AUTOSAR

Document Title

Specification of Communication
Management

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 717
Document Status Final

Part of AUTOSAR Standard

Adaptive Platform

Part of Standard Release

19-03

Document Change History

Date Release | Changed by Description
e Predictable Resource Allocation for
Samples
e Usage of Future::Get/Wait with an
AUTOSAR unreliable transport
2019-03-29 | 19-03 Release e Removed exceptions on reception of
Management malformed messages
e Changes to Identity and Access
Management to incorporate Grant
design
e Minor changes and bugfixes
AUTOSAR ¢ Introduced Adaptiye Core types
2018-10-31 | 18-10 Release ° Intrgduced exceptlon—le_ss API
Management ° Rgflned DDS network blpdlng
e Minor changes and bugfixes
e DDS Network Binding
AUTOSAR o Datatype Namespaces changed
2018-03-29 | 18-03 Release e E2E Protected Methods
Management e Automatic Reconnection of Proxies
e Minor changes and bugfixes
e Introduction of Fields
e Introduction of E2E protected
AUTOSAR communication
2017-10-27 | 17-10 Release ¢ Introduction of TLV
Management e Improved specification of SOME/IP
functional behavior
e Minor changes and bugfixes

AUTO SAR

2017-03-31

17-03

AUTOSAR
Release
Management

e Initial release

AUTOSAR

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

AUTO SAR

Table of Contents

1 Introduction and functional overview

2 Acronyms and Abbreviations

3 Related documentation

3.1 Input documents & related standards and norms
3.2 Related specification

4 Constraints and assumptions

41 Limitations e
4.2 Applicability to car domains

5 Dependencies to other functional clusters

5.1 Platform dependencies

6 Requirements Tracing

7 Functional specification

7.1 Generaldescription

711 Architecturalconcepts oL
7.1.2 Designdecisions
7.1.3 Communication paradigms

7.2 End-to-end communication protection for Events
7.2.1 Publisher
7.2.2 Subscriber - GetNewSamples

7.2.21
7.2.2.2

Case 1 - there are one or more serialized samples .
Case 2 - there are no serialized samples

7.2.3 Subscriber - Callback f
7.2.4 Subscriber - Access to E2E information
7.3 End-to-end communication protection for Methods

7.4 Network binding .

7.4.1 SOME/IP Network binding
7.4.1.1 Service Discovery
7.41.2 Accumulation of SOME/IP messages
7413 Execution context of message reception actions . . .
7.41.4 HandlingEvents
7.4.1.5 Handling Method Calls
7.4.1.6 Handling Fields
7.41.7 Serialization of Payload

7.4.2 Signal-Based Network binding
7.4.3 DDS Network binding

7.4.3.1
7.43.2
7.4.3.3
7.4.3.4

Service Discovery
HandlingEvents
Handling Method Calls
Handling Fields

AUTO SAR

7.4.3.5 Serialization of Payload 130

7.5 Security ... 132
7.5.1 AccessControl 132
7.5.2 Secure Communication 134
7.5.2.1 SOME/IP Network binding 134
7.5.2.2 DDS 140

7.6 Communication APl 143
7.6.1 Offerservice e 143
7.6.2 Service skeletoncreation 143
7.6.3 Processing of service methods 144
7.6.4 Registering get handlers forfields 144
7.6.5 Registering set handlers forfields 144
7.6.6 Findservice 145
7.6.7 Receiveevents oL 145
7.6.7.1 Receive eventby polling 146
7.6.7.2 Receive event by getting triggered 146
7.6.8 Callaservice method 146
7.6.9 Update notification events for fields 147
7.6.10 Instance Specifier Translation. 147
8 Communication API specification 148
8.1 C++languagebinding 148
8.1.1 APl Headerfiles 148
8.1.1.1 Service headerfiles 148
8.1.1.2 Common headerfile 151
8.1.1.3 Types headerfile 152
8.1.1.4 Implementation Types headerfiles 153
8.1.2 APl DataTypes 155
8.1.2.1 Service ldentifier Data Types 155
8.1.2.2 Event Related DataTypes 159
8.1.2.3 Method Related Data Types 162
8.1.24 GenericDataTypes 162
8.1.2.5 Communication Payload Data Types 173
8.1.2.6 ErrorTypes o 196
8.1.2.7 E2E Related DataTypes 197
8.1.3 APIReference 200
8.1.3.1 Object Creation via Construction Token 201
8.1.3.2 Offerservice 202
8.1.3.3 Service skeleton creation 202
8.1.3.4 Sendevent 205
8.1.3.5 Provide a service method 206
8.1.3.6 Processing of service methods 207
8.1.3.7 Registering get handlers forfields 208
8.1.3.8 Registering set handlers forfields 209
8.1.3.9 Findservice 209

