required parameters 
(per parameter) 

Chapter 10 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

13 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[BSW00396] Configuration classes Chapter 10 

[BSW00397] Pre--compile--time 
parameters 

Chapter 10 

[BSW00398] Link--time parameters Chapter 10 

[BSW00399] Loadable Post--build time 
parameters 

Not applicable 

[BSW00400] Selectable Post--build time 
parameters 

Not applicable 

[BSW00438] Post Build Configuration 
Data Structure 

Chapter 10 

[BSW00402] Published information Chapter 10 

[BSW101] Initialization interface SWS_SD_00119 

[BSW00406] Check module initialization Chapter 8 

[BSW00407] Function to read out 
published parameters 

Not applicable 

[BSW00423] Usage of SW--C template to 
describe BSW modules with AUTOSAR 
Interfaces 

Chapter 7.7 

[BSW00336] Shutdown interface Not applicable 

[BSW00337] Classification of errors Chapter 7.8 

[BSW00338] Detection and Reporting of 
development errors 

Chapter 7.9 

[BSW00369] Do not return development 
error codes via API 

Chapter 8 

[BSW00339] Reporting of production 
relevant errors and exceptions 

Chapter 7.8 

[BSW00323] API parameter checking Chapter 8 

[BSW00409] Header files for production 
code error IDs 

Chapter 5.6 

[BSW00385] List possible error 
notifications 

Chapter 7.8 

[BSW00386] Configuration for detecting 
an error 

Chapter 7.9 

[BSW00415] User dependent include files Not applicable 

[BSW00343] Specification and 
configuration of time 

Chapter 10 

[BSW00346] Basic set of module files Chapter 5 

[BSW158] Separation of configuration 
from implementation 

Chapter 5 

[BSW00370] Separation of callback 
interface from API 

Chapter 8 

[BSW00357] Standard API return type Chapter 8 

[BSW00377] Module specific API return 
types 

Chapter 8 

[BSW00371] Do not pass function 
pointers via API 

Chapter 8 

[BSW00358] Return type of init() 
functions 

Chapter 8 

[BSW00414] Parameter of init function Chapter 8 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

14 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[BSW00376] Return type and parameters 
of main processing functions 

Chapter 8 

[BSW00359] Return type of callback 
functions 

Chapter 8 

[BSW00360] Parameters of callback 
functions 

Chapter 8 

[BSW00440] Function prototype for 
callback functions of AUTOSAR Services 

Chapter 8 

[BSW00374] Module vendor identification Chapter 10 

[BSW00379] Module identification Chapter 10 

[BSW003] Version identification Chapter 10 

[BSW00318] Format of module version 
numbers 

Chapter 10 

[BSW00321] Enumeration of module 
version numbers 

Chapter 10 

 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

15 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7 Functional specification 

7.1 Background & Rationale 

The main tasks of the Service Discovery Module are managing the availability of 
functional entities called services in the in-vehicle communication as well as 
controlling the send behavior of event messages. This allows sending only event 
messages to receivers requiring them (Publish/Subscribe). The solution described 
here is also known as SOME/IP-SD (Scalable service-Oriented MiddlewarE over IP – 
Service Discovery).  
 
With Service Discovery different ECUs can offer Service Instances and find available 
Service Instances within the vehicle network. An ECU can stop offering a Service 
Instances it was offering before. Later finds to such a service instance will remain 
unanswered. Service Instances are single implementations of a service that is 
defined by its service interface. In the AUTOSAR context, a find is an operation to 
identify available Service Instances and their locations. 
 
In addition to the status of Service Instances, the Service Discovery is able to control 
sending special messages called events. These events are grouped into 
Eventgroups, which the Service Discovery can turn on/off in a Publish/Subscribe 
manner; thus, turning the sending and receiving of the events of this Eventgroup 
on/off. 
 
For the remainder of this document, the following definitions apply: 

 Service – A functional entity that offers an interface. 

 Service Instance – A single instance of the Service. 

 Offer – A message entry that offers a Service Instances. 

 Stop Offer – A message that stops offering a Service Instance. 

 Find – A message entry used to find a Service Instance. 

 Event – a message send by an ECU implementing a Service Instance to an 
ECU using this Service Instance. 

 Eventgroup – A logical grouping of 1 or more events. 
 
Figure 2 shows the interaction between Services and Eventgroups. On the abstract 
level, the service can contain zero to many Eventgroups. However, when creating the 
overall system, this information has to be configured into different ECUs with different 
roles (clients and servers). When instancing the Services and the contained 
Eventgroups, the ServerServices and ClientServices as well as the EventHandlers 
and ConsumedEventgroups are instantiated from the Services and Eventgroups. 
 
A local ECU needs to deal with two different kinds of services: 

 Server Services – The local ECU offers Server Service Instances (i.e. located 
locally) to the rest of the vehicle and can be considered the server for this 
Service Instance. 

 Client Services – The local ECU may use Server Service Instances offered by 
another ECU inside the vehicle and can be considered a client to this Service 
Instance. 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

16 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

For Server Services the local ECUs Service Discovery module has to (server role): 

 Offer the local service, when it is available; i.e. the SWC(s) offering the service 
are ready and the service is available in the current state of the ECU. 

 Take back the offer of the local service (stop offer), when the service is no 
longer available. 

 Answer and respond to finds by other. 
 
For Client Services the local ECUs Service Discovery module has to (client role): 

 Listen for offers and depending of the configuration store this information in 
volatile memory. 

 Listen for stop offers and depending of the configuration store this information 
in volatile memory. 

 Send finds depending on the state of the current ECU and its SWCs. 
 
Service Discovery can be used to manage Publish/Subscribe relationships as well. In 
the Service Discovery based Publish/Subscribe use-case one ECU 
(Publish/Subscribe Client with ConsumedEventgroup) is interested in receiving some 
data from (subscribing to) another ECU (Publish/Subscribe Server with 
EventHandler).  
 
While the Subscribe is defined by an explicitly in the SD message, the Publish is 
based on the availability of the service Instance itself (OfferService entry). Based on 
the offered Service Instance the Publish/Subscribe Client may subscribe via 
SubscribeEventgroup entries. The Publish/Subscribe Server will now use this 
subscription to register the Publish/Subscribe Client as an interested party in some 
information specified by the subscription and start sending that information to the 
Publish/Subscribe Client pending some event or time-out. 
 
As optimization, the Sd supports sending event messages to multiple clients using 
single multicast messages instead of a unicast message per client. 
 
 

ServerService ClientService

EventHandler ConsumedEventgroup

1 *

1

*

1

*

1 *

«interface»

Service

«interface»

Eventgroup

1

*

Services and Eventgroups Instanciated Services and Eventgroups

 

Figure 2 – Overview of Services and Eventgroups 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

17 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7.2 Requirements 

7.2.1 General requirements 

[SWS_SD_00400]⌈ 
It shall be possible to configure the Service Discovery module as an optional 
AUTOSAR BSW Module. Please refer to the SystemTemplate for configuration. 
⌋() 
 

[SWS_SD_00004]⌈ 
The Service Discovery shall implement a main function, which shall be called 

cyclically according to configuration parameter SdMainFunctionCycleTime. 
⌋() 
 

[SWS_SD_00005]⌈ 
The Service Discovery module shall store the ServiceModeRequest, which is 
provided via the BswM by calling the  

APIs Sd_ServerServiceSetState(), Sd_ClientServiceSetState(), and 

Sd_ConsumedEventGroupSetState()respectively. 

Sd_EventHandlerSetState() does currently not exist, since this state is directly 

deduced from the state of Server Service by the Service Discovery. 
⌋() 
 

Note: 
Based on the interaction with SWCs, the following modes can be requested by the 
BswM module: 
 

Server SWCs via Sd_ServerServiceSetState(): 

 SD_SERVER_SERVICE_DOWN 

 SD_SERVER_SERVICE_AVAILABLE 

 

Client SWCs via Sd_ClientServiceSetState(): 

 SD_CLIENT_SERVICE_RELEASED 

 SD_CLIENT_SERVICE_REQUESTED 

 

Client SWCs via Sd_ConsumedEventGroupSetState() 

 SD_CONSUMED_EVENTGROUP_RELEASED 

 SD_CONSUMED_EVENTGROUP_REQUESTED 

 

“SD_SERVER_SERVICE_DOWN” implies that the local SWC(s) offering this Service 

Instance are not ready to communicate, 
 

“SD_SERVER_SERVICE_AVAILABLE” implies that the local SWC(s) offering this 

Service Instance are ready to communicate, 
 

“SD_CLIENT_SERVICE_RELEASED” implies that the local SWC(s) using this Service 

Instance do not need to communicate with this Service Instance, 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

18 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

“SD_CLIENT_SERVICE_REQUESTED” implies that the local SWC(s) using this 

service is ready to communicate with this Service Instance and needs this Service 
Instance, 
 

 “SD_CONSUMED_EVENTGROUP_RELEASED” implies that the local SWC(s) using this 

Consumed Eventgroup do not need the events of this Consumed Eventgroup, 
 

“SD_CONSUMED_EVENTGROUP_REQUESTED” implies that the local SWC(s) using this 

Consumed Eventgroup need the events of this Consumed Eventgroup. 
 

[SWS_SD_00006]⌈ 
The Service Discovery module shall indicate the states to the BswM by calling the 
API  
BswM_Sd_CurrentClientServiceState(), 

BswM_Sd_CurrentEventHandleState() and 

BswM_Sd_CurrentConsumedEventGroupState() respectively. 
⌋() 
 

[SWS_SD_00007]⌈ 
The following CurrentStates shall be available for reporting to BswM module via 

BswM_Sd_ClientServiceCurrentState(), 

BswM_Sd_ConsumedEventGroupCurrentState(), and 

BswM_Sd_EventHandlerCurrentState() respectively: 

 
- SD_CLIENT_SERVICE_DOWN 

- SD_CLIENT_SERVICE_AVAILABLE 

 

- SD_CONSUMED_EVENTGROUP_DOWN 

- SD_CONSUMED_EVENTGROUP_AVAILABLE 

 

- SD_EVENT_HANDLER_RELEASED 

- SD_EVENT_HANDLER_REQUESTED 

⌋() 
 
Note: 
 

“SD_CLIENT_SERVICE_DOWN” tells the local SWC(s) that this Service Instance is 

not available, 
 

“SD_CLIENT_SERVICE_AVAILABLE” tells the local SWC(s) that this Service 

Instance is available, 
 

“SD_CONSUMED_EVENTGROUP_DOWN” tells the local SWC(s) that this Consumed 

Eventgroup is not currently subscribed, 
 

“SD_CONSUMED_EVENTGROUP_AVAILABLE” tells the local SWC(s) that this 

Consumed Eventgroup is currently subscribed (i.e. events are received), 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

19 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

“SD_EVENT_HANDLER_RELEASED” tells the local SWC(s) that no client is currently 

subscribed to this Eventgroup, 
 

“SD_EVENT_HANDLER_REQUESTED” tells the local SWC(s) that at least one client is 

currently subscribed to this Eventgroup. 
 

[SWS_SD_00011]⌈ 
Every configured Server Service Instance shall have an ECU wide, unique 

SdServerServiceHandleId. 
⌋() 
 

[[SWS_SD_00437]⌈ 
Every configured Client Service Instance shall have an ECU wide, unique 

SdClientServiceHandleId. 
⌋() 
 

[SWS_SD_00438]⌈ 
Every configured Consumed Event Group shall have an ECU wide, unique 
SdConsumedEventGroupHandleId. 
⌋() 

 

[SWS_SD_00439]⌈ 
Every configured Event Handler shall have an ECU wide, unique 
SdEventHandlerHandleId. 
⌋() 
 
Note for SWS_SD_00011, _00437, _00438, and _00439: 
This is even valid for Instances or Eventgroups with the same Service ID and/or the 
same Service Instance ID. 

7.2.2 Ethernet Communication 

[SWS_SD_00013]⌈ 
Every Service Discovery Configuration Instance (see configuration container 

SdInstance) shall have at least one TxPdu ID, one RxPdu ID for Unicast, and one 

RxPdu ID for Multicast (see configuration parameter SdInstanceTxPdu, 

SdInstanceUnicastRxPdu, and SdInstanceMulticastRxPdu respectively). 
⌋() 
 

[SWS_SD_00017]⌈ 
For different links, separate Service Discovery instance containers shall be 
configured. 

⌋() 
 
Note: 
Links in this regards also includes different virtual links using Ethernet VLANs. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

20 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7.2.3 State Handling 

[SWS_SD_00019]⌈ 
The Service Discovery module shall store the status of all statically configured 
Service Instances and Eventgroups separately. 
⌋() 
 

[SWS_SD_00020]⌈ 
After initialization of the Service Discovery module by the call of the API Sd_Init(), 

all configured Server Service Instances shall have the state 

“SD_SERVER_SERVICE_DOWN”, unless a Server Service Instance has 

SdServerServiceAutoAvailable set to true, then the state shall be set to 

“SD_SERVER_SERVICE_AVAILABLE”. 
⌋() 
 

[SWS_SD_00021]⌈ 
After initialization of the Service Discovery module by calling of the  API Sd_Init(), 

all configured Client Service Instances shall have the state 

“SD_CLIENT_SERVICE_DOWN”, unless a Client Service Instance has 

SdClientServiceAutoRequired set to true, then the state shall be set to 

“SD_CLIENT_SERVICE_REQUESTED”. 
⌋() 
 

[SWS_SD_00440]⌈ 
After initialization of the Service Discovery module by calling of the  API Sd_Init(), 

all configured Eventgroups shall have the state 

“SD_CONSUMED_EVENTGROUP_DOWN”, unless a Consumed Eventgroup has 

“SdConsumedEventGroupAutoRequired” set to true, then the state shall be set to 

“SD_CONSUMED_EVENTGROUP_REQUESTED” as soon as the associated Client 

Service Instance is requested. 
⌋() 
 

[SWS_SD_00441]⌈ 
After initialization of the Service Discovery module by calling of the  API Sd_Init(), 

all configured Event Handler shall have the state “SD_EVENT_HANDLER_RELEASED”, 

unless a Event Handler has SdEventHandlerAutoAvailable set to true, then 

the state shall be set to “SD_EVENT_HANDLER_AVAILABLE” as soon as at the 

associated Server Service Instance is up. 
⌋() 
 

[SWS_SD_00402]⌈ 
The Service Discovery module shall store all IP address assignment states 
referenced by server and client Service Instances. 
⌋() 
 

[SWS_SD_00442]⌈ 
If Sd_ConsumedEventGroupSetState is called with 

SD_CONSUMED_EVENTGROUP_REQUESTED while its Client Service Instance is still 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

21 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

released (SD_CLIENT_SERVICE_RELEASED) E_NO_OK shall be returned. 
⌋() 
 

[SWS_SD_00443]⌈ 
If Sd_ClientServiceSetState()is called with SD_CLIENT_SERVICE_RELEASED 

while one or more of its Eventgroups are still requested 

(SD_CONSUMED_EVENTGROUP_REQUESTED) the Service Discovery shall interpret 

this the same way as these Eventgroups were called with 

SD_CONSUMED_EVENTGROUP_RELEASED first. 
⌋() 

7.2.4 Interaction with Socket Adaptor 

[SWS_SD_00024]⌈ 
The Service Discovery module shall be able to enable/disable routing groups within 

the SoAd module using the API SoAd_EnableRouting() and 

SoAd_DisableRouting() for Server- and Client Service Instances. 
⌋() 
 

[SWS_SD_00026]⌈ 
The Service Discovery module shall be able to reference RoutingGroup(s) per 
Service Instance. See configuration parameters: 

 SdConsumedEventGroupMulticastActivationRef 

 SdConsumedEventGroupTcpActivationRef 

 SdConsumedEventGroupUdpActivationRef 

 SdClientServiceActivationRef (in SdConsumedMethods) 

 SdEventActivationRef (in SdEventHandlerMulticast) 

 SdEventActivationRef (in SdEventHandlerTcp) 

 SdEventTriggeringRef (in SdEventHandlerTcp) 

 SdEventActivationRef (in SdEventHandlerUdp) 

 SdEventTriggeringRef (in SdEventHandlerUdp) 

 SdServerServiceActivationRef (in SdProvidedMethods) 

⌋() 
 
 

[SWS_SD_00029]⌈ 
The Service Discovery module shall only call SoAd_IfTransmit() if an IP address 

is assigned; i.e.:  Sd_LocalIpAddrAssignmentChg() has been called with the 

current state TCPIP_IPADDR_STATE_ASSIGNED. 
⌋() 
 

[SWS_SD_00459]⌈ 
For all SD messages sent and received via the Socket Adaptor module, the header 
mode shall be activated. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

22 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00460]⌈ 
For all SD messages sent and received via the Socket Adaptor module, the 

SoAdTxPduHeaderId and the SoAdRxPduHeaderId shall be set to 0xFFFF8100 

respectively. 
⌋() 
  

Note: This ensures that the SoAd creates the first part of the SOME/IP header (32bit 
Message ID followed by a 32bit Length field) as needed for SOME/IP-SD. The 
remainder of the SD messages is created by this module (see chapter 7.3). 

7.3 Message format 

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Flags [8 bit] Reserved [24 bit]

Length of Entries Array [32 bit]

Entries Array

Length of Options Array [32 bit]

Options Array

C
o

v
e

re
d

 b
y
 L

e
n

g
th

C
o

v
e

re
d

 b
y
 L

e
n

g
th

 

Figure 3 – Overview of the Service Discovery message format 

 

[SWS_SD_00037]⌈ 
If not defined otherwise, all fields in the Service Discovery messages shall be in 
Network Byte Order (i.e. Big Endian Byte Order). 
⌋() 
 

[SWS_SD_00030]⌈ 
All Service Discovery messages shall follow the Service Discovery Message layout 
shown in Figure 3. 
⌋() 
 

[SWS_SD_00031]⌈ 
The Service Discovery message format shall contain the following fields in the 
following order: 

 Request ID (Client ID / Session ID) [32 Bit] 

 Protocol Version [8 bit] 

 Interface Version [8 Bit] 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

23 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 Message Type [8 bit] 

 Return Code [8 bit] 

 Flags [8 bit] 

 Reserved [24 bit] 

 Length of Entries Array [32 bit] 

 Entries Array (length in bytes defined by the “Length of Entries Array”) 

 Length of Options Array [32 bit] 

 Option Array (length in bytes defined by the “Length of Options Array”) 

⌋() 

7.3.1 Request ID 

This chapter describes the requirements related to the Request ID field. The Request 
ID is made up of Client ID and Session ID. While the Client ID is not used for Service 
Discovery, the Session ID is used to detect the reboot or restart of other Service 
Discovery instances in the vehicle in order to repair the local state of the Service 
Discovery module. 
 

[SWS_SD_00032]⌈ 
The Request ID field shall consist of a Client ID field [16 bits] and a Session ID field 
[16 bits]. 
⌋() 
 

[SWS_SD_00033]⌈ 
The Client ID shall be set statically to 0x0000. 
⌋() 
 

[SWS_SD_00034]⌈ 
After initialization of the Service Discovery Module, the Session ID for messages sent 
by the local ECU shall be 0x0001. 

⌋() 
 

[SWS_SD_00035]⌈ 
The Session ID shall be incremented and stored separately for multicast and every 

single unicast communication partner every time SoAd_IfTransmit() is called. 
⌋() 
 
Note to SWS_SD_00034 and SWS_SD_00035: This means that the first SD 
message sent out to the multicast address has Session ID 0x0001 as well as the first 
SD message sent out to any unicast communication partner has the Session ID 
0x0001 as well. 
⌋() 
 

[SWS_SD_00036]⌈ 
Every time, the Session ID wraps around, the Session ID shall restart with the value 
0x0001. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

24 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Note to SWS_SD_00036: Wrap around means that the current value of the Session 
ID is the max value (0xFFFF) and the next increment would mean the counter must 
start again. 

7.3.2 Protocol Version field 

The Protocol Version field is used to describe the current version of SOME/IP. 
 

[SWS_SD_00140]⌈ 
The length of the Protocol Version field shall be 8 bits. 
⌋() 
 

[SWS_SD_00141]⌈ 
The value for the Protocol Version field shall be statically set to 0x01. 
⌋() 

7.3.3 Interface Version field 

The Interface Version field is used to describe the current version of the SOME/IP 
service; i.e. the current version of SOME/IP-SD itself. 
 

[SWS_SD_00142]⌈ 
The length of the Interface Version field shall be 8 bits. 
⌋() 
 

[SWS_SD_00143]⌈ 
The value for the Interface Version field shall be statically set to 0x01. 
⌋() 

7.3.4 Message Type field 

The Message Type field is used to differentiate the types of SOME/IP messages. 
SOME/IP-SD uses only event messages; thus, it always uses the same type. 
 

[SWS_SD_00144]⌈ 
The length of the Message Type field shall be 8 bits. 
⌋() 
 

[SWS_SD_00145]⌈ 
The value for the Message Type field shall be statically set to 0x02. 
⌋() 

7.3.5 Return Code field 

The Return Code is used to signal whether a request was successfully been 
processed. This is not applicable for SOME/IP-SD; therefore, the return code will be 
statically set to 0x00. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

25 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00146]⌈ 
The length of the Return Code field shall be 8 bits. 
⌋() 
 

[SWS_SD_00147]⌈ 
The Return Code field shall be statically set to 0x00. 
⌋() 

7.3.6 Flags field 

With the Flags field the SOME/IP-SD header starts. It is used to signal global Service 
Discovery information, which includes currently the state of the last reboot as well as 
the capability of receiving unicast messages. 
 

[SWS_SD_00149]⌈ 
The length of the Flags field shall be 8 bits. 
⌋() 
 

[SWS_SD_00150]⌈ 
The first bit of the Flags field (highest order bit) shall be called Reboot Flag. 
⌋() 

 

[SWS_SD_00151]⌈ 
The Reboot Flag shall be set to ‘1’ for all messages after reboot until the Session ID 
of the Request ID field wraps and thus starts with 0x0001 again. After that the 
Reboot Flag shall be set to ‘0’. 
⌋() 

 

[SWS_SD_00445]⌈ 
The Service Discovery shall keep track of the last received of a communication 
partner Session ID value and Reboot Flag value independently for unicast and 
multicast. This means that the communication partners values received over 
multicast shall not be updated by a unicast message. 

⌋() 
 

[SWS_SD_00446]⌈ 
A reboot of the communication partner shall be detected based on consecutive 
Service Discovery messages (for communication partner; unicast and multicast 
separated) in the following two ways: 

 Reboot Flag changes from ‘0’ to ‘1’ or 

 Session ID decreases, while Reboot Flag stays ‘1’. 

⌋() 
 

[SWS_SD_00447]⌈ 
The Service Discovery may also detect reboots based on the unicast information. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

26 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00448]⌈ 
A reboot detected with Session ID and Reboot Flag shall lead to expiration of the 
local state that is controlled by this communication partner.  
This means that the state of Services and Subscriptions shall be reset. 
⌋() 

 

[SWS_SD_00152]⌈ 
The second bit of the Flag field (second highest order bit) shall be called Unicast 
Flag. 
⌋() 

 

[SWS_SD_00153]⌈ 
The Unicast Flag of the Flag field shall be set to Unicast Flag and shall be set to ‘1’, 
meaning: This ECU supports receiving Unicast messages. 

⌋() 

 
[SWS_SD_00154]⌈ 
Undefined bits within the Flag field shall be statically set to ‘0’. 
⌋() 

7.3.7 Reserved field 

This Reserved field is not currently used and left empty for further enhancements of 
the SOME/IP-SD protocol. 
 

[SWS_SD_00155]⌈ 
The length of the Reserved field shall be 24 bits. 
⌋() 
 

[SWS_SD_00156]⌈ 
All bits of the Reserved field shall be statically set to 0 binary. 
⌋() 

7.3.8 Entries Array 

When SOME/IP-SD find or offers Service Instances or handles subscriptions this is 
done by so called entries, which are transported in the entry array of the SOME/IP-
SD message (see Figure 3). 

7.3.8.1 Length of Entries Array 

[SWS_SD_00157]⌈ 
The length of the first field of the Entries Array shall be 32 bits. 
⌋() 
 

[SWS_SD_00158]⌈ 
The first field of the Entries Array shall carry the amount of bytes of the Entries Array 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

27 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

(excluding this 32 bit field carrying the length information). 
⌋() 

7.3.8.2 Entry Format Type 1 

Two types of Entries exist: Type 1 Entries for Services and Type 2 Entries for 
Eventgroups. 
 

[SWS_SD_00159]⌈ 
The Type 1 Entries shall have the following layout: 

Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Index 1st options Index 2nd options # of opt 1 # of opt 2

Service ID Instance ID

Major Version TTL

Minor Version
 

Figure 4 – Layout of Type 1 Entries (Entries for Services) 

⌋() 
 

[SWS_SD_00160]⌈ 
The length of the Type 1 Entry shall be 16 bytes. 
⌋() 
 

[SWS_SD_00161]⌈ 
The Type 1 format shall contain the following fields in the following order and sizes: 

 Type  [8 bits] 

 Index 1st option [8 bits] 

 Index 2nd option [8 bits] 

 # of opt 1 [4 bits] 

 # of opt 2 [4 bits] 

 Service ID [16 bits] 

 Instance ID [16 bits] 

 Major Version [8 bits] 

 TTL [24 bits] 

 Minor Version [32 bits] 
⌋() 
 

[SWS_SD_00162]⌈ 
The Type field of the Type 1 Entry format layout shall carry one of the following 
values: 

 0x00 to encode FindService  

 0x01 to encode OfferService and StopOfferService 
⌋() 
 

[SWS_SD_00163]⌈ 
The “Index First Option Run” field of the Type 1 Entry format layout shall have a fixed 
size of 8 bits. 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

28 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00164]⌈ 
The “Index First Option Run” field of the Type 1 Entry format layout shall carry the 
index of the first option of the first option run of this entry in the option array. 
⌋() 
  

[SWS_SD_00165]⌈ 
The “Index Second Option Run” field of the Type 1 Entry format layout shall have a 
fixed size of 8 bits. 
⌋() 
 

[SWS_SD_00166]⌈ 
The “Index Second Option Run” field of the Type 1 Entry format layout shall carry the 
index of the first option of the second option run of this entry in the option array. 
⌋() 
 

[SWS_SD_00167]⌈ 
The “Number of Option 1” field of the Type 1 Entry format layout shall have a fixed 
size of 4 bits. 
⌋() 
 

[SWS_SD_00168]⌈ 
The “Number of Option 1” of the Type 1 Entry format layout shall carry the number of 
options the first option run uses. 
⌋() 
 

[SWS_SD_00169]⌈ 
The “Number of Option 2” field of the Type 1 Entry format layout shall have a fixed 
size of 4 bits. 
⌋() 
 

[SWS_SD_00170]⌈ 
The “Number of Option 2” field of the Type 1 Entry format layout shall carry the 
number of options the second option run uses. 
⌋() 
 

[SWS_SD_00622]⌈  
If the number of options is set to zero, the option run is considered empty. 

⌋() 
 

[SWS_SD_00623]⌈ 
For empty runs the Index (i.e. Index First Option Run and/or Index Second Option 
Run) shall be set to zero. 

⌋() 
 

[SWS_SD_00624]⌈ 
Implementations shall accept and process incoming SD messages with option run 
length set to zero and option index not set to zero. 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

29 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00172]⌈ 
The Service ID field of the Type 1 Entry format shall have a fixed size of 16 bits. 
⌋() 
 

[SWS_SD_00173]⌈ 
The Service ID field of the Type 1 Entry format layout shall carry the Service ID of the 

service, statically configured using the parameter SdServerServiceID and 

SdClientServiceID, depending on being a server or client entry. 
⌋() 
 

[SWS_SD_00174]⌈ 
The Instance ID field of the Type 1 Entry format layout shall have a fixed size of 16 
bits. 
⌋() 
 

[SWS_SD_00175]⌈ 
The Instance ID field of the Type 1 Entry format layout shall carry the Instance ID of 
the service, statically configured using the parameter 

SdServerServiceInstanceID and SdClientServiceInstanceID, depending 

on being a server or client entry. 
⌋() 
 

[SWS_SD_00176]⌈ 
If not a single but all instances are addressed, the Instance ID field of the Type 1 
Entry format layout shall be set to 0xFFFF. 
⌋() 
 

[SWS_SD_00177]⌈ 
The Major Version field of the Type 1 Entry format layout shall have a fixed size of 8 
bits. 
⌋() 
 

[SWS_SD_00178]⌈ 
The Major Version field of the Type 1 Entry format layout shall carry the 

SdServerServiceMajorVersion and SdClientServiceMajorVersion, 

depending on being a server or client entry. 
⌋() 
 

[SWS_SD_00179]⌈ 
The TTL field of the Type 1 Entry format layout shall have a fixed size of 24 bits. 
⌋() 
 

[SWS_SD_00180]⌈ 
The TTL field of the Type 1 Entry format layout defines the lifetime of the entry in 

seconds configured using the parameter SdServerTimerTTL and 

SdClientTimerTTL, except for Stop-Entries, which have a TTL of 0. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

30 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00181]⌈ 
The Minor Version field of the Type 1 Entry format layout shall have a fixed size of 32 
bits. 
⌋() 
 

[SWS_SD_00182]⌈ 
The Minor Version field of the Type 1 Entry format layout shall carry the 

SdServerServiceMinorVersion and SdClientServiceMinorVersion. 
⌋() 
 

7.3.8.3 Entry Format Type 2 

The Type 2 Entries format shall be used for Eventgroups. 
 

Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Index 1st options Index 2nd options # of opt 1 # of opt 2

Service ID Instance ID

Major Version TTL

Reserved (0x0000) Eventgroup ID
 

Figure 5 – Layout of Type 2 Entries (Entries for Eventgroups) 

 

[SWS_SD_00183]⌈ 
The length of Type 2 Entries shall be 16 bytes. 
⌋() 
 

[SWS_SD_00184]⌈ 
The Type 2 format shall contain the following fields in the following order and sizes: 

 Type  [8 bits] 

 Index 1st option [8 bits] 

 Index 2nd option [8 bits] 

 # of opt 1 [4 bits] 

 # of opt 2 [4 bits] 

 Service ID [16 bits] 

 Instance ID [16 bits] 

 Major Version [8 bits] 

 TTL [24 bits] 

 Reserved [16 bits] 

 Eventgroup ID [16 bits] 

⌋() 
 
 

[SWS_SD_00385]⌈ 
The Type field of the Type 2 Entry format layout shall carry one of the following 
values, depending of the purpose of the sent message: 

 0x06 to encode SubscribeEventgroup and StopSubscribeEventgroup 

 0x07 to encode SubscribeEventgroupAck and SubscribeEventgroupNack⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

31 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00386]⌈ 
The “Index First Option Run” field of the Type 2 Entry format layout shall carry the 
index of the first option of the first option run of this entry in the option array. 
⌋() 
 

[SWS_SD_00185]⌈ 
The “Index First Option Run” field of the Type 2 Entry format layout shall have a fixed 
size of 8 bits. 
⌋() 
 

[SWS_SD_00187]⌈ 
The “Index Second Option Run” field of the Type 2 Entry format layout shall carry the 
index of the first option of the second option run of this entry in the option array. 
⌋() 
 

[SWS_SD_00186]⌈ 
The “Index Second Option Run” field of the Type 2 Entry format layout shall have a 
fixed size of 8 bits. 
⌋() 
 

[SWS_SD_00387]⌈ 
The “Number of Option 1” field of the Type 2 Entry format layout shall have a fixed 
size of 4 bits. 
⌋() 
 

[SWS_SD_00188]⌈ 
The “Number of Option 1” of the Type 2 Entry format layout shall carry the number of 
options the first option run uses. 
⌋() 
 

[SWS_SD_00189]⌈ 
The “Number of Option 2” field of the Type 2 Entry format layout shall have a fixed 
size of 4 bits. 
⌋() 
 

[SWS_SD_00190]⌈ 
The “Number of Option 2” field of the Type 2 Entry format layout shall carry the 
number of options the second option run uses. 
⌋() 
 

[SWS_SD_00170]⌈ 
The “Number of Option 2” field of the Type 1 Entry format layout shall carry the 
number of options the second option run uses. 
⌋() 
 

[SWS_SD_00625]⌈  
If the number of options is set to zero, the option run is considered empty. 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

32 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00626]⌈ 
For empty runs the Index (i.e. Index First Option Run and/or Index Second Option 
Run) shall be set to zero. 

⌋() 
 

[SWS_SD_00627]⌈ 
Implementations shall accept and process incoming SD messages with option run 
length set to zero and option index not set to zero. 

⌋() 
 

[SWS_SD_00192]⌈ 
The Service ID field of the Type 2 shall have a fixed size of 16 bits. 
⌋() 
 

[SWS_SD_00193]⌈ 
The Service ID field of the Type 2 Entry format layout shall carry the Service ID of the 
eventgroups service, statically configured using the parameter 

SdServerServiceID and SdClientServiceID, depending on being a server or 

client entry. 
⌋() 
 

[SWS_SD_00194]⌈ 
The Instance ID field of the Type 2 Entry format layout shall have a fixed size of 16 
bits. 
⌋() 
 

[SWS_SD_00195]⌈ 
The Instance ID field of the Type 2 Entry format layout shall carry the Instance ID of 
the eventgroups service statically configured using the parameter 

SdServerServiceInstanceID and SdClientServiceInstanceID, depending 

on being a server or client entry. 
⌋() 
 

[SWS_SD_00197]⌈ 
The Major Version field of the Type 2 Entry format layout shall have a fixed size of 8 
bits. 
⌋() 
 

[SWS_SD_00198]⌈ 
The Major Version field of the Type 2 Entry format layout shall carry the 

SdServerServiceMajorVersion and SdClientServiceMajorVersion, 

depending on being a server or client entry. 
⌋() 
 

[SWS_SD_00199]⌈ 
The TTL field of the Type 2 Entry format layout shall have a fixed size of 24 bits. 
⌋() 
 

[SWS_SD_00200]⌈ 
The TTL field of the Type 2 Entry Entry format layout defines the lifetime of the entry 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

33 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

in seconds configured using the parameter SdServerTimerTTL and 

SdClientTimerTTL, except for Stop- or Nack-Entries, which use a TTL of 0. 
⌋() 
 

[SWS_SD_00201]⌈ 
The Reserved field of the Type 2 Entry format layout shall have a fixed size of 16 
bits. 
⌋() 
 

[SWS_SD_00202]⌈ 
The Reserved field, which follows the TTL field of the Type 2 Entry format layout, 
shall be statically set to 0x0000. 
⌋() 
 

[SWS_SD_00203]⌈ 
The Eventgroup ID field of the Type 2 Entry format layout shall have a fixed size of 
16 bits. 
⌋() 
 

[SWS_SD_00204]⌈ 
The Eventgroup ID field of the Type 2 Entry format layout shall carry the ID of an 

Eventgroup, configured using the parameter SdConsumedEventGroupID. 
⌋() 
 

[SWS_SD_00476]⌈ 
Type 2 Entries (Entries for Eventgroups) shall not use “any values” as Service ID (i.e. 
0xFFFF), Instance ID (i.e. 0xFFFF), Eventgroup ID (i.e. 0xFFFF), and/or Major 
Version (i.e. 0xFF). 
⌋() 

7.3.9 Options Array 

The Option array is the last part of the Service Discovery Message (see Figure 3). 
The options in the options array carry additional information. 

7.3.9.1 Configuration Option 

The Configuration Option transports additional attributes of entries in the Service 
Discovery messages. Between 0 and n configuration items can be transported using 
the Configuration Option. These configuration items can include for example the 
name of the host or the Service. 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

34 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Type (=0x01)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

Zero-terminated Configuration String

([len]id=value[len]id=value[0])

 

Figure 6 – Configuration Option 

 

[SWS_SD_00205]⌈ 
The option format shall contain the following fields in the following order and sizes: 

 Length  [16 bits] 

 Type [8 bits] 

 Reserved [8 bits] 

 Zero-terminated Configuration String (format e.g. for two configuration items 
[len]id=value[len]id=value[0]) 

⌋() 
 

[SWS_SD_00206]⌈ 
The Length field shall carry the total number of bytes occupied by the configuration 
option, excluding the 16 bit Length field and the 8 bit type flag. 
⌋() 
 

[SWS_SD_00207]⌈ 
The Type field of the Configuration Option field shall be statically set to 0x01. 
⌋() 
 

[SWS_SD_00208]⌈ 
The Reserved field of the Configuration Option field shall be statically set to 0x00. 
⌋() 
 

[SWS_SD_00292]⌈ 
The Configuration String shall be constructed as follows from the 

SdServerCapabilityRecord and SdClientCapabilityRecord 

(Eventgroups shall include the Services CapabilityRecord as well): 

 For every SdServerCapabilityRecordKey/ 

SdServerCapabilityRecordValue or 
SdClientServiceCapabilityRecordKey/ 

SdClientServiceCapabilityRecordValue pair: 

o A config_item_string is constructed of the concatenation of key, “=”, and 
value. 

o The length of this config_item_string is written as uint8 to the 
configuration string. 

o The config_item_string is appended to the configuration string. 

 Append a 0x00 uint8 at the end. This means no further config_item_string 
follows. 

⌋() 
 
Example for Configuration Option: 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

35 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Type (=0x01)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0010)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)[5] cba

= d[7]x

e 1=f

2 [0]3
 

Figure 7 – Example for Configuration Option 

 

[SWS_SD_00461]⌈ 
SdServerCapabilityRecordValue and 

SdClientServiceCapabilityRecordValue are allowed to be empty. 

This means that after “=” the next length uint8 or “0” follows. 
⌋() 
 

[SWS_SD_00466]⌈ 
Receiving a config_item_string without an “=” sign shall be interpreted as key present 
without value. 

⌋() 
 

[SWS_SD_00467]⌈ 
Multiple config_item_string with the same key in a single configuration option shall be 
supported. 

⌋() 
 

[SWS_SD_00468]⌈ 
If SdInstanceHostname exists, a key “hostname” with the value set to the string of 

this configuration item shall be added to the Configuration Option. 

⌋() 
 

[SWS_SD_00293]⌈ 
Services exist, that are not identified by a unique 16 Bit Service ID but a unique value 
of the key otherserv. These services use the Service ID 0xFFFE and must always 
carry a configuration option with an otherserv record. ECUs receiving an entry with 
Service ID 0xFFFE shall use the configuration option and the otherserv record within 
in order to identify the relevant Service or Eventgroup configuration item. This means 
that two Service Instance with the same Service ID and Service Instance ID may 
exist as long as their otherserv record is different. 
 
The configuration option shall be built based on configuration parameters mentioned 
in SWS_SD_00292. 
⌋() 

7.3.9.2 IPv4 Endpoint Option 

This chapter describes the fields and values of the IPv4 Endpoint Option, which 
transports IP Address, Layer 4 Protocols (e.g. UDP or TCP), and Port Number; thus, 
the information needed to communicate with a service. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

36 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 
When receiving a Service Discovery message offering a service and transporting an 
IPv4 Endpoint Option, ECUs receiving this message can dynamically configure the 
Socket Adaptor for using this service by updating a Socket Connection. 
 
Different  
 

Type (=0x04)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0009)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (TCP/UDP…) Port Number
 

Figure 8 – IPv4 Endpoint Option format 

 

[SWS_SD_00653]⌈ 
Every OfferService entry shall reference up to two IPv4 Endpoint Options (up to one 
for UDP and up to one for TCP) that describe endpoint(s) (IP and Port) the server 
accepts methods on and sends events from for this service instance. 
⌋() 
 

[SWS_SD_00654]⌈ 
Different service instances of the same service on the same ECU shall use different 
endpoints, so that they can differentiated by the endpoints. Different services may 
share the same endpoints. 
⌋() 
 

[SWS_SD_00655]⌈ 
Every SubscribeEventgroup entry shall reference up to two IPv4 Endpoint Options 
(up to one for UDP and up to one for TCP) that describe(s) the endpoints (IP and 
Port) the client wishes to receive events. The client shall use these endpoints for 
sending methods as well. 
⌋() 
 
 
 

[SWS_SD_00209]⌈ 
The Length field of the IPv4 Endpoint Option shall be set to 0x0009. 
⌋() 
 
Note: That is the size of this option not including the length and type fields. 
 

[SWS_SD_00210]⌈ 
The Type field of the IPv4 Endpoint Option shall be statically set to 0x04. 
⌋() 
 

[SWS_SD_00211]⌈ 
The Reserved field of the IPv4 Endpoint Option (followed by the IPv4-Address field) 
of the Configuration Option segment shall be statically set to 0x00. 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

37 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00212]⌈ 
The IPv4-Address field [32 bits] of the IPv4 Endpoint Option shall be set to the local 
IP address of the relevant Service or Eventgroup. 
⌋() 
 

[SWS_SD_00213]⌈ 
The Reserved field of the IPv4 Endpoint Option shall statically be set to 0x00. 
⌋() 
 

[SWS_SD_00214]⌈ 
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv4 Endpoint Option shall be set 
to one of the following values, depending on the port specified: 

 0x06: TCP 

 0x11: UDP 
⌋() 
 

[SWS_SD_00215]⌈ 
The Port Number field [16 bits] of the IPv4 Endpoint Option shall carry the UDP or 
TCP port number for the service instance or Eventgroup. 
⌋() 

7.3.9.3 IPv6 Endpoint Option 

This chapter describes the fields and values of the IPv6 Endpoint Option, which is the 
same as the IPv4 Endpoint Option except that it transport IPv6 Addresses instead 
IPv4 Addresses. 
 

Type (=0x06)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0015)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

Reserved (=0x00) L4-Proto (TCP/UDP…) Port Number

IPv6-Address [128bit]

 

Figure 9 – IPv6 Endpoint Option format 

 

[SWS_SD_00656]⌈ 
Every OfferService entry shall reference up to two IPv6 Endpoint Options (up to one 
for UDP and up to one for TCP) that describe endpoint(s) (IP and Port) the server 
accepts methods on and sends events from for this service instance. 
⌋() 
 

[SWS_SD_00657]⌈ 
Different service instances of the same service on the same ECU shall use different 
endpoints, so that they can differentiated by the endpoints. Different services may 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

38 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

share the same endpoints. 
⌋() 
 

[SWS_SD_00658]⌈ 
Every SubscribeEventgroup entry shall reference up to two IPv6 Endpoint Options 
(up to one for UDP and up to one for TCP) that describe(s) the endpoints (IP and 
Port) the client wishes to receive events. The client shall use these endpoints for 
sending methods as well. 
⌋() 
  

[SWS_SD_00216]⌈ 
The Length field [16 bits] of the IPv6 Endpoint Option shall be set to 0x0015. 
⌋() 
 
Note: That is the size of this option not including the length and type fields. 
 

[SWS_SD_00217]⌈ 
The Type field [8 bits] of the IPv6 Endpoint Option shall be statically set to 0x06. 
⌋() 
 

[SWS_SD_00218]⌈ 
The Reserved field [8 bits] of the IPv6 Endpoint Option (followed by the IPv6-Address 
field) of the Configuration Option segment shall be statically set to 0x00. 
⌋() 
 

[SWS_SD_00219]⌈ 
The IPv6-Address field [128 bits] of the IPv6 Endpoint Option shall be set to the local 
IP address of the relevant Service or Eventgroup. 
⌋() 
 

[SWS_SD_00220]⌈ 
The Reserved field [8 bits] of the IPv6 Endpoint Option shall statically be set to 0x00. 
⌋() 
 

[SWS_SD_00221]⌈ 
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv6 Endpoint Option shall be set 
to one of the following values, depending on the port specified: 

 0x06: TCP 

 0x11: UDP 
⌋() 
 

[SWS_SD_00222]⌈ 
The Port Number field [16 bits] of the IPv6 Endpoint Option shall carry the UDP or 
TCP port number for the service instance or Eventgroup. 
⌋() 

7.3.9.4 IPv4 Multicast Option 

The IPv4 Multicast Option is used by the server to announce the IPv4 multicast 
address, the transport layer protocol (ISO/OSI layer 4), and the port number the 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

39 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

multicast events and multicast notification events are sent to. As transport layer 
protocol, only UDP is supported.  
 

Type (=0x14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0009)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

IPv4-Address [32bit]

Reserved (=0x00) L4-Proto (UDP/…) Port Number
 

Figure 10 – IPv4 Multicast Option format 

 

[SWS_SD_00659]⌈ 
IPv4 Multicast Options shall be only referenced by SubscribeAck entries, describing 
the multicast destination IP address and port multicast events shall be sent to. 
⌋() 
 

[SWS_SD_00390]⌈ 
The Length field [16 bits] of the IPv4 Multicast Option shall be set to 0x0009. 
⌋() 
 
Note: That is the size of this option not including the length and type fields. 
 