8.1.3.10 Service proxy creation 212

AUTO SAR

8.1.3.11 Service proxy destruction
8.1.3.12 Service event subscriptiono
8.1.3.13 Receiveevent
8.1.3.14 Receive event by getting triggered
8.1.3.15 Call a service method

8.1.3.16 Get method forfields
8.1.3.17 Set method forfields
8.1.3.18 Instance Specifier Translation

A Mentioned Class Tables

B History of Specification ltems

B.1

B.2

B.3

B.4

Constraint and Specification Item History of this document according
to AUTOSAR Release 17-10 o ..
B.1.1 Added Traceables in17-10
B.1.2 Changed Traceablesin17-10
B.1.3 Deleted Traceablesin17-10
Constraint and Specification Item History of this document according
to AUTOSAR Release 18-03
B.2.1 Added Traceablesin18-03
B.2.2 Changed Traceablesin18-03
B.2.3 Deleted Traceablesin18-03
Constraint and Specification Item History of this document according
to AUTOSAR Release 18-10
B.3.1 Added Traceablesin18-10
B.3.2 Changed Traceablesin18-10.
B.3.3 Deleted Traceablesin18-10
Constraint and Specification Item History of this document according
to AUTOSARRelease 19-03
B.4.1 Added Traceablesin19-03
B.4.2 Changed Traceablesin19-03
B.4.3 Deleted Traceablesin19-03

AUTOSAR

1 Introduction and functional overview

This document contains the requirements on the functionality, APl and the configura-
tion of the AUTOSAR Adaptive Communication Management as part of the Adaptive
AUTOSAR platform foundation.

The Communication Management realizes Service Oriented Communication between
Adaptive AUTOSAR Applications for all levels of communication, e.g. IntraProcess, In-
terProcess, InterMachine. It consists of potentially generated Service Provider Skele-
tons and Service Requester Proxies and optionally the generic Communication Man-
ager software for central brokering and configuration.

The Communication Management provides a build-in safety mechanism (E2E protec-
tion), which can be used for all levels of communication for events that are received
using polling.

The documentation of the Communication Management consists of two documents:

o the ARAComAPI explanatory document [1], providing explanations of the design
and behavior descriptions of the ara::com API,

e this document, providing the requirements on the ara::com API.

Therefore it is recommended to read the ARAComAPI explanatory document first to
get an overview and understanding, and to read this document afterward.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the AUTOSAR glossary [2].

Abbreviation / Acronym:

Description:

CM

Communication Management

IP Internet Protocol

SOME/IP Scalable service-Oriented MiddlewarE over IP
TCP Transmission Control Protocol

UDP User Datagram Protocol

E2E End-to-end communication protection

SoC Service-Oriented Communication

SecOC Secure Onboard Communication

DTLS Datagram Transport Layer Security

DDS Data Distribution Service

RTPS Real Time Publish Subscribe Protocol

TTL Time To Live

TLV Tag-Length-Value

RPC Remote Procedure Call

QoS Quality of Service

BOM Byte Order Mark

Term: Description:

Callable In the context of C++ a Callable is defined as: A Callable type is a

type for which the INVOKE operation (used by, e.g., std::function,
std::bind, and std::thread::thread) is applicable. This operation
may be performed explicitly using the library function std::invoke.
(since C++17)

serializedSample

A serializedSampile is the serialization of a C++ object to an array
and consists of the header that is part of e2e protection and the
serialized data.