[SWS_SD_00391]⌈ 
The Type field [8 bits] of the IPv4 Multicast Option shall be statically set to 0x14. 
⌋() 
 

[SWS_SD_00392]⌈ 
The Reserved field [8 bits] of the IPv4 Multicast Option (followed by the IPv4-Address 
field) of the Configuration Option segment shall be statically set to 0x00. 
⌋() 
 

[SWS_SD_00393]⌈ 
The IPv4-Address field [32 bits] of the IPv4 Multicast Option shall be set to the 
Multicast IP address of the Eventgroup. 
⌋() 
 

[SWS_SD_00394]⌈ 
 
The Reserved field [8 bits] of the IPv4 Multicast Option shall statically be set to 0x00. 
⌋() 
 

[SWS_SD_00395]⌈ 
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv4 Multicast Option shall be set 
to 0x11 (UDP). 
⌋() 
 

[SWS_SD_00396]⌈ 
The Port Number field [16 bits] of the IPv4 Multicast Option shall carry the port 
number for transporting Multicast Events of the Eventgroup. 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

40 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7.3.9.5 IPv6 Multicast Option 

The IPv6 Multicast Option is used by the server to announce the IPv4 multicast 
address, the transport layer protocol (ISO/OSI layer 4), and the port number the 
multicast events and multicast notification events are sent to. As transport layer 
protocol, only UDP is supported. I 
 

Type (=0x16)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Reserved (=0x00)Length (=0x0015)

C
o

v
e

re
d

 b
y
 L

e
n

g
th

(i
n

c
l.
 R

e
s
e

rv
e

d
)

Reserved (=0x00) L4-Proto (UDP/…) Port Number

IPv6-Address [128bit]

 

Figure 11 – IPv6 Multicast Option format 

 

[SWS_SD_00660]⌈ 
IPv6 Multicast Options shall be only referenced by SubscribeAck entries, describing 
the multicast destination IP address and port multicast events shall be sent to. 
⌋() 
  

[SWS_SD_00397]⌈ 
The Length field [16 bits] of the IPv6 Multicast Option shall be set to 0x0015. 
⌋() 
 
Note: That is the size of this option not including the length and type fields. 
 

[SWS_SD_00398]⌈ 
The Type field [8 bits] of the IPv6 Multicast Option shall be statically set to 0x16. 
⌋() 
 

[SWS_SD_00399]⌈ 
The Reserved field [8 bits] of the IPv6 Multicast Option (followed by the IPv6-Address 
field) of the Configuration Option segment shall be statically set to 0x00. 
⌋() 
 

[SWS_SD_00404]⌈ 
The IPv6-Address field [128 bits] of the IPv6 Multicast shall be set to the Multicast IP 
address of the Eventgroup. 
⌋() 
 

[SWS_SD_00413]⌈ 
The Reserved field [8 bits] of the IPv6 Multicast Option shall statically be set to 0x00. 
⌋() 
 

[SWS_SD_00414]⌈ 
The Layer 4 Protocol field [8 bits] (L4-Proto) of the IPv6 Multicast Option shall be set 

0x11 (UDP).⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

41 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00415]⌈ 
The Port Number field [16 bits] of the IPv6 Multicast Option shall carry the port 
number for transporting Multicast Events of the Eventgroup. 
⌋() 

7.3.9.6 Handling missing, redundant, and conflicting Options 

This section describes the error handling concerning options referenced by entries. 
 

[SWS_SD_00661]⌈ 
If an entry references an unknown option, this option shall be ignored. 

⌋() 
 

 [SWS_SD_00662]⌈ 
If an entry references an redundant option (option that is not needed by this specific 
entry), this option shall be ignored. 

⌋() 
 

 [SWS_SD_00663]⌈ 
If an entry references two or more options that are in conflict, this entry shall be 
answered negatively or ignored if that is not possible. 

⌋() 
 

 [SWS_SD_00664]⌈ 
When two different Configuration Options are referenced by an entry, the 
configuration sets shall be merged. 

⌋() 
 

 [SWS_SD_00665]⌈ 
If the two Configuration Options have conflicting items (same name), all items shall 
be handled. There shall be no attempt been made to merge duplicate items. 

⌋() 
 

7.3.10 Entries referencing Options 

This chapter describes how Entries can reference two runs of Options with zero to 
fifteen options each in order to reference additional information. 
 
Note: Entries support two option runs to allow referencing the same Options by 
different Entries. With a single option run, sharing Endpoint Options while having 
different Configuration Options per Entry would not have work efficiently. 
 

[SWS_SD_00223]⌈ 
The first option run starts with the option referenced by the field Index 1st options and 
references zero to fifteen options. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

42 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00224]⌈ 
The number of options referenced by the first option run is determined by the field # 
of opt 1. 
⌋() 
 

[SWS_SD_00225]⌈ 
The second option run starts with the option referenced by the field Index 2nd options 
and references zero to fifteen options. 
⌋() 
 

[SWS_SD_00226]⌈ 
The number of options referenced by the second option run is determined by the field 
# of opt 2. 
⌋() 
 
Note to SWS_SD_00226: Figure 12 shows an SD message example, which has an 
entry referencing two options in the first run: 

Protocol Version [8 bit]

=0x01

Interface Version [8 bit]

=0x01

Message Type [8 bit]

=0x02

Return Code [8 bit]

=0x00

Request ID (Client ID / Session ID) [32 bit]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 bit offset

Flags [8 bit] = 0x80 Reserved [8 bit =0x00]

Length of Entries Array in Bytes [32 bit]

=0x0000 0010

Length of Options Array in Bytes

= 0x0000 0028

Type

=0x01 (Offer)

Index 1st options

       =0

Index 2nd options

=0

# of opt 1

=2

# of opt 2

=0 (none)

Service ID

=0xFFFE

Instance ID

=0x0001

Major Version

=0x01

TTL

=300 (offer is valid for 300 seconds)

Minor Version

=0x00000032

Type

=0x04 (IPv4 Endpoint)

Reserved

=0x00

Length

=0x0009

IPv4-Address = 192.168.0.1

Reserved

=0x00

L4-Proto

=0x11 (UDP)

Port Number

=0xD903 (=55555)

[0x16]otherserv=internaldiag[0]

Type

=0x01 (Config)

Reserved

=0x00

Length

=0x0019

 

Figure 12 – Example with Entries referencing Options 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

43 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00477]⌈ 
The following table shows which Option is allowed to be carried by different Entries 
(all other combinations shall not be used): 
 

  
Endpoint Options 
(IPv4 and IPv6) 

Multicast Options 
(IPv4 and IPv6) 

Configuration Option 
 

FindService 
  

Allowed 

OfferService Allowed 
 

Allowed 

StopOfferService Allowed 
 

Allowed 

SubscribeEventgroup Allowed 
 

Allowed 

StopSubscribeEventgroup Allowed 
 

Allowed 

SubscribeEventgroupAck  Allowed Allowed 

SubscribeEventgroupNack   Allowed 

Table 1 – Allowed Options per Entry 

⌋() 
 
Note: Usage of these Options depends on other factors that are not shown in this 
table. Consult the appropriate requirements in this document. 

7.4 Service Discovery Entry Types 

ECUs shall distribute available Service Instances and Service Instances needed as 
well as the Eventgroups of these Service Instances. For this purpose, they exchange 
entries using Service Discovery messages. This chapter describes how these entries 
are encoded to offer and find services as well as find and subscribe Eventgroups. 
 
The following overview table shows to which value the Type field and the TTL field 
have to be set: 
  

 
TTL>0 TTL=0 

Type 0x00 0x04 0x00 0x04 

0x00 FindService  
   0x01 OfferService  
 

StopOfferService  
 0x02 

 
SubscribeEventgroup  

 
StopSubscribeEventgroup  

0x03 
 

SubscribeEventgroupAck 
 

SubscribeEventgroupNack 

Table 2 – Overview of currently supported Entry Types 

7.4.1 Entries for Services (common requirements) 

These requirements are valid for all Entries concerning Services including Entries of 
Type 0x00, 0x01, 0x02, and 0x03. 
 
Note: Currently only Service Entries of type 0x00 and 0x01 are defined in this 
specification. 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

44 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00294]⌈ 
All entries concerning Services (FindService, OfferService, StopOfferService) shall 
be of Entry Format Type 1. 
⌋() 
 

[SWS_SD_00295]⌈ 
An Instance ID of 0xFFFF shall mean any possible instances and are not allowed for 
OfferService and StopOfferService entries. 
⌋() 
 

[SWS_SD_00296]⌈ 
FindService entries shall carry Service ID, Service Instance ID, Major Version, and 

Minor Version as configured in SdClientServiceID, 
SdClientServiceInstanceID, SdClientServiceMajorVersion, and 

SdClientServiceMinorVersion. 
⌋() 
 

[SWS_SD_00297]⌈ 
OfferService and StopOfferService shall carry Service ID, Service Instance ID, Major 

Version, Minor Version, and as configured in SdServerServiceID, 
SdServerServiceInstanceID, SdServerServiceMajorVersion, and 

SdServerServiceMinorVersion. 
⌋() 
 

[SWS_SD_00298]⌈ 
FindService entries shall carry the TTL as configured in SdClientTimerTTL. 
⌋() 
 

[SWS_SD_00299]⌈ 
OfferService entries shall carry the TTL as configured in SdServerTimerTTL. 
⌋() 
 

[SWS_SD_00253]⌈ 
A StopOfferService (type 0x01) entry shall set the TTL field to 0x000000. 
⌋() 
 

[SWS_SD_00267]⌈ 
All entries concerning Services (FindService, OfferService and StopOfferService 
shall carry – i.e. reference – the options as configured. 
⌋() 
 
Note: see also chapter 7.3.9.6. 
 

[SWS_SD_00281]⌈ 
A StopOfferService (type 0x01), shall carry – i.e. reference – the same options as the 
entries trying to stop. 

⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

45 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7.4.2 FindService entry 

FindService entries allow finding Service Instances. 
 

[SWS_SD_00240]⌈ 
A FindService entry has the type field set to 0x00. 
⌋() 
 

[SWS_SD_00444]⌈ 
Service ID shall be set to the Service ID of the service that shall be found. 
⌋() 
 

[SWS_SD_00501]⌈ 
Instance ID shall be set to 0xFFFF, if all Service Instances shall be returned. It shall 
be set to the Instance ID of a specific Service Instance, if just a single Service 
Instance shall be returned. 
⌋() 
 
Note: This means that when receiving Instance ID 0xFFFF for all appropriate Service 
Instances must be answered as if separate Find Entries were received. 
 
Example: 
ECU1 offers Service 0x1234 with Instance 0xabcd. This instance is main phase. 
ECU2 send out find with Service ID 0x1234 and Instance ID 0xFFFF. 
ECU1 shall answer with Offer (Service ID 0x1234, Instance ID 0xabcd). 
 

[SWS_SD_00502]⌈ 
Major Version shall be set to 0xFF, that means that services with any version shall be 
returned. If set to value different than 0xFF, services with this specific major version 
shall be returned only. 
⌋() 
 
Note: It is expected that the Major Version on client side is configured to a specific 
value in normal operation since the client should look for an specific interface 
version. Different Major Versions are not compatible to each other. 
 

[SWS_SD_00503]⌈ 
Minor Version shall be set to 0xFFFF FFFF, that means that services with any 
version shall be returned. If set to a value different to 0xFFFF FFFF, services with 
this specific minor version shall be returned only. 
⌋() 
 
Note: It is expected that the Minor Version on client side is configured to 0xFFFF 
FFFF in normal operation since the client should accept all different Minor Versions. 
Different Minor Versions shall be compatible to each other. 
 

[SWS_SD_00504]⌈ 
TTL shall be set according to the configuration. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

46 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00506]⌈ 
TTL shall not be set to 0x000000 since this is considered to be the Stop entry for this 
entry. 
⌋() 
 

[SWS_SD_00652]⌈ 
If TTL is set to 0xFFFFFF, the Subscribe Eventgroup entry shall be considered valid 
until shutdown (i.e. next reboot). 

 ⌋() 
 

[SWS_SD_00505]⌈ 
FindServer entries shall never reference Endpoint or Multicast Options. They shall 
reference configuration options, if configured to do so. 
⌋() 

7.4.3 OfferService entry 

To offer Service Instances, the OfferService entry shall be used.  
 

[SWS_SD_00254]⌈ 
An OfferService entry shall set the type to 0x01. 
⌋() 
 

[SWS_SD_00509]⌈ 
Service ID shall be set to the Service ID of the Service Instance offered. 
⌋() 
 

[SWS_SD_00510]⌈ 
Instance ID shall be set to the Instance ID of the Service Instance offered. 
⌋() 
 

[SWS_SD_00511]⌈ 
Major Version shall be set to the Major Version of the Service Instance offered (see 

SdServerServiceMajorVersion). 
⌋() 
 

Note: Since SdServerServiceMajorVersion can be only a value up to 0xFE, the 

value 0xFF (any) cannot occur in an OfferService entry. 
 

[SWS_SD_00512]⌈ 
Minor Version shall be set to the Minor Version of the Service Instance offered. 
⌋() 
 

[SWS_SD_00513]⌈ 
TTL shall be set to the lifetime of the Service Instance. After this lifetime the Service 
Instance shall considered not been offered. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

47 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00514]⌈ 
If TTL is set to 0xFFFFFF, the Offer Service entry shall be considered valid until the 
next reboot. 
⌋() 
 

[SWS_SD_00515]⌈ 
TTL shall be set to another value than 0x000000 since 0x000000 is considered to be 
the Stop entry for this entry. 
⌋() 
 

[SWS_SD_00416]⌈ 
Offer Service entries shall always reference at least an IPv4 or IPv6 Endpoint Option 
to signal how the service is reachable. 
⌋() 

 

[SWS_SD_00417]⌈ 
For each L4 protocol needed for the service (i.e. UDP and/or TCP) an IPv4 Endpoint 
option shall be added if IPv4 is supported. 
⌋() 

 

[SWS_SD_00418]⌈ 
For each L4 protocol needed for the service (i.e. UDP and/or TCP) an IPv6 Endpoint 
option shall be added if IPv6 is supported. 
⌋() 

 

[SWS_SD_00419]⌈ 
The IP addresses and port numbers of the Endpoint Options shall also be used for 
transporting events and notification events. 
⌋() 

 

[SWS_SD_00420]⌈ 
In the case of UDP this information is used for the source address and the source 
port of the events and notification events. 
⌋() 

 

[SWS_SD_00421]⌈ 
In the case of TCP this is the IP address and port the client needs to open a TCP 
connection to in order to receive events using TCP. 
⌋() 

7.4.4 Build OfferService entry 

[SWS_SD_00478]⌈ 
This chapter describes how to derive all necessary data to assemble an Offer 
Service Message: 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

48 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 
1) Derive all static data from the configuration container. These are e.g: 

o Container SdServerService: SdServerServiceId 
o Container SdServerService: SdServerServiceInstanceId  
o Container SdServerService: SdServerServiceMajorVersion 
o Container SdServerService: SdServerServiceMinorVersion 
o Container SdServerTimer:  SdServerTimerTTL 
o Container SdInstance:  SdInstanceHostname 

 
2) If TCP is configured for this service (configuration item 

SdServerServiceTcpRef exists): 

a. The generator derives a SoConID out of the SoConGroup referenced 

by the configuration parameter SdServerServiceTcpRef 
b. Call the Socket Adaptor’s API SoAd_GetLocalAddr() with the derived 

SoConID to get back the IP Address, Transport protocol (Layer 4), and 
the port number needed for the Endpoint Option. 

c. Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be 
same as in LocalAddr) . 
 

3) If UDP is configured for this service (configuration item 

SdServerServiceUdpRef exists): 

a. The generator derives a SoConID out of the SoConGroup referenced 

by the configuration parameter SdServerServiceUdpRef 

b. Call the Socket Adaptor’s API SoAd_GetLocalAddr() with the derived 
SoConID to get back the IP Address, Transport protocol (Layer 4), and 
the port number needed for the Endpoint Option. 

c. Build the relevant Endpoint Option with L4-Protocol set to TCP (shall be 
same as in LocalAddr) . 

 
4) Build Configuration Option if configured (see configuration item 

SdServerCapabilityRecord and SdInstanceHostname). 

 
5) Build Offer Service Entry as described above. 

 
⌋() 
 

7.4.5 StopOfferService entry 

To stop offering Service Instances, the Stop Offer Service entry shall be used.  

 

[SWS_SD_00422]⌈ 
The Stop Offer Service entry type shall be used to stop offering Service Instances. 
⌋() 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

49 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00423]⌈ 
A Stop Offer Service entry shall set the type to 0x01. 
⌋() 

 

[SWS_SD_00424]⌈ 
Stop Offer Service entries shall set the entry fields exactly like the Offer Service entry 
they are stopping, except TTL. 
⌋() 

 

[SWS_SD_00425]⌈ 
TTL shall be set to 0x000000. 
⌋() 

7.4.6 Eventgroup Entries (Common requirements) 

The following requirements are valid for all Entries concerning Eventgroups including 
Entries of Type 0x04, 0x05, 0x06, and 0x07. 
 
Note: Currently only Eventgroup Entry of Type 0x06 and 0x07 are defined in this 
specification. 
 

[SWS_SD_00289]⌈ 
Eventgroups entries include: 

 SubscribeEventgroup and StopSubscribeEventgroup 

 SubscribeEventgroupAck  and SubscribeEventgroupNack 

⌋() 
 

[SWS_SD_00290]⌈ 
All Eventgroup entries shall use the Entry Format Type 2. 
⌋() 
 

[SWS_SD_00291]⌈ 
Eventgroup entries shall set the Eventgroup ID to the ID of the Eventgroup and shall 
use 0xFFFF being any possible Eventgroup ID (configuration parameters 

SdConsumedEventGroupId and SdEventHandlerEventGroupId). 
⌋() 
 

[SWS_SD_00300]⌈ 
Eventgroup entries shall set the Reserved fields to 0x00 and 0x0000. 
⌋() 
 

[SWS_SD_00301]⌈ 
SubscribeEventgroup, and StopSubscribeEventgroup entries shall set the Service 
IDs, Service Instance IDs, and Eventgroup IDs based on the configuration 

(configuration parameters SdClientServiceId and 
SdClientServiceInstanceId). 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

50 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

 [SWS_SD_00303]⌈ 
The Service Instance ID shall not be set to 0xFFFF for any “Instance”. 
⌋() 
 

[SWS_SD_00304]⌈ 
SubscribeEventgroup entries shall have the TTL field set to the configured value 

(configuration parameter SdClientTimerTTL of SdConsumedEventGroup) and 

the SubscribeEventgroupAck entry shall use the TTL value of the 
SubscribeEventgroup entry it acknowledges. 
⌋() 
 
[SWS_SD_xxx] 
If TTL is set to 0xFFFFFF, the Subscribe Eventgroup entry shall be considered valid 
until the next reboot. 
 

[SWS_SD_00306]⌈ 
A StopSubscribeEventgroup (type 0x06), and SubscribeEventgroupNack (type 0x07) 
entry shall set the TTL field to 0x000000. 
⌋() 
 

[SWS_SD_00307]⌈ 
Eventgroup entries shall carry the options as configured. 
⌋() 

7.4.6.1 SubscribeEventgroup entry 

To subscribe to Eventgroups, the SubscribeEventgroup entry shall be used. 
 

[SWS_SD_00312]⌈ 
A SubscribeEventgroup entry shall set the type to 0x06. 
⌋() 

7.4.6.2 StopSubscribeEventgroup entry 

To stop subscribing to an Eventgroup, the StopSubscribeEventgroup entry shall be 
used. 
 

[SWS_SD_00313]⌈ 
A StopSubscribeEventgroup entry shall set the type to 0x06. 
⌋() 
 

[SWS_SD_00427]⌈ 
StopSubscribeEventgroup entries shall set the entry fields exactly like the Subscribe 
Eventgroup entry they are stopping, except the TTL field. 
⌋() 
 

[SWS_SD_00426]⌈ 
The TTL shall be set to 0x000000. 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

51 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

7.4.6.3 SubscribeEventgroupAck entry 

To acknowledge a SubscribeEventgroup entry, the SubscribeEventgroupAck entry 
shall be used and shall be used with the values as in the SubscribeEventgroup entry 
it stops. 
 

[SWS_SD_00314]⌈ 
A SubscribeEventgroupAck entry shall set the type to 0x07. 
⌋() 
 

[SWS_SD_00428]⌈ 
Service ID, Instance ID, Major Version, Eventgroup ID, TTL, and Reserved shall be 
the same value as in the Subcribe that is being answered. 
⌋() 
 

[SWS_SD_00315]⌈ 
A SubscribeEventgroupAck entry shall set the TTL field to the value of the 
SubscribeEventgroup entry, it acknowledges. 
⌋() 
 

[SWS_SD_00429]⌈ 
Subscribe Eventgroup Ack entries referencing events and notification events that are 
transported via multicast shall reference an IPv4 Multicast Option and/or and IPv6 
Multicast Option. The Multicast Options state to which Multicast address and port the 
events and notification events will be sent to. 
⌋() 

7.4.6.4 SubscribeEventgroupNack entry 

[SWS_SD_00430]⌈ 
The Subscribe Eventgroup Negative Acknowledgment entry type shall be used to 
indicate that Subscribe Eventgroup entry was NOT accepted. It shall be always sent 
instead of a SubscribeEventgroupAck if such an error occurred. Reasons for sending 
a Subscribe Eventgroup Negative Acknowledgment include: 

• Combination of Service ID, Instance ID, Eventgroup ID, and Major Version is 
 unknown 

• Required TCP-connection was not opened by client 

• Problems with the references options occurred (wrong values, missing  
 endpoint, or conflicting endpoints) 

• Resource problems at the Server 

⌋() 

 

[SWS_SD_00431]⌈ 
Service ID, Instance ID, Major Version, Eventgroup ID, and Reserved shall be the 
same value as in the subscribe that is being answered. 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

52 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00316]⌈ 
A SubscribeEventgroupNack entry shall set the type to 0x07. 
⌋() 
 

[SWS_SD_00432]⌈ 
The TTL shall be set to 0x000000. 
⌋() 

7.5 Sending and Receiving of Messages 

This chapter describe how messages are transmitted and received using the Socket 
Adaptor module. 
 

[SWS_SD_00039]⌈ 
The Service Discovery module sends Service Discovery messages (Offer, StopOffer, 

Find,.. ) using the SoAd_IfTransmit() API carrying the referenced TxPdu (see 

configuration parameter SdInstanceTxPdu). 
⌋() 
 

[SWS_SD_00040]⌈ 
The Service Discovery module receives Service Discovery messages via the API 

Sd_SoAdIfRxIndication() and the configuration items 

SdInstanceUnicastRxPdu and SdInstanceMulticastRxPdu. The remote 

address must be saved in the call context of the Sd_RxIndication. 
⌋() 
 [SWS_SD_00479]⌈ 
When receiving Service Discovery messages the values of all reserved fields shall be 
ignored. 
⌋() 

7.5.1 Sequence for message transmission 

[SWS_SD_00480]⌈ 
This chapter describes the interaction with the Socket Adaptor module to send 
Service Discovery messages: 
 

1) Precondition: Service Discovery message is assembled  
 

2) In case the message shall be sent via unicast: 
- Call the Socket Adaptor’s API SoAd_SetRemoteAddr  
 

3) In case the message shall be sent via multicast: 
- Call the API SoAd_SetRemoteAddr to set the destination 
 

4) Call SoAd_IfTransmit() to send the message on the bus 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

53 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Please also refer to the sequence “CLIENT/SERVER: TransmitSdMessage”  shown 
in Chapter 9. 

⌋() 
 

[SWS_SD_00481]⌈ 
The Service Discovery module shall minimize the amount of messages sent by 
combining multiple entries within one message whenever it is possible and not in 
conflict to the configuration. 
⌋() 
 
Note: 
This can be achieved for example by checking the status of all Service Instances and 
Eventgroups cyclically and afterwards assembling the Service Discovery Messages. 
 

[SWS_SD_00650]⌈ 
Entries received with the unicast flag set to 0, shall not be answered with unicast but 

ignored⌋() 
 

[SWS_SD_00651]⌈ 
The amount of separate Service Discovery messages shall be reduced, i.e.: 
Combine as much information as possible into one Service Discovery message 
before calling the Socket Adaptor’s transmit API. This means that when a entry is 
sent after waiting the appropriate delay (i.e. based on Request-Response-Delay) all 
other entries for this communication partner may be packed into the Service 

Discovery message as well.⌋() 
 

7.5.2 Sequence for message reception  

[SWS_SD_00482]⌈ 
This chapter describes the interaction with the Socket Adaptor on how Service 
Discovery messages are received: 
 

1) When the SocketAdaptor receives a Service Discovery message, the API 
Sd_RxIndication() is called 
 

2) Using the indicated RxPduId, the associated Service Instance has to be 
determined  
 

3) Derive the corresponding SoConId and call the API SoAd_GetRemoteAddr() 
 

4) Store address and message for further processing. 
 

5) The entries shall be processed exactly in the order they arrived. 
 

Please also refer to the sequence “CLIENT/SERVER: Sd_RxIndication”  shown in 
Chapter 9. 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

54 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 [SWS_SD_00483]⌈ 
When receiving Service Discovery messages, the receiver shall ignore Entries of 
unknown type. 
⌋() 
 

[SWS_SD_00484]⌈ 
When receiving Service Discovery messages, the receiver shall ignore Options of 
unknown type. 
⌋() 
 

[SWS_SD_00485]⌈ 
When receiving Service Discovery messages, the receiver shall ignore the values of 
reserved fields. 
⌋() 

7.5.3 Receiving Entries  

When receiving entries the relevant Service Instance or Eventgroups have to be 
identified, which is explained in this section. 
 

[SWS_SD_00486]⌈ 
When receiving a FindService Entry Service ID, Instance ID, Major Version, and 
Minor Version must match exactly to the configured values in order to identify a 
Service Instances and its associated Eventgroups, except if “any values” are in the 
Entry (i.e. 0xFFFF for Service ID, 0xFFFF for Instance ID, 0xFF for Major Version, 
and 0xFFFFFF for Minor Version.) 
 

See configuration parameters SdServerServiceServiceId, 
SdServerServiceInstanceId, SdServerServiceMajorVersion, and 

SdServerServiceMinorVersion. 
⌋() 
 

Note: 
When receiving a FindService with Service ID 0x0001, Instance ID 0xFFFF, Major 
Version 0x02, and Minor Version 0xFFFFFF, only the Service ID and the Major 
Version shall be used to match the local Service Instances and its associated 
Eventgroups fitting to this FindService. 
 

[SWS_SD_00487]⌈ 
When receiving an OfferService or StopOfferService the Service ID, Instance ID, 
Major Version must match exactly to the configured values in order to identify a 
Service Instances and its associated Eventgroups. 
 

See configuration parameters SdClientServiceServiceId, 

SdClientServiceInstanceId, and SdClientServiceMajorVersion. 
⌋() 
 
 

[SWS_SD_00488]⌈ 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

55 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

If SdClientServiceMinorVersion is set to 0xFFFFFF the Minor Version in a 

received OfferService or StopOfferService entry is not checked for identifying Service 
Instances and its associated Eventgroups. 
⌋() 
 

[SWS_SD_00489]⌈ 
If SdClientServiceMinorVersion is set to any value except 0xFFFFFF the 

Minor Version in a received OfferService or StopOfferService shall be checked for 
identifying Service Instances and its associated Eventgroups. 
⌋() 
 

[SWS_SD_00490]⌈ 
When receiving Eventgroup entries (i.e.SubscribeEventgroup, 
StopSubscribeEventgroup, SubscribeEventgroupAck, and 
SubscribeEventgroupNack) the Service ID, Instance ID, Eventgroup ID, and Major 
Version shall be exactly matched to identify the Eventgroup. 
⌋() 

7.5.3.1 Receiving Entries using Multicast 

When receiving Service Discovery messages using multicast, these messages may 
be received by multiple ECUs at once and multiple ECUs may answer to such a 
message in parallel. This could lead to overload situations of the ECU that sent the 
first message. In order to cope with this problem the Service Discovery shall allow 
delaying answers to multicast as described in this section. 
 

[SWS_SD_00491]⌈ 
Answers to Entries received using multicast shall be delayed based on the 
appropriate configuration items: 

 For ServerServices and EventHandlers: 
o SdServerTimerRequestResponseMinDelay 
o SdServerTimerRequestResponseMaxDelay 

 For ClientServices and ConsumedEventgroups: 
o SdClientTimerRequestResponseMinDelay 
o SdClientTimerRequestResponseMaxDelay 

⌋() 
 

[SWS_SD_00492]⌈ 
The delay configuration parameters for delaying Entries concerned with Services 
shall be taken from the Timer containers referenced by the Service containers: 

 SdServerService 

 SdClientService 

⌋() 
 

[SWS_SD_00493] ⌈ 
The delay configuration parameters for delaying Entries concerned with Eventgroups 
shall be taken from the Timer containers reference by the Eventgroup containers: 

 SdConsumedEventGroup 

 SdEventHandler 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

56 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

⌋() 
 

[SWS_SD_00494]⌈ 
An Entry answering an Entry received via multicast shall be delay for a random delay 
between the appropriate MinDelay and MaxDelay. 

⌋() 
 
Note: If MinDelay and MaxDelay are set to the same value, this is the value of the 
delay. If MinDelay and MaxDelay are set to 0, no delay shall be introduced. 
 

[SWS_SD_00495] ⌈ 
Delaying Entries answering Entries received via multicast shall no influence other 
timers (e.g. for handling the repetitition phase). 

⌋() 

7.6 Timings and repetitions for Server Service and Event 
Handlers 

Especially after starting multiple ECUs, the multicast messages of the Service 
Discovery come with the risk of overflowing ECUs with too many messages. 
Therefore, the Service Discovery can be configured with a suitable message sending 
behavior. 
 
For every Server Service Instance different phases are defined as shown in Figure 
13: 

 Down 

 Available 

o Initial Wait Phase 

o Repetition Phase 

o Main Phase 

 
 

Server UP

Initial Wait Phase Repetition Phase

tx

Main Phase

„Find“ received

tx tx tx tx tx

„Find“ received„Find“ received

DOWN

rx
 

Figure 13 – Communication phases Server 

 
 

 [SWS_SD_00605]⌈ When the Down Phase is entered (coming from states other 

than init), the API SoAd_CloseSoCon() shall be called for all Socket Connections 

associated with this Server Service Instance. ⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

57 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7.6.1 Initial Wait Phase for Server Services 

This chapter describes the behavior of the Service Discovery in regard of a Server 
Service Instance in the Initial Wait Phase. 
 

[SWS_SD_00317]⌈ 
If the following conditions apply, the Initial Wait Phase for this configured Server 
Service Instance shall be entered: 

 Sd_Init() has been called 

 Sd_ServerServiceSetState() with SD_SERVER_SERVICE_AVAILABLE 
has been called 

 Sd_LocalIpAddrAssignmentChg() with state 
“TCPIP_IPADDR_STATE_ASSIGNED” has been called for the first IpAddrId 
associated with the SdInstanceTxPdu. 

⌋() 
 

Note:  Service Discovery expects that the IP address of the data/control path to be 
always the same. This means that a call of Sd_LocalIpAddrAssignmentChg() 
affects the control path and data path simultaneously.  
 

[SWS_SD_00330]⌈ 
When the Initial Wait Phase is entered, the API SoAd_EnableRouting() shall be 
called with SdServerServiceActivationRef of this Server Service Instance. 

⌋() 
 

[SWS_SD_00318]⌈ 
When entering the Initial Wait Phase, a random timer shall be started, using a 
random value within the configured range of 

SdServerTimerInitialOfferDelayMin and 

SdServerTimerInitialOfferDelayMax. 

⌋() 
 

[SWS_SD_00319]⌈ 
If a FindService Entry is received within the Initial Wait Phase for this Server Service 
Instance, it shall be ignored. 
⌋() 
 

[SWS_SD_00320]⌈ 
If a SubscribeEventgroup Entry or StopSubscribeEventgroup Entry are received 
within the Initial Wait Phase (or other phases) for an Event Handler of this Server 
Service Instance, it shall only be processed within the Service Discovery. Please 
refer to the according sequence diagrams and chapter 0. 
⌋() 
 
 

[SWS_SD_00321]⌈ 
When the calculated random timer based on the min and max values 

SdServerTimerInitialOfferDelayMin and 

SdServerTimerInitialOfferDelayMax expires, the first OfferService entry 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

58 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

shall be sent out. 
⌋() 
 

[SWS_SD_00434]⌈ 
When the calculated random timer expires and the parameter 

SdServerTimerInitialOfferRepetitionMax does not equals ‘0’, the 

Repetition Phase shall be entered. 
⌋() 
 

[SWS_SD_00435]⌈ 
When the calculated random timer expires and the parameter 

SdServerTimerInitialOfferRepetitionMax equal ‘0’, the Main Phase shall 

be entered. 
⌋() 
 

[SWS_SD_00323]⌈ 
If Sd_ServerServiceSetState() is called with a state other than 
SD_SERVER_SERVICE_AVAILABLE while being in Initial Wait Phase, the  

 Down Phase shall be entered  

 all associated EventHandler shall be set to SD_EVENT_HANDLER_RELEASED 
and reported to BswM by calling the API 
BswM_Sd_EventHandlerCurrentState. 

⌋() 
 

[SWS_SD_00325]⌈ 
If Sd_LocalIpAddrAssignmentChg() is called with a state other than 
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Initial Wait Phase, this phase 
shall be left and down shall be entered. 
⌋() 
 

[SWS_SD_00606]⌈ When the Initial Wait Phase is entered, the API 

SoAd_OpenSoCon() shall be called for all Socket Connections associated with this 

Server Service Instance.⌋() 

 
Note: As soon as an IP address is assigned again and no  
SD_SERVER_SERVICE_DOWN was received, the Initial Wait Phase shall be 
reentered with the random timer reset to the random value.  

7.6.2 Repetition Phase for Server Services 

This chapter describes the timing behavior of the Service Discovery in regard of 
Service Service Instance in the Repetition Phase. 
 

[SWS_SD_00329]⌈ 
If the Repetition Phase is entered, the Service Discovery shall wait 

SdServerTimerInitialOfferRepetitionBaseDelay and send an 

OfferService Entry. 
⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

59 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

[SWS_SD_00336]⌈ 
After the amount of cyclically sent OfferServices within the Repetitian Phase equals 
the amount of SdServerTimerInitialOfferRepetitionMax, the Main Phase 
shall be entered. 
⌋() 
 
Note:  
Additionally sent OfferService messages which have been triggered by received 
FindService messages shall have no influence on the counter value of the cyclically 
OfferService messages.  
 

[SWS_SD_00331]⌈ 
In the Repetition Phase up to SdServerTimerInitialOfferRepetitionsMax 

OfferService Entries shall be sent with doubling intervals (BaseDelay, first 
OfferService Entries, 2x BaseDelay, second OfferService Entries, 4x BaseDelay, 
third OfferService Entries). 

⌋() 
 
Note: Example config and resulting behavior:  

SdServerTimerInitialOfferRepetitionBaseDelay=30 

SdServerTimerInitialOfferRepetitionMax=3 

 
[Initial Wait Phase starts] 
Wait Initial Wait Delay based on Configured Min and Max 
Send entry. 
[Initial Wait Phase ends] 
[Repetition Phase starts] 
Wait 30ms (=30ms * 20). 
Send entry. 
Wait 60ms (=30ms * 21). 
Send entry. 
Wait 120ms (=30ms * 22). 
Send entry. 
[Repetition Phase ends] 

 
 

[SWS_SD_00332]⌈ 
If the Service Discovery Module receives a FindService Entry, the following steps 
shall be performed in the following order: 

 Send an “Offer Service Entry” considering the appropriate delay (see chapter 
7.5.3) without changing the current counter value and without influencing the 
current running repetition timer. 

⌋() 
 
Note: Currently this specification does not allow sending “Find Service Entries” using 
unicast. For compatibility reasons receiving such entries shall be supported. 
 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

60 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00333]⌈ 
If the Service Discovery Module receives a “SubscribeEventgroup” entry, the 
following steps shall be performed in the following order: 

 Send a SubscribeEventgroupAck entry using Unicast considering the 
appropriate delay (see chapter 7.5.3) without changing the current counter 
value and without influencing the current running repetition timer. 

 Call the BswM with the API BswM_Sd_EventHandlerCurrentState() with 

state SD_EVENT_HANDLER_REQUESTED only if the state for this 

EventHandler changed (i.e. has not been SD_EVENT_HANDLER_REQUESTED) 

 Start the TTL timer according to the value received via the 
SubscribeEventgroup Entry. 

⌋() 
 
Note: Currently this specification does not allow sending “Subscribe Eventgroup 
Entries” using multicast. For compatibility reasons receiving such entries shall be 
supported. 
 
 

[SWS_SD_00334]⌈ 
If the Service Discovery Module receives a StopSubscribeEventgroup Entry, the 
following steps shall be performed in the following order: 

 Stop the TTL timer for this client 

 Update State 

 If the this has been the last subscribed client, report 

“SD_EVENT_HANDLER_RELEASED” to the BswM by calling the API 
BswM_Sd_EventHandlerCurrentState(). 

⌋() 
 

[SWS_SD_00458]⌈ 
If the TTL of a received SubscribeEventgroup Entry expires, the following step shall 
be performed in the following order: 

 If the this has been the last subscribed client, report 

“SD_EVENT_HANDLER_RELEASED” to the BswM by calling the API 

BswM_Sd_EventHandlerCurrentState() and update the state within the 
Service Discovery Module 

⌋() 
 

[SWS_SD_00338]⌈ 
If Sd_ServerServiceSetState () is called with a state other than 

SD_SERVER_SERVICE_AVAILABLE (i.e. SD_SERVER_SERVICE_DOWN ) while 
being in Repetition Phase, 

 this phase shall be left and the Down Phase shall be entered and  

 all associated EventHandler which state is not 
SD_EVENT_HANDLER_RELEASED shall be changed to 
SD_EVENT_HANDLER_RELEASED and indicated to the BswM by calling the 
API  BswM_Sd_EventHandlerCurrentState(). 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

61 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00340]⌈ 
If Sd_LocalIpAddrAssignmentChg() is called with a state other than 
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Initial Wait Phase, this phase 
shall be left and the Down Phase shall be entered. 
⌋() 
 

[SWS_SD_00341]⌈ 
When the state SD_SERVER_SERVICE_DOWN is set by 
Sd_ServerServiceSetState()in Repetition Phase, SoAd_DisableRouting() 
shall be called for all IDs which are referenced by this Server Service Instance. 
⌋() 

7.6.3 Main Phase for Server Services 

[SWS_SD_00342]⌈ 
The Service Discovery Module shall stay in the Main Phase for the configured Server 
Service as long as the following conditions apply: 

 Server Service is in state “AVAILABLE” (i.e. 
Sd_ServerServiceSetState()has been called with State 
“SD_SERVER_SERVICE_AVAILABLE”) 

 IP address is assigned and can be used   
(i.e. Sd_LocalIpAddrAssignmentChg has been called with status 
TCPIP_IPADDR_STATE_ASSIGNED) 

⌋() 
 

[SWS_SD_00449]⌈ 
If SdServerTimerOfferCyclicDelay is greater 0, in the Main Phase an 
OfferService entry shall be sent cyclically with an interval defined by configuration 
item SdServerTimerOfferCyclicDelay. 
⌋() 
 

[SWS_SD_00450]⌈ 
The first OfferService is sent SdServerTimerOfferCyclicDelay after the 
beginning of the Main Phase. 
⌋() 
 

[SWS_SD_00451]⌈ 
If SdServerTimerOfferCyclicDelay is 0, no OfferService entries shall be sent 
in Main Phase for this Server Service Instance. 
⌋() 
  

[SWS_SD_00343]⌈ 
If the Service Discovery Module receives a FindService Entry the following steps 
shall be performed in the following order: 

 Send an “Offer Service Entry” considering the appropriate delay (see chapter 
7.5.3). 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

62 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Note: Currently this specification does not allow sending “Find Service Entries” using 
unicast. For compatibility reasons receiving such entries shall be supported. 
 

[SWS_SD_00344]⌈ 
If the Service Discovery Module receives a “SubscribeEventgroup”, the following 
steps shall be performed in the following order: 

 Send a SubscribeEventgroupAck considering the appropriate delay (see 
chapter 7.5.3) without influencing the current running main phase timer. 

 Report to the BswM SD_EVENT_HANDLER_REQUESTED  by calling the API 
BswM_Sd_EventHandlerCurrentState(). 

 Start the TTL timer according to the value received via the 
“SubscribeEventgroup”. 

⌋() 
 
Note: Currently this specification does not allow sending “Subscribe Eventgroup 
Entries” using multicast. For compatibility reasons receiving such entries shall be 
supported. 
 

[SWS_SD_00345]⌈ 
If the Service Discovery Module receives a StopSubscribeEventgroup”, the following 
steps shall be performed in the following order: 

 Stop the TTL timer and remove it from the notification list  

 If no other client is subscribed to this Eventgroup anymore, enter the State 
“SD_EVENT_HANDLER_RELEASED” and report it to the BswM by calling the 
API BswM_Sd_EventHandlerCurrentState () with state 
SD_SERVER_SERVICE_AVAILABLE. 

⌋() 
 

[SWS_SD_00347]⌈ 
 If the API LocalIpAddrAssignmentChg has been called with a state other than 
TCPIP_IPADDR_STATE_ASSIGNED, 

 The Service Discovery Module shall leave the Main Phase and enter the 
DOWN Phase 

 All EventHandler which are not in state SD_EVENT_HANDLER_RELEASED 
shall be set to SD_EVENT_HANDLER_RELEASED and be indicated to the 
BswM module by calling the API BswM_Sd_EventHandlerCurrentState 

⌋() 
 

[SWS_SD_00348]⌈ 
If the API Server Sd_ServerServiceSetState() is called with state 
“SD_SERVER_SERVICE_DOWN” while  the IP address is still assigned (i.e. 
Sd_LocalIpAddrAssignmentChg has been called with state 
TCPIP_IPADDR_STATE_ASSIGNED), the Service Discovery module shall 

 send a StopOfferService 

 enter the DOWN Phase  

 all subscriptions of the eventgroup(s) of this service instance shall be deleted 
and SD_EVENT_HANDLER_RELEASED and reported to BswM using the API 
BswM_Sd_EventHandlerCurrentState 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

63 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00349]⌈ 
When the Main Phase is left, the following actions shall be performed in the following 
order 
Call the API SoAd_DisableRouting() for all IDs which are associated for this 
Server Service ID. 
⌋() 
 

[SWS_SD_00403]⌈ 

When the TTL timer (contained in TTL field find or Subscribe entry) expires in state 

“SD_EVENT_HANDLER_REQUESTED”, 

enter the state SD_EVENT_HANDLER_RELEASED and report it to the BswM by calling 
the BswM_Sd_EventHandlerCurrentState(). 

⌋() 

7.6.4 Fan out control 

This chapter describes the interaction between Service Discovery and Socket 
Adaptor (SoAd) in order to configure the TX path for sending out events (fan out). 
 