Service Binding

Act of connecting a Service Requester to a concrete Service In-
stance of a Service Provider.

Multi-Binding

Multi-Binding describes setups having multiple connections im-
plemented by different technical transport layers and protocol be-
tween different instances of a single proxy or skeleton class, e.g.:

e A proxy class uses different transport/IPC to communicate
with different skeleton instances.

¢ Different proxy instances for the same skeleton instance
uses different transport/IPC to communicate with this in-
stance: The skeleton instance supports multiple transport
mechanisms to get contacted.

AUTOSAR

3 Related documentation

3.1 Input documents & related standards and norms
[1] Explanation of ara::com API
AUTOSAR_EXP_ARACOmMAPI

[2] Glossary
AUTOSAR_TR_Glossary

[3] General Requirements specific to Adaptive Platform
AUTOSAR_ RS General

[4] E2E Protocol Specification
AUTOSAR_PRS_E2EProtocol

[5] SOME/IP Protocol Specification
AUTOSAR_PRS_SOMEIPProtocol

[6] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[7] Requirements on E2E
AUTOSAR_RS E2E

[8] Requirements on Communication Management
AUTOSAR_RS_CommunicationManagement

[9] Middleware for Real-time and Embedded Systems
http://doi.acm.org/10.1145/508448.508472

[10] Patterns, Frameworks, and Middleware: Their Synergistic Relationships
http://dl.acm.org/citation.cfm?id=776816.776917

[11] Reference Model for Service Oriented Architecture 1.0
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

[12] SOME/IP Service Discovery Protocol Specification
AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol

[13] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[14] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[15] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.txt

[16] Specification of Core Types for Adaptive Platform
AUTOSAR_SWS_ CoreTypes

[17] Specification of Socket Adaptor

http://doi.acm.org/10.1145/508448.508472
http://dl.acm.org/citation.cfm?id=776816.776917
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

AUTOSAR

AUTOSAR_SWS_SocketAdaptor

[18] Data Distribution Service (DDS), Version 1.4
http://www.omg.org/spec/DDS/1.4

[19] DDS Interoperability Wire Protocol, Version 2.2
http://www.omg.org/spec/DDSI-RTPS/2.2

[20] Extensible and Dynamic Topic Types for DDS, Version 1.2
https://www.omg.org/spec/DDS-XTypes/1.2

[21] RPC over DDS, Version 1.0
https://www.omg.org/spec/DDS-RPC/1.0

[22] ISO/IEC C++ 2003 Language DDS PSM, Version 1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0

[23] Interface Definition Language (IDL), Version 4.2
https://www.omg.org/spec/IDL/4.2

[24] DDS Security, Version 1.1
https://www.omg.org/spec/DDS-SECURITY/1.1

[25] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[26] General Specification of Adaptive Platform
AUTOSAR_SWS General

[27] ISO/IEC 14882:2011, Information technology — Programming languages — C++
http://www.iso.org

[28] N4659: Working Draft, Standard for ProgrammingLanguage C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

[29] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, RS Gen-
eral], which is also valid for the cMm.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for cM.

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDS-XTypes/1.2
https://www.omg.org/spec/DDS-RPC/1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0
https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/DDS-SECURITY/1.1
http://www.iso.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

The current version of this document is missing some functionality which is not stan-
dardized and specified within the SWS Communication Management document but
described in Explanation of ara::com API [1] and implemented in the demonstrator
code:

e Local Buffer Overruns
Currently it is not specified what happens if local buffers are full because the
application accesses data slower than they are received over the network.

The Signal to Service mapping in this specification does not contain behavior specifi-
cation.