[SWS_SD_00452]⌈ 
The Service Discovery shall keep track of the subscribed clients per Event Handler 
and remove clients from the fan out, if the last SubscribeEventgroup entry was longer 
ago than the time specified in its TTL field of that SubscribeEventgroup entry. 
⌋() 
 

[SWS_SD_00453]⌈ 
If SdEventHandlerTCP is configured: For every SubscribeEventgroup entry of this 
Event Handler, the following shall be done: 

o The relevant TCP Socket Connection and Routing Groups of this client shall 
be identified using the Address/Port of Endpoint Option (UDP) referenced in 
the SubscribeEventgroup entry. 

o Only if this client was not subscribed before receiving this entry: 
o SoAd_EnableRouting with SdEventActivationRef 
o SoAd_IfRoutingGroupTransmit with SdEventTriggeringRef 

⌋() 
 

[SWS_SD_00454]⌈ 
If SdEventHandlerUDP is configured: For every SubscribeEventgroup entry of this 
Eventhandler, the following shall be done: 
The relevant UDP Socket Connection and Routing Groups of this client shall be 
identified using the Address/Port of Endpoint Option (UDP) referenced in the 
SubscribeEventgroup entry or shall be set up, if not existed before. 

o Only if this client was not subscribe before receiving this entry: 
o SoAd_EnableRouting with SdEventActivationRef depending on 

current number of subscribed clients and 
SdEventHandlerMulticastThreshhold. 

o SoAd_TriggerTransmit with SdEventTriggeringRef. 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

64 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00455]⌈ 
The SdEventHandlerMulticastThreshhold shall be used to control when to 
enable/disable Unicast/Multicast by using SoAd_EnableRouting and 
SoAd_DisableRouting: 

o If SdEventHandlerMulticastThreshhold = 0: Setup Unicast to every 
subscribed client (Multicast always disabled). 

o If SdEventHandlerMulticastThreshhold = 1: Setup Multicast if one or 
more clients are subscribed (Unicast always disabled). 

o If SdEventHandlerMulticastThreshhold > 1:  
o Setup Unicast for all subscribed clients if number of subscribed clients < 

SdEventHandlerMulticastThreshhold, 
o else setup Multicast. Switch dynamically based on the number of 

subscribed clients: 
o With 0 clients: nothing enabled. 
o With clients < threshold: unicast for subscribed clients enabled. 

Multicast disabled. 
o With clients ≥ threshold: multicast enabled. Unicast disabled. 

⌋() 
 

[SWS_SD_00569]⌈ 
Every wildcard socket connection shall be reset to wildcard if the following conditions 
apply: 

 Remote address of a socket connection has been set. (e.g. by SoAd or Sd)  

 No subscription for this socket connection exists any more (i.e. all routing 
groups are disabled.) 

 

⌋() 

7.7 Timings and repetitions for Client Service and Consumed 
Eventgroups 

To deskew the Service Discovery Messages on the bus, the amount of Service 
Discovery messaged transmitted on the bus is controlled by timing configuration. 
 
This de-emphasis is realized by the following Phases: 

 Down 

 Requested 

o Initial Wait Phase 

o Repetition Phase 

o Main Phase 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

65 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Client Request

Initial Wait Phase Repetition Phase

tx

Main Phase

tx tx tx tx

„Offer Service“ received

DOWN

rx
 

Figure 14 – Communication phases Client 

7.7.1 Down Phase for Client Services 

[SWS_SD_00462]⌈ 
As long as a service is not requested by the BswM, the Service Discovery shall not 
send OfferService Entry entries. 
⌋() 
 

[SWS_SD_00463]⌈ 
If an OfferService Entry is received during Down Phase, 

 The Service Discovery shall store the state of this Service instance. 

 A timer shall be set/reset to the TTL value of the received OfferService entry 
(TTL timer). 

 Until the TTL Timer expires or a StopOfferService entry is received, the 
Service instance is considered Available. 

⌋() 
 

[SWS_SD_00464]⌈ 
If Sd_ClientServiceSetState() is called with state 
SD_CLIENT_SERVICE_REQUESTED while being in Down Phase: 

 If no OfferService entry was received before or its TTL timer expired already: 
o The Initial Wait Phase shall be entered, 

 If an OfferService entry was received and its TTL timer did not expire yet: 
o Open TCP connection if SdClientServiceTcpRef is configured and 

was not opened before 
o The Main Phase shall be entered 
o  SD_CLIENT_SERVICE_AVAILABLE shall indicated to the BswM 

module by calling the API 
BswM_Sd_ClientServiceCurrentState() 

⌋() 
 

[SWS_SD_00603]⌈ When the Down Phase is entered (coming from states other than 

init), the API SoAd_CloseSoCon() shall be called for all Socket Connections 

associated with this Client Service Instance.⌋() 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

66 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

7.7.2 Initial Wait Phase for Client Services 

This chapter describes the behavior of the Service Discovery in regard of a Client 
Service Instance in the Initial Wait Phase. 
 

[SWS_SD_00350]⌈ 
If the following conditions apply, the Initial Wait Phase for this configured Client 
Service Instance shall be entered: 

 Sd_Init() has been called. 

 Sd_ClientServiceSetState() with SD_CLIENT_SERVICE_REQUESTED 

has been called OR SdClientServiceAutoRequired = TRUE. 

 Sd_LocalIpAddrAssignmentChg() with state 
“TCPIP_IPADDR_STATE_ASSIGNED” has been called for the first 
IpAddrId associated with the SdInstanceTxPdu. 

⌋() 
 

[SWS_SD_00362]⌈ 
When the Initial Wait Phase is entered, the API SoAd_EnableRouting() shall be 
called with SdClientServiceActivationRef for this Client Service Instance. 
⌋() 
 

[SWS_SD_00604]⌈ When the Initial Wait Phase is entered, the API 

SoAd_OpenSoCon() shall be called for all Socket Connections associated with this 

Server Service Instance.⌋() 

 

[SWS_SD_00351]⌈ 
This Client Service Instance shall stay in the Initial Wait Phase for a time within the 

configured range of SdClientTimerInitialFindDelayMin and 

SdClientTimerInitialFindDelayMax unless an OfferService entry for this 

Client Service Instance is received or this random timer expires. 
⌋() 
 

[SWS_SD_00352]⌈ 
If an OfferService Entry for this Client Service Instance is received within the Initial 
Wait Phase,  

 The calculated random timer, which has been started when entering the Initial 
Wait Phase, shall be canceled. 

 If received TTL is not equal to the max value, set the TTL timer for this entry to 
the received TTL value. 

 SD_CLIENT_SERVICE_AVAILABLE shall be indicated to the BswM module 

by calling the API  BswM_Sd_ClientServiceCurrentState(). 

 A timer shall be set to the TTL value of this entry (TTL timer). 

 Open TCP connection if SdClientServiceTcpRef is configured and was 
not opened before 

 A SubscribeEventgroup entry shall be sent out for each currently requested 
Consumed Eventgroup of this Client Service Instance (Consumed 
Eventgroups are requested using Sd_ConsumedEventGroupSetState 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

67 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

and with state SD_CONSUMED_EVENTGROUP_REQUESTED or automatically 
on startup if SdConsumedEventGroupAutoRequire is configured to true). 

 Leave the Initial Wait Phase Enter the Main Phase 
⌋() 
 
 

[SWS_SD_00353]⌈ 
When the calculated random timer based on the parameters 

SdClientTimerInitialFindDelayMin and 

SdClientTimerInitialFindDelayMax expires (i.e. no OfferService has been 

received within this timespan), the following shall be done in the following order: 
o FindService Entry shall be sent. 

o If the SdClientTimerInitialFindRepetitionsMax>0, enter the 

Repetition Phase 

o If the  SdClientTimerInitialFindRepetitionsMax=0, enter the Main 

Phase 

⌋() 
 

[SWS_SD_00355]⌈ 
If Sd_ClientServiceSetState() is called with state 
SD_CLIENT_SERVICE_RELEASED while being in Initial Wait Phase, this phase shall 
be left and the Service shall be “Down”. 
⌋() 
 

[SWS_SD_00456]⌈ 
If for any reasons the Initial Wait Phase is left, the calculated random timer (of the 
Initial Wait Phase) for this Service Instance shall be stopped. 

⌋() 
 

 

[SWS_SD_00357]⌈ 
If Sd_LocalIpAddrAssignmentChg() is called with a state other than 
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Initial Wait Phase, 

 the “Down” phase shall be entered  

 the API BswM_Sd_ClientServiceCurrentState with state 

“SD_CLIENT_SERVICE_DOWN” shall be called, and 

  BswM_Sd_ConsumedEventGroupCurrentState with state 

“SD_CONSUMED_EVENTGROUP_DOWN” for all associated eventgroups of this 

Service Instance shall be called. 

⌋() 
 

[SWS_SD_00354]⌈ 
If the API Sd_Init() is called while being in Initial Wait Phase, 

 the “Down” phase shall be entered  

 the API BswM_Sd_ClientServiceCurrentState with state 

“SD_CLIENT_SERVICE_DOWN” shall be called, and 

  BswM_Sd_ConsumedEventGroupCurrentState with state 

“SD_CONSUMED_EVENTGROUP_DOWN” for all associated eventgroups of this 

Service Instance shall be called. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

68 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

⌋() 
 

7.7.3 Repetition Phase for Client Services 

[SWS_SD_00358]⌈ 
When the Repetition Phase is entered, the Service Discovery Module shall start the 
timer SdClientTimerInitialFindRepetitionsBaseDelay 

⌋() 
 

[SWS_SD_00457]⌈ 
When the timer SdClientTimerInitialFindRepetitionsBaseDelay expires 
within the Repetition Phase, a FindOffer Message shall be sent. 
⌋() 
 

[SWS_SD_00363]⌈ 
In the Repetition Phase up to SdClientTimerInitialFindRepetitionsMax 

FindServer entries shall be sent with doubling intervals (BaseDelay, first FindService 
Entry, 2x BaseDelay, second FindService Entry, 4x BaseDelay, third FindService 
Entry, …). 

⌋() 
 
Note: Example config and resulting behavior (no OfferService received during 
example):  

SdClientTimerInitialFindRepetitionBaseDelay=30 

SdClientTimerInitialFindRepetitionMax=3 

 
[Initial Wait Phase starts] 
Wait Initial Wait Delay based on Configured Min and Max 
Send entry. 
[Initial Wait Phase ends] 
[Repetition Phase starts] 
Wait 30ms (=30ms * 20). 
Send entry.  
Wait 60ms (=30ms * 21). 
Send entry. 
Wait 120ms (=30ms * 22). 
Send entry. 
[Repetition Phase ends] 

 

[SWS_SD_00365]⌈ 
If the Service Discovery Module receives an OfferService Entry while the current 
state SD_CLIENT_SERVICE_REQUESTED is for this Client Service Instance, the 
following steps shall be performed in the following order: 

 Cancel the repetition timer 

 If received TTL is not equal to the max value, set the TTL timer for this entry to 
the received TTL value. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

69 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 If the current Sd state is SD_CLIENT_SERVICE_REQUESTED, the Sd state 
SD_CLIENT_SERVICE_AVAILABLE reported to BswM using the API  
BswM_Sd_ClientServiceCurrentState(). 

 Open TCP connection if SdClientServiceTcpRef is configured and was 
not opened before 

 A SubscribeEventgroup entry shall be sent out for each currently requested 
Consumed Eventgroup of this Client Service Instance (Consumed 
Eventgroups are requested using Sd_ConsumedEventGroupSetState 
and with state SD_CONSUMED_EVENTGROUP_REQUESTED or automatically 
on startup if SdConsumedEventGroupAutoRequire is configured to true). 

 Leave the Repetition Phase immediately and enter the Main Phase. 
 

⌋() 
 

[SWS_SD_00369]⌈ 
After sending the maximum repetitions (defined by 

SdClientTimerInitialFindRepetitionsMax) of FindService entries, 

the Repetition Phase shall be left and the Main Phase shall be entered. 
⌋() 
 

[SWS_SD_00371]⌈ 
If Sd_ClientServceSetState()is called with state SD_CLIENT_SERVICE_RELEASED 
while being in Repetition Phase, this phase shall be left, the state shall be updated. 
⌋() 
 

[SWS_SD_00373]⌈ 
If Sd_LocalIpAddrAssignmentChg() is called with a state other than 
“TCPIP_IPADDR_STATE_ASSIGNED” while being in Initial Wait Phase,  

 the Down phase shall entered,  

  “SD_CLIENT_SERVICE_DOWN” shall indicated to the BswM module by calling 

the API BswM_Sd_CurrentClientServiceState(), and  

 BswM_Sd_CurrentState() with state 
“SD_CONSUMED_EVENTGROUP_DOWN” shall be called for all associated 
ConsumedEventGroups. 

⌋() 
 

[SWS_SD_00374]⌈ 
When the Down Phase is entered coming from Repetition Phase, 
SoAd_DisableRouting() shall be called for all IDs which are referenced by this 
Server Service Instance. 
⌋() 

7.7.4 Main Phase for Client Services 

[SWS_SD_00375]⌈ 
The Service Discovery Module shall stay in the Main Phase as long as the following 
conditions apply: 

 Client Service is needed (i.e. Sd_ClientServiceSetState()has been 
called with State “SD_CLIENT_SERVICE_REQUESTED”) 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

70 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 IP address assigned and can be used  (i.e. 
Sd_LocalIpAddrAssignmentChg has been called with status 
TCPIP_IPADDR_STATE_ASSIGNED). 

⌋() 
 

[SWS_SD_00376]⌈ 
If the Service Discovery Module receives an OfferService Entry, the following steps 
shall be performed in the following order: 

 If received TTL is not equal to the max value, update the timer by the received 
TTL value. 

 If the Sd had not reported SD_CLIENT_SERVICE_AVAILABLE since the last 
SD_CLIENT_SERVICE_REQUESTED, SD_CLIENT_SERVICE_AVAILABLE is 
reported using  the API  BswM_Sd_ClientServiceCurrentState(). 

 Open TCP connection if SdClientServiceTcpRef is configured and was 
not opened before 

 For each currently requested Consumed Eventgroup of this Client Service 
Instance (Consumed Eventgroups are requested using 
Sd_ConsumedEventGroupSetState and with state 
SD_CONSUMED_EVENTGROUP_REQUESTED or automatically on startup if 
SdConsumedEventGroupAutoRequire is configured to true), the following 
shall be done in exactly this order: 

o A StopSubscribeEventgroup entry shall be sent out, if the last 
SubscribeEventgroup entry was never answered with a 
SubscribeEventgroupAck. 

o A SubscribeEventgroup entry shall be sent out 

⌋() 
 

Note: The amount of separate Service Discovery messages shall be reduced, i.e.: 
Combine as much information as possible into one Service Discovery message 
before calling the Socket Adaptor’s transmit API.  

 
 

[SWS_SD_00377]⌈ 
If the Service Discovery Module receives a SubscribeEventgroupAck fitting this 
Consumed Eventgroup for the first time after this Consumed Eventgroup was 
requested, the following steps shall be performed in the following order: 

 Use the information of the Multicast Option (if existing) to set up relevant 
Multicast Information in SoAd (see SoConId related to 
SdConsumedEventGroupMulticastActivationRef). 

 Call the API SoAd_RequestIpAddrAssignment() using the IP address 
received by the SubscribeEventgroupAck message. 

 Activate the necessary routing for UDP, TCP, and Multicast, if existing and 
configured. 

 Call BswM_Sd_ConsumedEventGroupCurrentState with 
SD_CONSUMED_EVENTGROUP_AVAILABLE. 

 Setup TTL timer with the TTL of the SubscribeEventgroupAck entry. 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

71 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00465]⌈ 
If the Service Discovery Module receives a SubscribeEventgroupNack for an 
SubscribeEventgroup entry sent, it shall do the following 

 Report a DEM error and restart the TCP connection (if applicable) 

 call the API SoAd_CloseSoCon() to close all socket connections associated 
to this service instance 

 call the API SoAd_OpenSoCon() to reopen all socket connections associated 
to this service instance 

 
⌋() 
 

[SWS_SD_00367]⌈ 
If the Service Discovery Module receives a StopOfferService Entry, the following 
steps shall be performed in the following order: 

 Stop the TTL timers of this Client Service Instance and all related Consumed 
Eventgroups. 

 Report this Client Service as DOWN if it was reported AVAILABLE before (call 
BswM_Sd_ClientServiceCurrentState with 
SD_CLIENT_SERVICE_DOWN and the Client Service’s handle ID). 

 Report all Consumed Eventgroups as DOWN that were reported AVAILABLE 
before (call BswM_Sd_ConsumedEventGroupCurrentState with 
SD_CONSUMED_EVENTGROUP_DOWN and the Consumed Eventgroup’s handle 
ID). 

 In case the entry is in state SD_CLIENT_SERVICE_AVAILABLE, it shall be 
changed to “SD_CLIENT_SERVICE_DOWN“ and 
SD_CLIENT_SERVICE_DOWN shall be reported to the BswM by calling the API 
BswM_Sd_ClientServiceCurrentState(). 

 Stay in Main Phase and do not send Find ServiceEntries. 
⌋() 

 

[SWS_SD_00380]⌈ 
The Service Discovery Module shall leave the Main Phase and enter the state 

SD_CLIENT_SERVICE_DOWN if at least one of the listed conditions described in 

SWS_SD_00375 does not apply any more. 
⌋() 
 

[SWS_SD_00381]⌈ 
If the Client goes DOWN which is indicated by a call of Sd_ClientServiceSetState () 

with State “SD_REQUEST_CLIENT_SERVICE_RELEASED” while all other conditions 

listed in SWS_SD_00375 still apply, the Service Discovery module shall perform the 
following steps: 

 Enter the Down Phase and indicate the state SD_CLIENT_SERVICE_DOWN to 

the  BswM by calling the API BswM_Sd_ClientServiceCurrentState 
(). 

 For all subscribed eventgroups of this Client Service,  
o a StopSubscribe shall be sent 
o the status shall be set to  

SD_CONSUMED_EVENTGROUP_REQUESTED and reported to 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

72 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

BswM by calling the API 
BswM_Sd_ConsumedEventGroupCurrentState(). 

⌋() 
 

[SWS_SD_00600]⌈ 
If the TTL Timer of a Client Service expires, the Service Discovery module shall 
perform the following steps: 

 Enter the Initial Wait Phase and indicate the state 

SD_CLIENT_SERVICE_DOWN to the BswM by calling the API 
BswM_Sd_ClientServiceCurrentState (). 

 All subscribed Eventgroups of this Client Service shall expired in this instance 
(stop TTL timer) and the expiration shall be handled as describe in 
[SWS_SD_00601]. 

⌋() 
 

[SWS_SD_00601]⌈ 
If the TTL Timer of an Eventgroup expires, the Service Discovery module shall 
perform the following steps: 

 the status shall be set to  SD_CONSUMED_EVENTGROUP_REQUESTED 
and reported to BswM by calling the API 
BswM_Sd_ConsumedEventGroupCurrentState(). 

 send a Stop Subscribe Eventgroup entry and a Subscribe Eventgroup entry in 
the SOME/IP-SD message the Subscribe Eventgroup entry would have been 
sent with 

⌋() 
 

[SWS_SD_00382]⌈ 
When the Main Phase is left and the Down Phase is entered, the API 

SoAd_DisableRouting() for all IDs which are associated for this Client Service 

ID. 
⌋() 
 
 
 

7.8 Error classification 

[SWS_SD_00106]⌈ 
Values for production code Event Ids are assigned externally by the configuration of 
the Dem. They are published in the file Dem_IntErrId.h and included via Dem.h. 

⌋() 
 

[SWS_SD_00107]⌈ 
Development error values are of type uint8. 
 
Type or error Relevance Related error code Value 

[hex] 

SD has not been initialized Development SD_E_NOT_INITIALIZED 0x01 

Invalid pointer in parameter Development SD_E_INV_POINTER  0x02 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

73 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

list  

Invalid mode request Development SD_E_INV_MODE 0x03 

Invalid Id Development SD_E_INV_ID 0x004 

Table 3 – Error classification 

⌋() 

7.9 Error detection 

[SWS_SD_00108]⌈ 
The detection of development errors shall be configurable (ON / OFF) at pre-compile 

time. The switch SdDevErrorDetect (see chapter 10) shall activate or deactivate 
the detection of all development errors. 
⌋() 
 

[SWS_SD_00109]⌈ 
If the SdDevErrorDetect switch is enabled API parameter checking is enabled. 

The detailed description of the detected errors can be found in chapter 7.8 and 
chapter 8. 
⌋() 
 
Note: The detection of production code errors cannot be switched off.  

7.10 Error notification 

[SWS_SD_00110]⌈ 
Detected development errors shall be reported to the Det_ReportError service of 

the Development Error Tracer (DET) if the pre-processor switch 

SdDevErrorDetect is set (see chapter 10). 

⌋() 
 

[SWS_SD_00111]⌈ 
Production errors shall be reported to Diagnostic Event Manager. 
⌋() 

7.11 Debugging 

[SWS_SD_00112]⌈ 
All type definitions of variables which shall be debugged, shall be accessible by the 
header file Sd.h. 
⌋() 
 

[SWS_SD_00113]⌈ 
Each variable that shall be accessible by AUTOSAR Debugging, shall be defined as 
global variable. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

74 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00114]⌈ 
The declaration of variables in the header file shall be such, that it is possible to 

calculate the size of the variables by C-"sizeof".⌋() 
 

[SWS_SD_00115]⌈ 
Variables available for debugging shall be described in the respective Basic Software 
Module Description. 
⌋() 
 

[SWS_SD_00116]⌈ 
The states of Sd state machine shall be available for debugging. 
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

75 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

8 API specification 

8.1.1 Imported Types 

[SWS_SD_00117]⌈ 
Module Imported Type 

ComStack_Types PduIdType 

PduInfoType 

Dem Dem_EventIdType 

Dem_EventStatusType 

SoAd SoAd_RoutingGroupIdType 

SoAd_SoConIdType 

Std_Types Std_ReturnType 

Std_VersionInfoType 

TcpIp TcpIp_IpAddrAssignmentType 

TcpIp_IpAddrStateType 

TcpIp_SockAddrType 

⌋() 

8.2 Type definitions 

8.2.1 Sd_ServerServiceSetStateType 

[SWS_SD_00118]⌈ 
  
Name: Sd_ServerServiceSetStateType 

Type: Enumeration 

Range: SD_SERVER_SERVICE_DOWN 0 
 

SD_SERVER_SERVICE_AVAILABLE 1 
 

Description: This type defines the Server states that are reported to the SD using the expected 
API Sd_ServerServiceSetState. 

⌋() 

8.2.2 Sd_ClientServiceSetStateType 

[SWS_SD_00405]⌈ 
  
Name: Sd_ClientServiceSetStateType 

Type: Enumeration 

Range: SD_CLIENT_SERVICE_RELEASED 0 
 

SD_CLIENT_SERVICE_REQUESTED 1 
 

Description: This type defines the Client states that are reported to the BswM using the 
expected API Sd_ClientServiceSetState. 

⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

76 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

8.2.3 Sd_ConsumedEventGroupSetStateType 

[SWS_SD_00550]⌈ 
Name: Sd_ConsumedEventGroupSetStateType 

Type: Enumeration 

Range: SD_CONSUMED_EVENTGROUP_RELEASED 0 
 

SD_CONSUMED_EVENTGROUP_REQUESTED 1 
 

Description: This type defines the subscription policy by consumed EventGroup for the 
Client Service. 