The E2E communication protection works only for events which are polled and which
are transmitted at least once per fault tolerant time interval. This means, it requires:

e Periodic invocation of the method GetNewSamples (see [SWS_CM_00701]) in a
polling mode

e Periodic or mixed-periodic invocation of the method send (see [SWS_CM_00162]
and [SWS_CM_90437])

In case GetNewSamples Or Send are not invoked periodically, then some communica-
tion failure modes are not detected (loss, delay and possibly also repetition). In this
case, if E2E is used, then additional measures need to be taken at application level to
address those non-detected failure modes.

The values of the following E2E parameters are defined by the standard and shall not
be changed. See [4].

e dataldMode
e counterOffset
e crcOffset
e dataldNibbleOffset
e Offset
EndToEndTransformationComSpecProps are not supported.

The following limitations regarding optionality introduced with the Tag-Length-Value
serialization principle described in [5] and [6] apply:

e Optional method arguments
The Specification does not support the existence of optional method arguments.

AUTOSAR

4.2 Applicability to car domains

No restrictions to applicability.

AUTOSAR

5 Dependencies to other functional clusters

5.1 Platform dependencies

The Communication Management is dependent on the E2E protection protocol defined
in [7] and [4]. The EZ2E interfaces are used to execute end-to-end communication
protection between Service Provider Skeletons and Service Requester Proxies.

AUTO SAR

6 Requirements Tracing

The following tables reference the requirements specified in the Requirements on Com-
munication Management document [8] and links to the fulfilment of these.

Please note that if a requirement contained in [8] is not mentioned in the below table, it
means that is not fulfilled by this document.

Requirement

Description

Satisfied by

[RS_AP_00130]

AUTOSAR Adaptive Platform
shall represent a rich and
modern programming
environment.

[SWS_CM_10432]

[RS_CM_00001]

The Communication
Management shall provide a
standardized header file
structure for each service.

[SWS_CM _01001] [SWS_CM_01002]
[SWS_CM_01004] [SWS_CM_01012]
[SWS_CM_01013] [SWS_CM _01017]
[SWS_CM_01019] [SWS_CM_01020]
[SWS_CM_10370] [SWS_CM_10372]
[SWS_CM_10373] [SWS_CM_10374]

[RS_CM_00002]

The service header files shall
define the namespace for the
respective service.

[SWS_CM _01005] [SWS_CM_01006]
[SWS_CM_01007] [SWS_CM_01008]
[SWS_CM_01009] [SWS_CM_01015]
[SWS_CM_01018] [SWS_CM_01031]
[SWS_CM_10375]

[RS_CM_00003]

The Communication
Management shall define how
language specific data types are
derived from modeled data
types.

[SWS_CM_00400] [SWS_CM_00402]
[SWS_CM_00403] [SWS_CM_00404]
[SWS_CM_00405] [SWS_CM_00406]
[SWS_CM_00407] [SWS_CM_00408]
[SWS_CM_00409] [SWS_CM_00410]
[SWS_CM_00411] [SWS_CM_00414]
[SWS_CM_00421] [SWS_CM_00423]
[SWS_CM_00424] [SWS_CM_00425]
[SWS_CM_00426] [SWS_CM_00450]
[SWS_CM_00452] [SWS_CM_00503]
[SWS_CM_00504] [SWS_CM_00505]
[SWS_CM_00509] [SWS_CM_01032]
[SWS_CM_10376] [SWS_CM_10392]
[SWS_CM_10393] [SWS_CM_10394]
[SWS_CM_10395] [SWS_CM_10396]
[SWS_CM_10397] [SWS_CM_10398]
[SWS_CM_10399] [SWS_CM_10400]
[SWS_CM_10401] [SWS_CM_10402]
[SWS_CM_10403] [SWS_CM_10404]
[SWS_CM_10405] [SWS_CM_10406]
[SWS_CM_10407] [SWS_CM_10408]
[SWS_CM_10409]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00101]

Communication Management
shall provide an interface to offer
services

[SWS_CM_00002] [SWS_CM_00101]
[SWS_CM_00102] [SWS_CM_00103]
[SWS_CM_00130] [SWS_CM_00134]
[SWS_CM_00135] [SWS_CM_00152]
[SWS_CM_00153] [SWS_CM_00201]
[SWS_CM_00203] [SWS_CM_00302]
[SWS_CM_00319] [SWS_CM_00350]
[SWS_CM_10410] [SWS_CM_10433]
[SWS_CM_10434] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10450] [SWS_CM_10451]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11004]
[SWS_CM_11029] [SWS_CM_11030]
[SWS_CM_11031]