⌋() 
 

8.2.4 Sd_ClientServiceCurrentStateType 

[SWS_SD_00551]⌈ 
Name: Sd_ClientServiceCurrentStateType 

Type: Enumeration 

Range: SD_CLIENT_SERVICE_DOWN 0 
 

SD_CLIENT_SERVICE_AVAILABLE 1 
 

Description: This type defines the modes to indicate the current mode request of a Client 
Service. 

⌋() 

8.2.5 Sd_ConsumedEventGroupCurrentStateType 

[SWS_SD_00552]⌈ 
Name: Sd_ConsumedEventGroupCurrentStateType 

Type: Enumeration 

Range: SD_CONSUMED_EVENTGROUP_DOWN 0 
 

SD_CONSUMED_EVENTGROUP_AVAILABLE 1 
 

Description: This type defines the subscription policy by consumed EventGroup for the Client 
Service. 

⌋() 

8.2.6 Sd_EventHandlerCurrentStateType 

[SWS_SD_00553]⌈ 
Name: Sd_EventHandlerCurrentStateType 

Type: Enumeration 

Range: SD_EVENT_HANDLER_RELEASED 0 
 

SD_EVENT_HANDLER_REQUESTED 1 
 

Description: This type defines the subscription policy by EventHandler for the Server Service. 

⌋() 

8.3 Function definitions 

This is a list of functions provided for upper layer modules. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

77 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

8.3.1  Sd_Init 

[SWS_SD_00119]⌈ 
Service name: Sd_Init 

Syntax: void Sd_Init( 

    const Sd_ConfigType* ConfigPtr 

) 

Service ID[hex]: 0x01 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): ConfigPtr Pointer to a selected configuration structure. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Initializes the Service Discovery. 

⌋() 
 

[SWS_SD_00120]⌈ 
The Sd_Init function shall initialize the state machines for all Service Instances and 

set them into the state SD_SERVER_SERVICE_DOWN and 

SD_CLIENT_SERVICE_DOWN respectively. 

⌋() 
 

[SWS_SD_00121]⌈ 
The Sd_Init function shall internally store the configuration data address to enable 

subsequent API calls to access the configuration data. 

⌋() 
 

[SWS_SD_00122]⌈ 
The Sd_Init function shall remember internally the successful initialization for other 

API functions to check for proper module initialization.  
⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

78 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

8.3.2 Sd_GetVersionInfo 

 

[SWS_SD_00124]⌈ 
Service name: Sd_GetVersionInfo 

Syntax: void Sd_GetVersionInfo( 

    Std_VersionInfoType* versioninfo 

) 

Service ID[hex]: 0x02 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): versioninfo Pointer to where to store the version information of this module. 

Return value: None 

Description: Returns the version information of this module. 

 
 

[SWS_Sd_00125]⌈ 
The Sd_GetVersionInfo function shall return the version information of this 

module. The version information includes: 
- Module Id 
- Vendor Id 
- Vendor specific version numbers 

⌋() 
 

[SWS_SD_00126]⌈ 
Configuration of Sd_GetVersionInfo: This function shall be pre compile time 

configurable On/Off by the configuration parameter: SdVersionInfoApi 

⌋() 
 

[SWS_SD_00497]⌈ 
If development error detection for the Service Discovery module is enabled, then the 

function Sd_GetVersionInfo shall check whether the parameter VersioninfoPtr is 

a NULL pointer (NULL_PTR). If VersioninfoPtr is a NULL pointer, then the function 

Sd_GetVersionInfo shall raise the development error SD_E_INV_POINTER and 

return. ⌋(BSW00411) 

 

8.3.3 Sd_ServerServiceSetState 

[SWS_SD_00496]⌈ 
Service name: Sd_ServerServiceSetState 

Syntax: Std_ReturnType Sd_ServerServiceSetState( 

    uint16 SdServerServiceHandleId, 

    Sd_ServerServiceSetStateType ServerServiceState 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

79 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

) 

Service ID[hex]: 0x07 

Sync/Async: Asynchronous 

Reentrancy: Reentrant 

Parameters (in): 
SdServerServiceHandleId ID to identify the Server Service Instance. 

ServerServiceState The state the Server Service Instance shall be set to. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: State accepted 

E_NOT_OK: State not accepted 

Description: This API function is used by the BswM to set the Server Service Instance state. 

⌋() 
 

[SWS_SD_00407]⌈ 
If development error detection is enabled and the Service Discovery module has not 

been initialized using Sd_Init(), the Sd_ServerServiceSetState function 

shall raise the development error code SD_E_NOT_INITIALIZED and the 

Sd_ServerServiceSetState function shall return E_NOT_OK. 

⌋() 
 

[SWS_SD_00408]⌈ 
If the parameter ServerServiceState has an undefined value, the Service Discovery 

module shall not store the requested mode and return E_NOT_OK.  

In case development error detection is enabled, the Service Discovery module shall 

additionally raise the development error code SD_E_INV_MODE. 

⌋() 
 

[SWS_SD_00607]⌈If the parameter SdServerServiceHandleId has an invalid value, 

the Service Discovery Module shall not store the requested mode and return 

E_NOT_OK. In case development error detection is enabled, the Service Discovery 

module shall additionally raise the development error code SD_E_INV_ID.⌋ () 

8.3.4 Sd_ClientServiceSetState 

 

[SWS_SD_00409]⌈ 
Service name: Sd_ClientServiceSetState 

Syntax: Std_ReturnType Sd_ClientServiceSetState( 

    uint16 ClientServiceInstanceID, 

    Sd_ClientServiceSetStateType ClientServiceState 

) 

Service ID[hex]: 0x08 

Sync/Async: Asynchronous 

Reentrancy: Reentrant 

Parameters (in): 
ClientServiceInstanceID ID to identify the Client Service Instance. 

ClientServiceState The state the Client Service Instance shall be set to. 

Parameters 
(inout): 

None 

Parameters (out): None 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

80 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Return value: 
Std_ReturnType E_OK: State accepted 

E_NOT_OK: State not accepted 

Description: This API function is used by the BswM to set the Client Service Instance state. 

⌋() 
 
 

[SWS_SD_00410]⌈ 
If development error detection is enabled and the Service Discovery module has not 

been initialized using Sd_Init(), the Sd_ClientServiceSetState function 

shall raise the development error code SD_E_NOT_INITIALIZED  and the 

Sd_ClientServiceSetState function shall return E_NOT_OK. 

⌋() 
 

[SWS_SD_00411]⌈ 
If the parameter ClientServiceState has an undefined value, the Service Discovery 

module shall not store the requested mode and return E_NOT_OK.  

In case development error detection is enabled, the Service Discovery module shall 

additionally raise the development error code SD_E_INV_MODE. 

⌋() 
 

[SWS_SD_00608]⌈ If the parameter ClientServiceInstanceId has an invalid value, 

the Service Discovery module shall not store the requested mode and return 

E_NOT_OK. In case development error detection is enabled, the Service Discovery 

module shall additionally raise the development error code SD_E_INV_ID.⌋ ⌋() 

8.3.5 Sd_ConsumedEventGroupSetState 

[SWS_SD_00560]⌈ 
Service name: Sd_ConsumedEventGroupSetState 

Syntax: Std_ReturnType Sd_ConsumedEventGroupSetState( 

    uint16 SdConsumedEventGroupHandleId, 

    Sd_ConsumedEventGroupSetStateType 

ConsumedEventGroupState 

) 

Service ID[hex]: 0x09 

Sync/Async: Asynchronous 

Reentrancy: Reentrant 

Parameters (in): 

SdConsumedEventGroupHandleId ID to identify the 
ConsumedEventGroupHandleId 

ConsumedEventGroupState The state the EventGroup shall be set to. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: State accepted 

E_NOT_OK: State not accepted 

Description: This API function is used by the BswM to set the requested state of the 
EventGroupStatus. 

⌋() 
 

[SWS_SD_00469]⌈ 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

81 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

If development error detection is enabled and the Service Discovery module has not 

been initialized using Sd_Init(), the Sd_ConsumedEventGroupSetState 

function shall raise the development error code SD_E_NOT_INITIALIZED  and the 

Sd_ConsumedEventGroupSetState function shall return E_NOT_OK. 

⌋() 
 

[SWS_SD_00470]⌈ 
If ConsumedEventGroupSetState has an undefined value, the Service Discovery 

module shall not store the requested mode and return E_NOT_OK.  

In case development error detection is enabled, the Service Discovery module shall 

additionally raise the development error code SD_E_INV_MODE. 

⌋() 
 

[SWS_SD_00609]⌈ If the parameter SdConsumedEventGroupHandleId has an 

invalid value, the Service Discovery module shall not store the requested mode and 

return E_NOT_OK. In case development error detection is enabled, the Service 

Discovery module shall additionally raise the development error code 

SD_E_INV_ID.⌋ ⌋() 

8.3.6 Sd_LocalIpAddrAssignmentChg 

[SWS_SD_00412]⌈ 
Service name: Sd_LocalIpAddrAssignmentChg 

Syntax: void Sd_LocalIpAddrAssignmentChg( 

    SoAd_SoConIdType SoConId, 

    TcpIp_IpAddrStateType State 

) 

Service ID[hex]: 0x05 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different SoConIds. Non Reentrant for the same SoConId. 

Parameters (in): 

SoConId socket connection index specifying the socket connection where the IP 
address assigment has changed. 

State state of IP address assignment. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This function gets called by the SoAd if an IP address assignment related to a 
socket connection changes (i.e. new address assigned or assigned address 
becomes invalid). 

⌋() 
 

[SWS_SD_00471]⌈ 
If development error detection is enabled and the Service Discovery module has not 

been initialized using Sd_Init(), the Sd_LocalIpAddrAssignmentChg function 

shall raise the development error code SD_E_NOT_INITIALIZED  and the 

Sd_LocalIpAddrAssignmentChg function shall return E_NOT_OK. 

⌋() 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

82 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00472]⌈ 
If the parameter State has an undefined value, the Service Discovery module shall 

not store the requested mode and return E_NOT_OK.  

In case development error detection is enabled, the Service Discovery module shall 

additionally raise the development error code SD_E_INV_MODE. 

⌋() 
 

[SWS_SD_00610]⌈ If the parameter SoConId has an invalid value, the Service 

Discovery module shall not store the requested mode and return E_NOT_OK. In case 

development error detection is enabled, the Service Discovery module shall 

additionally raise the development error code SD_E_INV_ID.⌋() 

8.4 Call-back notifications 

This is a list of functions provided for other modules. The function prototypes of the 

callback functions shall be provided in the file Sd_Cbk.h 
 

8.4.1 Sd_RxIndication 

[SWS_SD_00129] ⌈ 

Service name: Sd_RxIndication 

Syntax: void Sd_RxIndication( 

    PduIdType RxPduId, 

    const PduInfoType* PduInfoPtr 

) 

Service ID[hex]: 0x42 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different PduIds. Non reentrant for the same PduId. 

Parameters (in): 

RxPduId ID of the received I-PDU. 

PduInfoPtr Contains the length (SduLength) of the received I-PDU and a pointer to 
a buffer (SduDataPtr) containing the I-PDU. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Indication of a received I-PDU from a lower layer communication interface module. 

 

⌋() 

[SWS_SD_00473]⌈ 
If development error detection is enabled and the Service Discovery module has not 

been initialized using Sd_Init(), the Sd_RxIndication function shall raise the 

development error code SD_E_NOT_INITIALIZED  and the Sd_RxIndication 

function shall return E_NOT_OK. 

⌋() 
 
 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

83 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

[SWS_SD_00474]⌈ 
If RxPduId  has an undefined value, the Service Discovery module shall discard 

the message and return E_NOT_OK.  

In case development error detection is enabled, the Service Discovery module shall 

additionally raise the development error code SD_E_INV_ID. 
⌋() 
 

[SWS_SD_00475]⌈ 
If development error detection is enabled: the function shall check parameter 

PduInfoPtr for being a null pointer. In this case, the function shall raise the 

development error SD_E_INV_POINTER and return E_NOT_OK. 

⌋() 

8.5 Scheduled functions 

The following functions are called directly by Basic Software Scheduler. The following 
functions shall have no return value and no parameter. All functions shall be non- 
reentrant. 

8.5.1 Sd_MainFunction 

[SWS_SD_00130 ] ⌈ 
Service name: Sd_MainFunction 

Syntax: void Sd_MainFunction( 

    void 

) 

Service ID[hex]: 0x06 

Description: -- 

⌋() 
 

[SWS_SD_00131]⌈ 
The Sd_MainFunction shall update all counters, timers, states and phases and 
prozess the Rx and Tx data path. 
⌋() 
 

[SWS_SD_00132]⌈ 
If the Sd module has not been initialized using Sd_Init, the Sd_MainFunction 

function shall return immediately without performing any functionality and without 
raising any errors. 
⌋() 

8.6 Expected Interfaces 

In this chapter, all interfaces required from other modules are listed.  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

84 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

8.6.1 Mandatory Interfaces 

This chapter defines all interfaces, which are required to fulfill the core functionality of 
the module. 
 

[SWS_SD_00133]⌈  
API function Description 

BswM_Sd_CurrentState Function called by Sd to indicate current state of Sd. 

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used 
by BSW modules). The interface has an asynchronous behavior, 
because the processing of the event is done within the Dem main 
function. 
OBD Events Suppression shall be ignored for this computation. 

SoAd_GetLocalAddr Retrieves the local address (IP address and port) actually used for the 
SoAd socket connection specified by SoConId, the netmask and default 
router 

SoAd_GetPhysAddr Retrieves the physical source address of the EthIf controller used by the 
SoAd socket connection specified by SoConId. 

SoAd_GetRemoteAddr Retrieves the remote address (IP address and port) actually used for 
the SoAd socket connection specified by SoConId 

SoAd_IfTransmit This service initiates a request for transmission of the L-PDU specified 
by the SoAdSrcPduId. The corresponding socket has to be resolved by 
the SoAdSrcPduId. 
 
This call is used to mimic the call to an IF in AUTOSAR. 
 
Development errors: 
Invalid values of SoAdSrcPduId or SoAdSrcPduInfoPtr will be reported 
to the development error tracer (SOAD_E_INVALID_TXPDUID or 
SOAD_E_PARAM_POINTER). 

SoAd_SetRemoteAddr By this API service the remote address (IP address and port) of the 
specified socket connection shall be set. 

⌋() 

8.6.2 Optional Interfaces 

This chapter defines all interfaces, which are required to fulfill an optional 
functionality of the module. 
 

[SWS_Sd_00134] ⌈ 
API function Description 

BswM_Sd_ClientServiceCurrentState Function called by Service Discovery to indicate current 
state of the Client Service (available/down). 

BswM_Sd_ConsumedEventGroupCurrentState Function called by Service Discovery to indicate current 
status of the Consumed Eventgroup (available/down). 

BswM_Sd_EventHandlerCurrentState Function called by Service Discovery to indicate current 
status of the 
EventHandler (requested/released). 

Det_ReportError Service to report development errors. 

SoAd_CloseSoCon This service closes the socket connection specified by 
SoConId. 

SoAd_DisableRouting Disables routing of a group of PDUs in the SoAd 
related to the RoutingGroup specified by parameter id. 
Routing of PDUs can be either forwarding of PDUs 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

85 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

from the upper layer to a TCP or UDP socket of the 
TCP/IP stack specified by a PduRoute or the other way 
around specified by a SocketRoute. 

SoAd_EnableRouting Enables routing of a group of PDUs in the SoAd related 
to the RoutingGroup specified by parameter id. 
Routing of PDUs can be either forwarding of PDUs 
from the upper layer to a TCP or UDP socket of the 
TCP/IP stack specified by a PduRoute or the other way 
around specified by a SocketRoute. 

SoAd_GetSoConId Returns socket connection index related to specified 
transmit PduId. In case a fan-out is configured for 
TxPduId (i.e. multiple SoAdPduRouteDest specified) 
E_NOT_OK shall be returned. 

SoAd_IfRoutingGroupTransmit Triggers the transmission of all If-TxPDUs identified by 
the parameter id after 
requesting the data from the related upper layer. 

SoAd_OpenSoCon This service opens the socket connection specified by 
SoConId. 

SoAd_ReleaseIpAddrAssignment By this API service the local IP address assignment 
used for the socket connection specified by SoConId is 
released. 

SoAd_RequestIpAddrAssignment By this API service the local IP address assignment 
which shall be used for the socket connection specified 
by SoConId is initiated. 

SoAd_SetUniqueRemoteAddr This API service shall either return the socket 
connection index of the SoAdSocketConnectionGroup 
where the specified remote address (IP address and 
port) is set or assign the remote address to an unused 
socket connection from the same 
SoAdSocketConnectionGroup. 

⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

86 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9  Sequence diagrams 

9.1 CLIENT / SERVER: Sd_RxIndication 

«module»

Sd

«module»

SoAd

Wiildcard is written as "0.0.0.0"

Sd_RxIndication(RxSduId, PduInfoPtr)

determineSdInstance(RxSduId)

:SdInstance

SoAd_GetRemoteAddr(return, SoConId, IpAddrPtr)

SoAd_SetUniqueRemoteAddr(SoConId, "0.0.0.0", Unique=False)

saveMessageAndAddrForFurtherProcessing()

 

Figure 9.1: Sequence CLIENT / SERVER: Sd_RxIndication 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

87 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.2 SERVER: Response Behavior 

«module»

Sd

«module»

SoAd

opt if entry is in Main Phase and entry is available

opt if eventgroup entry is available

alt over received entries

[entry==FindService]

[entry==SubscribeEventgroup]

[entry==StopSubscribeEventgroup]

[else]

opt if client is subscribed

disassembleIncomingMessage() :entries, options

buildOfferServiceEntry()

determineRequestResponseDelay(SdServerTimerRequestResponseMinDelay,

SdServerTimerRequestResponseMaxDelay)

addToSendQueue(dest, entry, options,

sendTime="now"+delay)

addClientToFanOut()

buildSubscribeAckEntry()

addToSendQueue(dest, entry, options,

sendTime="now")

removeClientFromFanOut()

 

Figure 9.2: Sequence: SERVER: Response Behavior 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

88 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.3 CLIENT: Response Behavior 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

89 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

«module»

Sd

«module»

SoAd

opt Service contains TCP and SoCon not set up yet

opt Service contains UDP and SoCon not set up yet

loop over all active Eventgroups of this service instance

opt Service contains Multicast and SoCon not set up yet

loop over received entries

[entry==OfferService]

[entry==StopOfferService]

[entry==SubscribeEventgroupAck]

[entry==SubscribeEventgroupNack]

[else]

All Subscribe Eventgroup entries to a single 

client shall be send in a SD message.

Generator can determine SoConId by 

SdConsumedEventGroupMulticastActivationRef

disassembleIncomingMessage(entries, options)

updateState()

SoAd_SetRemoteAddr(SdClientServiceTcpRef, IpAddrPtr)

SoAd_SetRemoteAddr(SdClientServiceTcpRef)

SoAd_SetRemoteAddr(SdClientServiceUdpRef, IpAddrPtr)

SoAd_EnableRouting(SdClientServiceActivationRef)

determineRequestResponseDelay(SdServerTimerRequestResponseMinDelay,

SdServerTimerRequestResponseMaxDelay)

buildSubscribeEventgroupEntry()

addToSendQueue(dest, entry, options, sendTime="Now"+delay)

updateStateOfServiceAndRelatedEventgroups()

sendOutStopSubscribeEventgroups()

SoAd_DisableRouting(SdClientServiceActivationRef)

cleanUpSoCons()

SoAd_RequestIpAddrAssignment(SoConId)

SoAd_EnableRouting(SdConsumedEventGroupMulticastActivationRef)

DEM_reportError()

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

90 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Figure 9.3: Sequence CLIENT: Response Behavior 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

91 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.4 SERVER: buildOfferServiceEntry 

«module»

Sd

«module»

SoAd

opt SdServerServiceUdpRef exists

opt SdServerServiceTcpRef exists

opt SdServerCapability and/or SdInstanceHostname exists

All used options and entries are fi l led out with static 

parameters only; thus, they can be stored in rom.

SoAd_GetLocalAddr(Std_ReturnType, SoAd_SoConIdType,

TcpIp_SockAddrType*, uint8*, TcpIp_SockAddrType*)

buildEndpointOptionUdp(LocalAddrPtr)

SoAd_GetLocalAddr(Std_ReturnType, SoAd_SoConIdType,

TcpIp_SockAddrType*, uint8*, TcpIp_SockAddrType*)

buildEndpointOptionTcp(LocalAddrPtr)

buildConfigurationOption()

buildOfferServiceEntry()

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

92 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Figure 9.4: Sequence SERVER: buildOfferServiceEntry 

9.5 CLIENT: buildSubscribeEventgroupEntry 

«module»

Sd

«module»

SoAd

opt SdConsumedEventGroupUdpActivationRef exists
SoConId is determined by Generator based on 

SdConsumedEventGroupUdpActivationRef

opt SdConsumedEventGroupTcpActivationRef exists

SoConId is determined by Generator based on 

SdConsumedEventGroupTcpActivationRef

opt SdClientCapability and/or SdInstanceHostname exists

SoAd_GetLocalAddr(SoConId)

buildEndpointOptionUdp(LocalAddrPtr)

SoAd_GetLocalAddr(SoConId)

buildEndpointOptionTcp(LocalAddrPtr)

buildConfigurationOption()

buildSubscribeEventgroupEntry()

SoAd_EnableRouting(SdClientServiceActivationRef)

 

Figure 9.5: Sequence CLIENT: buildSubscribeEventgroupEntry 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

93 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.6 SERVER: buildSubscribeEventgroupAckEntry 

«module»

Sd

«module»

SoAd

opt SdEventHandlerMulticast exists

opt SdServerCapabilityRecord exists

Generate SoConId from SdEventTriggeringRef and/or 

SdEventActivationRef of SdEventHandlerMulticast

SoAd_GetRemoteAddr(return, SoConId, IpAddrPtr)

buildMulticastOption()

buildConfigurationOption()

buildSubscribeEventgroupAckEntry()

 

Figure 9.6: Sequence CLIENT: buildSubscribeEventgroupEntry 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

94 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.7 CLIENT/SERVER: TransmitSdMessage 

«module»

Sd

«module»

SoAd

entries and options are taken from send queue based 

on destination and sendTime

alt 

[unicast entries]

[multicast entries]

unicastAddress from SoAd_GetRemoteAddr in 

Sd_RxIndication

multicastSoConId generated based on 

SdInstanceMulticastRxPdu

combineEntriesAndOptionsToSdMessage(entries, options)

SoAd_SetUniqueRemoteAddr(unicastAddress)

SoAd_GetLocalAddr(multicastSoConId) :destination

SoAd_SetUniqueRemoteAddr(destination)

SoAd_IfTransmit(Std_ReturnType, PduIdType, const PduInfoType*)

 

Figure 9.7: Sequence CLIENT/SERVER: TransmitSdMessage 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

95 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.8 SERVER: AddClientToFanOut 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

96 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

«module»

Sd

«module»

SoAd

«module»

BswM

SWC (Server)

opt if no SoConId is known for client and eventgroup (first for TCP, then for UDP)

loop Find SoConId in SoCons

SoCon list generated based on 

SdEventActivationRef and/or 

SdEventTriggeringRef

alt if SoCon not found

[TCP]

[UDP]

opt 

[numOfSubs==0]
SD_EVENTGROUP_REQUESTED_AND_AVAILABLE

RTE ModeSwitch

alt 

[MulticastThreshhold==0 || numOfSubs<MulticastThreshhold]

[numOfSubs=MulticastThreshhold]

[numOfSubs>=MulticastThreshhold]

loop over all subscribed clients (new client needs only Activate)

numOfSubs++()

SoAd_GetRemoteAddr(i)

checkIfAddrMatches()

buildSubscribeNackEntry()

addToSendQueue()

exit()

SoAd_SetUniqueRemoteAddr( )

rememberSoConId()

SoAd_EnableRouting(SdEventHandlerTcp->SdEventActivationRef)

SoAd_IfRoutingGroupTransmit(SdEventHandlerTcp->SdEventTriggeringRef)

BswM_Sd_EventHandlerCurrentState( )

SoAd_EnableRouting(SdEventHandlerUdp->SdEventActivationRef)

SoAd_EnableRouting(SdEventHandlerMulticast->SdEventActivationRef)

SoAd_DisableRouting(SdEventHandlerUdp-->SdEventActivationRef)

SoAd_EnableRouting(SdEventHandlerUdp->SdEventActivationRef)

SoAd_IfRoutingGroupTransmit(SdEventHandlerUdp->SdEventTriggeringRef)

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

97 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Figure 9.8: Sequence SERVER: AddClientToFanOut 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

98 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.9 SERVER: Start 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

99 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

SWC (Server) «module»

BswM

«module»

Sd

«module»

SoAd

Server == DOWN

Server == AVAILABLE

SD_SERVER_SERVICE_DOWN

RTE Mode Request

opt Activate Routing Groups

opt LocalIPAddrAssignment==TCPIP_IPADDR_STATE_ASSIGNED

seq DOWN

SD_SERVER_SERVICE_AVAILABLE

seq Initial Wait Phase

Don't answer "Find entry" for this service instance 

in Initial Wait Phase

critical : Send combined with other entries and options

opt SdServerTimerInitialOfferRepetitionMax > 0

seq Repetition Phase

loop e.g. 30ms, 60ms, 120ms

critical : Send combined with other entries and options

Timings for Repetition Phase:

SdServerServiceTimerRef -> SdServerTimer:

- SdServerTimerInitialOfferRepetitionBaseDelay

- SdServerTimerInitialOfferRepetitionMax

seq Main Phase

loop Send cyclic Offer Messages

Timings for Main Phase "Send cyclic Offers":

SdServerServiceTimerRef -> SdServerTimer:

- SdServerTimerOfferCyclicDelay

"Available"()

Sd_ServerServiceSetState(SdServerServiceHandleId,

SD_SERVER_SERVICE_AVAILABLE)

check

HandleID()

update

State()

SoAd_EnableRouting(SdServerServiceActivationRef)

SoAd_OpenSoCon(SoConId)

calculateInitialWaitTimer(SdServerTimerInitialOfferDelayMin,

SdServerTimerInitialOfferDelayMax)

startTimer(initialWait)

initialWaitTimerExpired()

buildOfferServiceEntry()

addToSendQueue(dest, entry,

options, sendTime)

buildOfferServiceEntryAndOptions()

addToSendQueue(dest, entry, options, sendTime)

buildOptionsAndEntries()

addToSendQueue(dest, entry, options, sendTime)

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

100 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Figure 9.9: Sequence SERVER: Start 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

101 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

9.10 CLIENT: Start 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

102 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

SWC (Client) «module»

BswM

«module»

Sd

«module»

SoAd

Client == RELEASED SD_CLIENT_SERVICE_RELEASED

SD_CLIENT_SERVICE_REQUESTEDClient == REQUESTED

RTE Mode Request

=> enter Main Phase immediately

seq Initial Wait Phase

Using SdClientServiceTimerRef look up:

SdClientTimerInitialFindDelayMin

SdClientTimerInitialFindDelayMax

Calculate random value [min:max]

Timings for Repetition Phase:

SdClientServiceTimerRef -> SdServerTimer:

- SdClientTimerInitialFindRepetitionBaseDelay

- SdClientTimerInitialFindRepetitionMax

seq Repetition Phase

=> enter Main Phase immediately

loop e.g. 30ms, 60ms, 120ms

seq Main Phase

[Offer NOT received]

[Offer received]

=> enter Main Phase (Offer received)

SD_CLIENT_SERVICE_REQUESTED_AND_AVAILABLE

Cyclic Find not allowed!

"Requested"()

Sd_ClientServiceSetState(ClientServiceInstanceID,

SD_CLIENT_SERVICE_REQUESTED)

check HandleID()

update State()

startTimer(InitialWait)

Sd_RxIndication(Offer)

timeExpired(InitialWait)

buildFindEventgroupEntry()

addToSendQueue(dest, entry, options, sendTime)

Sd_RxIndication(Offer)

buildFindEventgroupEntry()

addToSendQueue(dest, entry, options, sendTime)

Sd_RxIndication(Offer)

BswM_Sd_ClientServiceCurrentState(SdClientServiceHandleId,

SD_CLIENT_SERVICE_AVAILABLE)

ModeSwitch(AVAILABLE)

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

103 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Figure 9.10: Sequence CLIENT: Start 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

104 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

10 Containers and configuration parameters 

The following chapters summarize all configuration parameters. The detailed 
meanings of the parameters describe Chapters 7 and Chapter 8. 
 

[SWS_SD_00135]⌈ 
The Service Discovery module shall support tool based configuration. 
⌋() 
 
[SWS_SD_00136]⌈ 
The configuration tool shall check the consistency of the configuration parameters at 
system configuration time. 

⌋() 

10.1 Variants 

10.1.1 VARIANT-PRE-COMPILE (Pre-compile Configuration) 

[SWS_SD_00137]⌈ 
In the variant VARIANT-PRE-COMPILE all parameters below that are marked as 
pre-compile configurable with “VARIANT-PRE-COMPILE“ shall be configurable in a 
pre-compile manner, for example as #defines. 
 
The module is most likely to be as source code delivered. 

⌋() 

10.1.2 VARIANT-LINK-TIME (Link-time Configuration) 

[SWS_SD_00138]⌈ 
The variant VARIANT-LINK-TIME shall include all configuration options of the variant 
VARIANT-PRE-COMPILE. Additionally all parameters that are marked as link-time 
configurable with “VARIANT-LINK-TIME“ shall be configurable at link time for 
example by linking a special configured parameter object file. 
 
The module is most likely to be as source code delivered. 

⌋() 

10.1.3 VARIANT-POST-BUILD (Post-build Configuration) 

[SWS_SD_00139]⌈ 
The variant VARIANT-POST-BUILD shall include all configuration options of the 
variant VARIANT-LINK-TIME. Additionally all parameters that are marked as post-
build configurable with “VARIANT-POST-BUILD“ shall be configurable post build for 
example by flashing configuration data. 
 
The module is most likely to be as source code delivered. 

⌋() 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

105 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

10.1.4 Sd 

SWS Item  ECUC_SD_00001 :  

Module Name  Sd  

Module Description  Configuration of the Service Discovery module. 

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SdConfig  1  

This container contains the configuration parameters and sub 
containers of the AUTOSAR Service Discovery module. This 
container is a MultipleConfigurationContainer, i.e. this 
container and its sub-containers exist once per configuration 
set. 

SdGeneral  1  
This container lists the general configuration parameters for 
the Service Discovery module. 

   
 

Sd :EcucModuleDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdGeneral :

EcucParamConfContainerDef

SdConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

SdServerService :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientService :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdInstance :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdInstanceHostname :

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *
SdClientTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdInstanceMulticastRxPdu :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdInstanceTxPdu :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdInstanceUnicastRxPdu :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

Pdu :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

postBuildChangeable = true

(from EcucPdu)

SdRxPduId :

EcucIntegerParamDef

min = 0

max = 65535

SdRxPduRef :

EcucReferenceDef

SdTxPduRef :

EcucReferenceDef

SdRxPduId :

EcucIntegerParamDef

min = 0

max = 65535

SdRxPduRef :

EcucReferenceDef

+subContainer

+container

+subContainer

+reference

+parameter

+subContainer

+subContainer

+subContainer

+container

+subContainer

+destination

+subContainer

+parameter

+reference

+reference

+parameter

+destination

+destination

+subContainer

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

106 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

10.1.5 SdGeneral 

SWS Item  ECUC_SD_00002 :  

Container Name  SdGeneral  

Description  
This container lists the general configuration parameters for the Service 
Discovery module. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00006 :  

Name  
 

SdDevErrorDetect  

Description  Enables and disables the development error detection and notification 
mechanism. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00008 :  

Name  
 

SdMainFunctionCycleTime  

Description  This parameter defines the cycle time in seconds of the periodic calling of 
Sd main function. 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  1E-4 .. 1    

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00007 :  

Name  
 

SdVersionInfoApi  

Description  Enables and disables the version info API. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

107 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

SdGeneral :

EcucParamConfContainerDef

SdDevErrorDetect :

EcucBooleanParamDef

SdVersionInfoApi :

EcucBooleanParamDef

SdMainFunctionCycleTime :

EcucFloatParamDef

min = 0.0001

max = 1

+parameter

+parameter

+parameter

 

10.1.6 SdConfig 

SWS Item  ECUC_SD_00003 :  

Container Name  SdConfig [Multi Config Container]  

Description  

This container contains the configuration parameters and sub containers of 
the AUTOSAR Service Discovery module. This container is a 
MultipleConfigurationContainer, i.e. this container and its sub-containers 
exist once per configuration set. 

Configuration Parameters  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SdInstance  0..*  
This container represents an instance of the SD; i.e. the SD 
configuration for a certain link. 

   
 
 

10.1.7 SdInstance 

SWS Item  ECUC_SD_00084 :  

Container Name  SdInstance  

Description  
This container represents an instance of the SD; i.e. the SD configuration 
for a certain link. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00012 :  

Name  
 

SdInstanceHostname  

Description  Configuration parameter to specify the Hostname. 

Multiplicity  0..1  

Type  EcucStringParamDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

108 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SdClientService  0..*  
This container specifies all parameters used by Client 
services. 

SdClientTimer  0..*  
This container specifies all timers used by the Service 
Discovery module for Client Services. 

SdInstanceMulticastRxPdu  1  This container specifies the received PDU. 

SdInstanceTxPdu  1  This container specifies the transmitted PDU. 

SdInstanceUnicastRxPdu  1  This container specifies the received PDU. 

SdServerService  0..*  
This container specifies all parameters used by Server 
services. 

SdServerTimer  0..*  
This container specifies all timers used by the Service 
Discovery module for Server Services. 

   

 
 

10.1.8 SdClientTimer 

SWS Item  ECUC_SD_00043 :  

Container Name  SdClientTimer  

Description  
This container specifies all timers used by the Service Discovery module 
for Client Services. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00063 :  

Name  
 

SdClientTimerInitialFindDelayMax  

Description  Max value in [s] to delay randomly the transmission of a find message. 
This parameter is mandatory for ClientService. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00044 :  

Name  
 

SdClientTimerInitialFindDelayMin  

Description  Min value in [s] to delay randomly the transmission of a find message. This 
parameter is mandatory for ClientService. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00047 :  

Name  
 

SdClientTimerInitialFindRepetitionsBaseDelay  

Description  The base delay in [s] for find repetitions. Successive finds have an 
exponential back off delay (1x base delay, 2x base delay, 4x base delay, 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

109 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

...). This parameter is mandatory for ClientService. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00046 :  

Name  
 

SdClientTimerInitialFindRepetitionsMax  

Description  Configuration for the maximum number of find repetitions. This parameter 
is mandatory for ClientService. 

Multiplicity  0..1  

Type  EcucIntegerParamDef  

Range  0 .. 10    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00036 :  

Name  
 

SdClientTimerRequestResponseMaxDelay  

Description  Maximum allowable response delay to entries received by multicast in 
seconds. This parameter is mandatory for ConsumedEventGroups. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00064 :  

Name  
 

SdClientTimerRequestResponseMinDelay  

Description  Minimum allowable response delay to the find message in seconds. This 
parameter is mandatory for ConsumedEventGroups. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00075 :  

Name  
 

SdClientTimerTTL  

Description  Time to live for find and subscribe messages. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  1 .. 16777215    

Default value  --  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

110 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

No Included Containers  

   

 

SdClientTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientTimerInitialFindDelayMin :

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1 SdClientTimerInitialFindDelayMax :

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientTimerInitialFindRepetitionsMax :

EcucIntegerParamDef

min = 0

max = 10

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientTimerInitialFindRepetitionsBaseDelay :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientTimerTTL :EcucIntegerParamDef

min = 1

max = 16777215

SdClientTimerRequestResponseMinDelay :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1SdClientTimerRequestResponseMaxDelay :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

 

10.1.9 SdServerTimer 

SWS Item  ECUC_SD_00035 :  

Container Name  SdServerTimer  

Description  
This container specifies all timers used by the Service Discovery module 
for Server Services. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00039 :  

Name  
 

SdServerTimerInitialOfferDelayMax  

Description  Max value in [s] to delay randomly the first offer. This parameter is 
mandatory for ServerService. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

111 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

   

SWS Item  ECUC_SD_00038 :  

Name  
 

SdServerTimerInitialOfferDelayMin  

Description  Min value in [s] to delay randomly the first offer. This parameter is 
mandatory for ServerService. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00041 :  

Name  
 

SdServerTimerInitialOfferRepetitionBaseDelay  

Description  The base delay in [s] for offer repetitions. Successive offers have an 
exponential back off delay (1x base delay, 2x base delay, 4x base delay, 
...). This parameter is mandatory for ServerService. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00040 :  

Name  
 

SdServerTimerInitialOfferRepetitionsMax  

Description  Configure the maximum amount of offer repetition. This parameter is 
mandatory for ServerService. 

Multiplicity  0..1  

Type  EcucIntegerParamDef  

Range  0 .. 10    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00076 :  

Name  
 

SdServerTimerOfferCyclicDelay  

Description  Interval between cyclic offers in the main phase. This parameter is 
mandatory for ServerService. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00114 :  

Name  
 

SdServerTimerRequestResponseMaxDelay  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

112 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Description  Maximum allowable response delay to entries received by multicast in 
seconds. 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00115 :  

Name  
 

SdServerTimerRequestResponseMinDelay  

Description  Minimum allowable response delay to entries received by multicast in 
seconds. 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00037 :  

Name  
 

SdServerTimerTTL  

Description  Time to live for offer service. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  1 .. 16777215    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

No Included Containers  

   

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

113 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

SdServerTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerTimerRequestResponseMinDelay :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 1

upperMultiplicity = 1

SdServerTimerTTL :EcucIntegerParamDef

min = 1

max = 16777215

SdServerTimerInitialOfferDelayMin :

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1 SdServerTimerInitialOfferDelayMax :

EcucFloatParamDef

min = 0

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerInitialOfferRepetitionsMax :

EcucIntegerParamDef

min = 0

max = 10

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerInitialOfferRepetitionBaseDelay :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerOfferCyclicDelay :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimerRequestResponseMaxDelay :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 1

upperMultiplicity = 1

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

 
 

10.1.10 SdInstanceTxPdu 

SWS Item  ECUC_SD_00030 :  

Container Name  SdInstanceTxPdu  

Description  This container specifies the transmitted PDU. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00109 :  

Name  
 

SdTxPduRef  

Description  Reference to the "global" Pdu structure to allow harmonization of handle 
IDs in the COM-Stack. 

Multiplicity  1  

Type  Reference to [ Pdu ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   
 

 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

114 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

10.1.11 SdInstanceMulticastRxPdu 

SWS Item  ECUC_SD_00081 :  

Container Name  SdInstanceMulticastRxPdu  

Description  This container specifies the received PDU. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00028 :  

Name  
 

SdRxPduId  

Description  ID of the PDU that will be received via the API Sd_SoAdIfRxIndication(). 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00029 :  

Name  
 

SdRxPduRef  

Description  Reference to the "global" Pdu structure to allow harmonization of handle 
IDs in the COM-Stack. 

Multiplicity  1  

Type  Reference to [ Pdu ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   
 

 

10.1.12 SdInstanceUnicastRxPdu 

SWS Item  ECUC_SD_00027 :  

Container Name  SdInstanceUnicastRxPdu  

Description  This container specifies the received PDU. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00082 :  

Name  
 

SdRxPduId  

Description  ID of the PDU that will be received via the API Sd_SoAdIfRxIndication(). 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

115 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

SWS Item  ECUC_SD_00083 :  

Name  
 

SdRxPduRef  

Description  Reference to the "global" Pdu structure to allow harmonization of handle 
IDs in the COM-Stack. 

Multiplicity  1  

Type  Reference to [ Pdu ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 
 

10.1.13 SdServerService 

SWS Item  ECUC_SD_00004 :  

Container Name  SdServerService  

Description  This container specifies all parameters used by Server services. 

Configuration Parameters  

   

SWS Item  ECUC_SoAd_00085 :  

Name  
 

SdServerServiceAutoAvailable {SOAD_ROUTINGGROUP_ISEN_ATINIT}  

Description  If existing and set to true, this Service will be set to "Available" on start. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  false  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00110 :  

Name  
 

SdServerServiceHandleId  

Description  The HandleId by which the BswM can identify this Server Service Instance. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 65535    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00009 :  

Name  
 

SdServerServiceId  

Description  Id to identify the service. This is unique for the service interface. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65534    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

116 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00011 :  

Name  
 

SdServerServiceInstanceId  

Description  Configuration parameter to specify Instance Id of the Service implemented 
by the Server Service. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65534    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00068 :  

Name  
 

SdServerServiceMajorVersion  

Description  Major version number of the Service as used in SD Entries. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 254    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00069 :  

Name  
 

SdServerServiceMinorVersion  

Description  Minor version number of the Service as used e.g. in Offer Service entries. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967294    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00086 :  

Name  
 

SdServerServiceTimerRef  

Description  The reference of the SdServerTimer container for this service. 

Multiplicity  1  

Type  Reference to [ SdServerTimer ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SdEventHandler  0..*  
Container Element for representing an EventGroup as part of 
the Service Instance. 

SdProvidedMethods  0..1  Container element for representing the needed elements of the 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

117 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

data path for the methods provided by the service. 

SdServerCapabilityRecord  0..*  

Sd uses capability records to store arbitrary name/value pairs 
conveying additional information about the named service. 
The following use cases are supported: 1) Key present, with 
no value (e.g. "passreq" -- password required for this service)  
2) Key present, with empty value (e.g. "PlugIns=" server 
supports plugins, but none are presently installed)  
3) Key present, with non-empty value (e.g. 
"PlugIns=JPEG,MPEG2,MPEG4") 

   

 

SdServerService :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceId :

EcucIntegerParamDef

min = 0

max = 65534

SdServerServiceInstanceId :

EcucIntegerParamDef

min = 0

max = 65534

SdServerCapabilityRecord :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerCapabilityRecordKey :

EcucStringParamDef

SdServerCapabilityRecordValue :

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceMajorVersion :

EcucIntegerParamDef

min = 0

max = 254
SdServerServiceMinorVersion :

EcucIntegerParamDef

min = 0

max = 4294967294

SdServerServiceHandleId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdServerServiceTimerRef :

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdEventHandler :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerServiceAutoAvailable :

EcucBooleanParamDef

lowerMultiplicity = 1

upperMultiplicity = 1

defaultValue = False

SdServerServiceUdpRef :EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerServiceTcpRef :EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdSocketConnectionGroup :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from SoAd)

SoAdRoutingGroup :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from SoAd)

SdServerServiceActivationRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdProvidedMethods :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdRoutingGroupId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

(from SoAd)

+parameter

+parameter

+parameter

+subContainer

+subContainer

+parameter

+reference

+parameter

+subContainer

+parameter

+subContainer

+reference

+parameter

+destination

+destination +parameter

+destination

+destination

+reference

+reference

+parameter

 
 

10.1.14 SdClientService 

SWS Item  ECUC_SD_00005 :  

Container Name  SdClientService  

Description  This container specifies all parameters used by Client services. 

Configuration Parameters  

   

SWS Item  ECUC_SoAd_00098 :  

Name  
 

SdClientServiceAutoRequire {SOAD_ROUTINGGROUP_ISEN_ATINIT}  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

118 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Description  If existing and set to true, this Service will be set to "required" on start. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  false  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00079 :  

Name  
 

SdClientServiceHandleId  

Description  The HandleId by which the BswM can identify this Client Service Instance. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 65535    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00020 :  

Name  
 

SdClientServiceId  

Description  Id to identify the service. This is unique for the service interface. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65534    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00022 :  

Name  
 

SdClientServiceInstanceId  

Description  Configuration parameter to specify Instance Id of the service as used in SD 
entries. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65534    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00070 :  

Name  
 

SdClientServiceMajorVersion  

Description  Major version number of the Service as used in the SD entries. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 254    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

119 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00071 :  

Name  
 

SdClientServiceMinorVersion  

Description  Minor version number of the Service as used in the SD Service Entries. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00103 :  

Name  
 

SdClientServiceTimerRef  

Description  The reference of the SdClientTimer container for this service. 

Multiplicity  1  

Type  Reference to [ SdClientTimer ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SdClientCapabilityRecord  0..*  

Sd uses capability records to store arbitrary name/value pairs 
conveying additional information about the named service. 
The following use cases are supported: 1) Key present, with 
no value (e.g. "passreq" -- password required for this service)  
2) Key present, with empty value (e.g. "PlugIns=" server 
supports plugins, but none are presently installed)  
3) Key present, with non-empty value (e.g. 
"PlugIns=JPEG,MPEG2,MPEG4") 

SdConsumedEventGroup  0..*  
This container specifies all parameters for consumed event 
groups. 

SdConsumedMethods  0..1  
Container element for representing the data path for accessing 
the server methods. 

   



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

120 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

SdClientService :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientServiceId :

EcucIntegerParamDef

min = 0

max = 65534

SdClientServiceInstanceId :

EcucIntegerParamDef

min = 0

max = 65534

SdClientTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdConsumedEventGroup :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientServiceMajorVersion :

EcucIntegerParamDef

min = 0

max = 254

SdClientServiceMinorVersion :

EcucIntegerParamDef

min = 0

max = 4294967295

SdClientCapabilityRecord :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientServiceCapabilityRecordKey :

EcucStringParamDef

SdClientServiceCapabilityRecordValue :

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientServiceHandleId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdClientServiceTimerRef :

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdClientServiceAutoRequire :

EcucBooleanParamDef

lowerMultiplicity = 1

upperMultiplicity = 1

defaultValue = False

SdClientServiceUdpRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientServiceTcpRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdClientServiceActivationRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdConsumedMethods :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdSocketConnection :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from SoAd)

SoAdRoutingGroup :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from SoAd)

SoAdRoutingGroupId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

(from SoAd)

SoAdSocketId :

EcucIntegerParamDef

symbolicNameValue = true

min = 0

max = 65535

(from SoAd)

+subContainer

+parameter

+parameter

+parameter

+parameter

+subContainer

+parameter

+subContainer

+subContainer

+parameter

+destination +parameter

+parameter

+parameter

+reference

+reference

+reference

+destination

+destination

+parameter

+destination

+reference

 
 
 

10.1.15 SdClientCapabilityRecord 

SWS Item  ECUC_SD_00072 :  

Container Name  SdClientCapabilityRecord  

Description  

Sd uses capability records to store arbitrary name/value pairs conveying 
additional information about the named service.  
The following use cases are supported: 1) Key present, with no value (e.g. 
"passreq" -- password required for this service)  
2) Key present, with empty value (e.g. "PlugIns=" server supports plugins, 
but none are presently installed)  
3) Key present, with non-empty value (e.g. 
"PlugIns=JPEG,MPEG2,MPEG4") 

Configuration Parameters  

   

SWS Item  ECUC_SD_00073 :  

Name  
 

SdClientServiceCapabilityRecordKey  

Description  Defines a CapabilityRecord key. 

Multiplicity  1  

Type  EcucStringParamDef  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

121 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00074 :  

Name  
 

SdClientServiceCapabilityRecordValue  

Description  Defines the corresponding CapabilityRecord value. 

Multiplicity  0..1  

Type  EcucStringParamDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   
 

10.1.16 SdConsumedEventGroup 

SWS Item  ECUC_SD_00056 :  

Container Name  SdConsumedEventGroup  

Description  

A Service may have event groups which can be consumed. A service 
consumer has to subscribe to the corresponding event-group. After the 
subscription the event consumer takes the role of a server and the event 
provider that of a client. 

Configuration Parameters  

   

SWS Item  ECUC_SoAd_00108 :  

Name  
 

SdConsumedEventGroupAutoRequire 
{SOAD_ROUTINGGROUP_ISEN_ATINIT}  

Description  If existing and set to true, this EventGroup will be set to "required" on start. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  false  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00116 :  

Name  
 

SdConsumedEventGroupHandleId  

Description  The HandleId by which the BswM can identify this EventGroup. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 65535    



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

122 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00057 :  

Name  
 

SdConsumedEventGroupId  

Description  The Eventgroup Id of this eventGroup as a unique identifier of the 
eventgroup in this service. This identifier is used for EventGroup entries as 
well. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65534    

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00106 :  

Name  
 

SdConsumedEventGroupMulticastActivationRef  

Description  The reference of a Routing Group in order to activate and setup the Socket 
Connection for Multicast Events of this EventGroup. The multicast address 
from the received Multicast option is setup by 
SoAd_RequestIpAddrAssignment. 
The local address is the same as for the unicast events; thus, it was sent in 
the UDP Endpoint option of the Subscribe EventGroup entry. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00105 :  

Name  
 

SdConsumedEventGroupTcpActivationRef  

Description  The reference of the Routing Group for activation of the data path for 
receiving TCP events. 
This element is also being used for getting the IP address and port number 
for building the TCP endpoint option for the Subscribe EventGroup entry.  
If no TCP methods are used in the service, this element is also being used 
for setting the remote address (TCP Endpoint option referenced by the 
Offer Service entry) and opening the TCP connection to the server before 
sending the Subscribe EventGroup entry. If multiple EventGroups of the 
same Service Instance are subscribed the TCP connection will be shared 
and must be opened only once. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00107 :  

Name  
 

SdConsumedEventGroupTimerRef  

Description  The reference of the SdClientTimer container for this eventGroup. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

123 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Multiplicity  1  

Type  Reference to [ SdClientTimer ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00104 :  

Name  
 

SdConsumedEventGroupUdpActivationRef  

Description  The reference of the Routing Group for activation of the data path for 
receiving UDP events. 
This element is also being used for getting the IP address and port number 
for building the UDP endpoint option for the Subscribe EventGroup entry.  
If no UDP methods are used in the service, this element is also being used 
for setting the remote address (UDP Endpoint option referenced by the 
Offer Service entry). If multiple EventGroups of the same Service Instance 
are subscribed the UDP Socket Connection will be shared and must be set 
only once. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SdClientCapabilityRecord  0..*  

Sd uses capability records to store arbitrary name/value pairs 
conveying additional information about the named service. 
The following use cases are supported: 1) Key present, with 
no value (e.g. "passreq" -- password required for this service)  
2) Key present, with empty value (e.g. "PlugIns=" server 
supports plugins, but none are presently installed)  
3) Key present, with non-empty value (e.g. 
"PlugIns=JPEG,MPEG2,MPEG4") 

   

 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

124 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

SdClientTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdConsumedEventGroup :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdConsumedEventGroupId :EcucIntegerParamDef

min = 0

max = 65534

SdClientCapabilityRecord :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdClientServiceCapabilityRecordKey :

EcucStringParamDef

SdClientServiceCapabilityRecordValue :

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdConsumedEventGroupHandleId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdConsumedEventGroupTimerRef :EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdConsumedEventGroupAutoRequire :

EcucBooleanParamDef

lowerMultiplicity = 1

upperMultiplicity = 1

defaultValue = False

SdConsumedEventGroupMulticastActivationRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdConsumedEventGroupUdpActivationRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdConsumedEventGroupTcpActivationRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdRoutingGroup :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from SoAd)

SoAdRoutingGroupId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

(from SoAd)

+destination

+parameter
+destination

+destination

+parameter

+parameter

+reference

+reference

+reference

+reference

+parameter

+parameter

+subContainer

+parameter

+destination

 
 

10.1.17 SdConsumedMethods 

SWS Item  ECUC_SD_00099 :  

Container Name  SdConsumedMethods  

Description  
Container element for representing the data path for accessing the server 
methods. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00102 :  

Name  
 

SdClientServiceActivationRef  

Description  Reference to a SoAdRoutingGroupRef to activate/deactivate the data path 
for the methods. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00100 :  

Name  
 

SdClientServiceTcpRef  

Description  Reference to the SoAdSocketConnection representing the data path (TCP) 
for communication with methods. 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

125 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

This element is also used to set the remote address of the server and to 
open the TCP connection. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdSocketConnection ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00101 :  

Name  
 

SdClientServiceUdpRef  

Description  Reference to the SoAdSocketConnection representing the data path 
(UDP) for communication with methods. 
This element is also used to set the remote address of the server. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdSocketConnection ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.1.18 SdEventHandler 

SWS Item  ECUC_SD_00055 :  

Container Name  SdEventHandler  

Description  
Container Element for representing an EventGroup as part of the Service 
Instance. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00117 :  

Name  
 

SdEventHandlerAutoAvailable {SOAD_ROUTINGGROUP_ISEN_ATINIT}  

Description  If existing and set to true, this EventGroup will be set to "available" on 
start. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  false  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00061 :  

Name  
 

SdEventHandlerEventGroupId  

Description  The EventGroup Id of this EventGroup as a unique identifier of the 
EventGroup in this service. This identifier is used for EventGroup entries 
as well. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65534    

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

126 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00112 :  

Name  
 

SdEventHandlerHandleId  

Description  The HandleId by which the BswM can identify this EventGroup. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 65535    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00097 :  

Name  
 

SdEventHandlerMulticastThreshold  

Description  Specifies the number of subscribed clients that trigger the Server to 
change the transmission of events to Multicast. 
If configured to 0 only unicast will be used. If configured to 1 the first client 
will be already served by multicast. If configured to 2 the first client will be 
served with unicast and as soon as the second client arrives both will be 
served by multicast.  
This does not influence the handling of initial events, which are served 
using unicast only. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00113 :  

Name  
 

SdEventHandlerTimerRef  

Description  The reference of the SdServerTimer container for this EventGroup. 

Multiplicity  1  

Type  Reference to [ SdServerTimer ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SdEventHandlerMulticast  0..1  

The subcontainer including the Routing Group for Activation of 
Events sent over Multicast. 
The activation ref is also being used for identification of the 
related Socket Connection in order to find the Multicast 
Address used in the Multicast Option referenced by the 
Subscribe EventGroup Ack entry. 

SdEventHandlerTcp  0..*  

The subcontainer including the Routing Groups for Activation 
and Trigger Transmit for Events sent over TCP. 
The activation ref (or triggering ref if no activation ref exists) is 
also being used for identification of the related socket 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

127 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

connections in order to find the related client by iterating the 
SdEventHandlerTcp elements (remote address statically 
configured or automatically set by opening TCP connection 
before subscription). 

SdEventHandlerUdp  0..*  

The subcontainer including the Routing Groups for Activation 
and Trigger Transmit for Events sent over UDP. 
The activation ref (or triggering ref if no activation ref exists) is 
also being used for identification of the related socket 
connections in order to set the remote address of the client or 
find the related client by iterating the SdEventHandlerUdp 
elements (remote address statically configured or 
automatically set by method call before subscription). 

SdServerCapabilityRecord  0..*  

Sd uses capability records to store arbitrary name/value pairs 
conveying additional information about the named service. 
The following use cases are supported: 1) Key present, with 
no value (e.g. "passreq" -- password required for this service)  
2) Key present, with empty value (e.g. "PlugIns=" server 
supports plugins, but none are presently installed)  
3) Key present, with non-empty value (e.g. 
"PlugIns=JPEG,MPEG2,MPEG4") 

   
 
 

SdServerCapabilityRecord :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdServerCapabilityRecordKey :

EcucStringParamDef

SdServerCapabilityRecordValue :

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdServerTimer :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdEventHandler :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdEventHandlerEventGroupId :

EcucIntegerParamDef

min = 0

max = 65534

SdEventHandlerHandleId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

SdEventHandlerTimerRef :

EcucReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

SdEventHandlerMulticast :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdEventHandlerUdp :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdEventHandlerTcp :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

SdEventHandlerAutoAvailable :

EcucBooleanParamDef

lowerMultiplicity = 1

upperMultiplicity = 1

defaultValue = False

SdEventHandlerMulticastThreshold :

EcucIntegerParamDef

min = 0

max = 65535

SoAdRoutingGroup :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from SoAd)

SdEventActivationRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SdEventTriggeringRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SoAdRoutingGroupId :

EcucIntegerParamDef

min = 0

max = 65535

symbolicNameValue = true

(from SoAd)

+parameter

+reference

+reference

+reference

+reference

+parameter

+parameter

+destination

+reference

+subContainer

+destination

+subContainer

+subContainer

+subContainer

+reference

+parameter

+parameter

+destination

+parameter

+parameter

 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

128 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

10.1.19 SdEventHandlerMulticast 

SWS Item  ECUC_SD_00094 :  

Container Name  SdEventHandlerMulticast  

Description  

The subcontainer including the Routing Group for Activation of Events sent 
over Multicast.  
The activation ref is also being used for identification of the related Socket 
Connection in order to find the Multicast Address used in the Multicast 
Option referenced by the Subscribe EventGroup Ack entry. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00096 :  

Name  
 

SdEventActivationRef  

Description  Reference to a SoAdRoutingGroup for activation of the data path for a 
subscribed client (start sending events after subscribe). 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 
 

10.1.20 SdEventHandlerTcp 

SWS Item  ECUC_SD_00093 :  

Container Name  SdEventHandlerTcp  

Description  

The subcontainer including the Routing Groups for Activation and Trigger 
Transmit for Events sent over TCP.  
The activation ref (or triggering ref if no activation ref exists) is also being 
used for identification of the related socket connections in order to find the 
related client by iterating the SdEventHandlerTcp elements (remote 
address statically configured or automatically set by opening TCP 
connection before subscription). 

Configuration Parameters  

   

SWS Item  ECUC_SD_00096 :  

Name  
 

SdEventActivationRef  

Description  Reference to a SoAdRoutingGroup for activation of the data path for a 
subscribed client (start sending events after subscribe). 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00095 :  

Name  
 

SdEventTriggeringRef  

Description  Reference to a SoAdRoutingGroup that is used for triggered transmit. 
Triggering is needed to sent out initial events on the server side after a 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

129 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

client got subscribed. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 
 

10.1.21 SdEventHandlerUdp 

SWS Item  ECUC_SD_00092 :  

Container Name  SdEventHandlerUdp  

Description  

The subcontainer including the Routing Groups for Activation and Trigger 
Transmit for Events sent over UDP.  
The activation ref (or triggering ref if no activation ref exists) is also being 
used for identification of the related socket connections in order to set the 
remote address of the client or find the related client by iterating the 
SdEventHandlerUdp elements (remote address statically configured or 
automatically set by method call before subscription). 

Configuration Parameters  

   

SWS Item  ECUC_SD_00096 :  

Name  
 

SdEventActivationRef  

Description  Reference to a SoAdRoutingGroup for activation of the data path for a 
subscribed client (start sending events after subscribe). 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00095 :  

Name  
 

SdEventTriggeringRef  

Description  Reference to a SoAdRoutingGroup that is used for triggered transmit. 
Triggering is needed to sent out initial events on the server side after a 
client got subscribed. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 
 
 



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

130 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

 

10.1.22 SdProvidedMethods 

SWS Item  ECUC_SD_00087 :  

Container Name  SdProvidedMethods  

Description  
Container element for representing the needed elements of the data path 
for the methods provided by the service. 

Configuration Parameters  

   

SWS Item  ECUC_SD_00090 :  

Name  
 

SdServerServiceActivationRef  

Description  Reference to a SoAdRoutingGroup to activated and deactivate the data 
path for methods of the service. 

Multiplicity  0..1  

Type  Symbolic name reference to [ SoAdRoutingGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00088 :  

Name  
 

SdServerServiceTcpRef  

Description  Reference to SoAdSocketConnectionGroup used for methods. 
This is used to access the local IP address and port for building the 
endpoint option for offers of this service. 

Multiplicity  0..1  

Type  Reference to [ SoAdSocketConnectionGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SD_00089 :  

Name  
 

SdServerServiceUdpRef  

Description  Reference to SoAdSocketConnectionGroup used for methods. 
This is used to access the local IP address and port for building the 
endpoint option for offers of this service. 

Multiplicity  0..1  

Type  Reference to [ SoAdSocketConnectionGroup ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

No Included Containers  

   

 
 

10.1.23 SdServerCapabilityRecord 

SWS Item  ECUC_SD_00032 :  



 Specification of Service Discovery 
 V1.2.0 

R4.1 Rev 3 

131 of 131 Document ID 616: SWS_ServiceDiscovery 

  - AUTOSAR confidential - 

Container Name  SdServerCapabilityRecord  

Description  

Sd uses capability records to store arbitrary name/value pairs conveying 
additional information about the named service.  
The following use cases are supported: 1) Key present, with no value (e.g. 
"passreq" -- password required for this service)  
2) Key present, with empty value (e.g. "PlugIns=" server supports plugins, 
but none are presently installed)  
3) Key present, with non-empty value (e.g. 
"PlugIns=JPEG,MPEG2,MPEG4") 

Configuration Parameters  

   

SWS Item  ECUC_SD_00033 :  

Name  
 

SdServerCapabilityRecordKey  

Description  Defines a CapabilityRecord key. 

Multiplicity  1  

Type  EcucStringParamDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SD_00034 :  

Name  
 

SdServerCapabilityRecordValue  

Description  Defines the corresponding CapabilityRecord value. 

Multiplicity  0..1  

Type  EcucStringParamDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.2 Published Information 

Published information contains data defined by the implementer of the SW module 
that does not change when the module is adapted (i.e. configured) to the actual 
HW/SW environment. It thus contains version and manufacturer information.  
 
For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral. 
 


	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 AUTOSAR BSW Scheduler
	5.2 AUTOSAR BSW Mode Manager
	5.3 AUTOSAR Socked Adaptor
	5.4 AUTOSAR Development Error Tracer
	5.5 AUTOSAR Diagnostic Event Manager
	5.6 File structure
	5.6.1 Code file structure
	5.6.2 Header file structure


	6 Requirements traceability
	7 Functional specification
	7.1 Background & Rationale
	7.2 Requirements
	7.2.1 General requirements
	7.2.2 Ethernet Communication
	7.2.3 State Handling
	7.2.4 Interaction with Socket Adaptor

	7.3 Message format
	7.3.1 Request ID
	7.3.2 Protocol Version field
	7.3.3 Interface Version field
	7.3.4 Message Type field
	7.3.5 Return Code field
	7.3.6 Flags field
	7.3.7 Reserved field
	7.3.8 Entries Array
	7.3.8.1 Length of Entries Array
	7.3.8.2 Entry Format Type 1
	7.3.8.3 Entry Format Type 2

	7.3.9 Options Array
	7.3.9.1 Configuration Option
	7.3.9.2 IPv4 Endpoint Option
	7.3.9.3 IPv6 Endpoint Option
	7.3.9.4 IPv4 Multicast Option
	7.3.9.5 IPv6 Multicast Option
	7.3.9.6 Handling missing, redundant, and conflicting Options

	7.3.10 Entries referencing Options

	7.4 Service Discovery Entry Types
	7.4.1 Entries for Services (common requirements)
	7.4.2 FindService entry
	7.4.3 OfferService entry
	7.4.4 Build OfferService entry
	7.4.5 StopOfferService entry
	7.4.6 Eventgroup Entries (Common requirements)
	7.4.6.1 SubscribeEventgroup entry
	7.4.6.2 StopSubscribeEventgroup entry
	7.4.6.3 SubscribeEventgroupAck entry
	7.4.6.4 SubscribeEventgroupNack entry


	7.5 Sending and Receiving of Messages
	7.5.1 Sequence for message transmission
	7.5.2 Sequence for message reception
	7.5.3 Receiving Entries
	7.5.3.1 Receiving Entries using Multicast


	7.6 Timings and repetitions for Server Service and Event Handlers
	7.6.1 Initial Wait Phase for Server Services
	7.6.2 Repetition Phase for Server Services
	7.6.3 Main Phase for Server Services
	7.6.4 Fan out control

	7.7 Timings and repetitions for Client Service and Consumed Eventgroups
	7.7.1 Down Phase for Client Services
	7.7.2 Initial Wait Phase for Client Services
	7.7.3 Repetition Phase for Client Services
	7.7.4 Main Phase for Client Services

	7.8 Error classification
	7.9 Error detection
	7.10 Error notification
	7.11 Debugging

	8 API specification
	8.1.1 Imported Types
	8.2 Type definitions
	8.2.1 Sd_ServerServiceSetStateType
	8.2.2 Sd_ClientServiceSetStateType
	8.2.3 Sd_ConsumedEventGroupSetStateType
	8.2.4 Sd_ClientServiceCurrentStateType
	8.2.5 Sd_ConsumedEventGroupCurrentStateType
	8.2.6 Sd_EventHandlerCurrentStateType

	8.3 Function definitions
	8.3.1  Sd_Init
	8.3.2 Sd_GetVersionInfo
	8.3.3 Sd_ServerServiceSetState
	8.3.4 Sd_ClientServiceSetState
	8.3.5 Sd_ConsumedEventGroupSetState
	8.3.6 Sd_LocalIpAddrAssignmentChg

	8.4 Call-back notifications
	8.4.1 Sd_RxIndication

	8.5 Scheduled functions
	8.5.1 Sd_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces


	9  Sequence diagrams
	9.1 CLIENT / SERVER: Sd_RxIndication
	9.2 SERVER: Response Behavior
	9.3 CLIENT: Response Behavior
	9.4 SERVER: buildOfferServiceEntry
	9.5 CLIENT: buildSubscribeEventgroupEntry
	9.6 SERVER: buildSubscribeEventgroupAckEntry
	9.7 CLIENT/SERVER: TransmitSdMessage
	9.8 SERVER: AddClientToFanOut
	9.9 SERVER: Start
	9.10 CLIENT: Start

	10 Containers and configuration parameters
	10.1 Variants
	10.1.1 VARIANT-PRE-COMPILE (Pre-compile Configuration)
	10.1.2 VARIANT-LINK-TIME (Link-time Configuration)
	10.1.3 VARIANT-POST-BUILD (Post-build Configuration)
	10.1.4 Sd
	10.1.5 SdGeneral
	10.1.6 SdConfig
	10.1.7 SdInstance
	10.1.8 SdClientTimer
	10.1.9 SdServerTimer
	10.1.10 SdInstanceTxPdu
	10.1.11 SdInstanceMulticastRxPdu
	10.1.12 SdInstanceUnicastRxPdu
	10.1.13 SdServerService
	10.1.14 SdClientService
	10.1.15 SdClientCapabilityRecord
	10.1.16 SdConsumedEventGroup
	10.1.17 SdConsumedMethods
	10.1.18 SdEventHandler
	10.1.19 SdEventHandlerMulticast
	10.1.20 SdEventHandlerTcp
	10.1.21 SdEventHandlerUdp
	10.1.22 SdProvidedMethods
	10.1.23 SdServerCapabilityRecord

	10.2 Published Information