[RS_CM_00102]

Communication Management
shall provide an interface to find
services

[SWS_CM_00004] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00124]
[SWS_CM_00125] [SWS_CM_00131]
[SWS_CM_00136] [SWS_CM_00137]
[SWS_CM_00202] [SWS_CM_00209]
[SWS_CM_00302] [SWS_CM_00303]
[SWS_CM_00304] [SWS_CM_00312]
[SWS_CM_00317] [SWS_CM_00318]
[SWS_CM_00319] [SWS_CM_00383]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_10382] [SWS_CM_10438]
[SWS_CM_10446] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11041] [SWS_CM_11264]

[RS_CM_00103]

Communication Management
shall provide an interface to
subscribe to a specific event
provided by an instance of a
certain service

[SWS_CM_00005] [SWS_CM _00141]
[SWS_CM_00205] [SWS_CM_00310]
[SWS_CM 00311] [SWS_CM_00313]
[SWS_CM _00314] [SWS_CM_00315]
[SWS_CM_00700] [SWS_CM_10377]
[SWS_CM_10381] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11133] [SWS_CM_11134]
[SWS_CM_11135]

[RS_CM_00104]

Communication Management
shall provide an interface to stop
the subscription to an event of a
service instance

[SWS_CM 00151] [SWS_CM _00207]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_10378]
[SWS_CM_11021] [SWS_CM_11136]

[RS_CM_00105]

Communication Management
shall provide an interface to stop
offering services

[SWS_CM 00111] [SWS_CM_00204]
[SWS_CM_11005]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00106]

Communication Management
shall provide a means to monitor
the state of the subscription to
an event

[SWS_CM_00310] [SWS_CM _00311]
[SWS_CM _00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_00316]
[SWS_CM _00333] [SWS_CM_00334]
[SWS_CM_11022] [SWS_CM_11027]
[SWS_CM_11028] [SWS_CM_11137]
[SWS_CM_11142] [SWS_CM_11143]

[RS_CM _00107]

Communication Management
shall provide a means to
automatically update a proxy
instance in case of restart of the
offered service

[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_10383]

[RS_CM_00200]

The Communication
Management shall transform
Fully Qualified Service IDs to
communication protocol specific
Service IDs

[SWS_CM _00102] [SWS_CM_00202]
[SWS_CM_00203] [SWS_CM_00205]
[SWS_CM_01010] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10323] [SWS_CM_10325]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10346]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11004]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11013]
[SWS_CM_11014] [SWS_CM_11029]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11041] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11107]
[SWS_CM_11151] [SWS_CM_90403]
[SWS_CM_90409] [SWS_CM_90414]

[RS_CM_00201]

Communication Management
shall provide an API to send
events to other applications

[SWS_CM_00003] [SWS_CM_00162]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00308]
[SWS_CM_10034] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]

AUTO SAR

Requirement

Description

Satisfied by

[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10226]
[SWS_CM_10227] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10250]
[SWS_CM_10251] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10254]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10361]
[SWS_CM_10391] [SWS_CM_11015]
[SWS_CM_11016] [SWS_CM_11017]
[SWS_CM_11040] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11130]
[SWS_CM_11131] [SWS_CM_11132]
[SWS_CM_11262] [SWS_CM_11263]
[SWS_CM_90437] [SWS_CM_90438]

[RS_CM_002013]

No description

[SWS_CM_11108]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00202]

Communication Management
shall provide an API to the
application to poll received
events

[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM _00260] [SWS_CM_00264]
[SWS_CM _00265] [SWS_CM_00306]
[SWS_CM_00701] [SWS_CM_00702]
[SWS_CM_00703] [SWS_CM_00704]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM _00707] [SWS_CM_00708]
[SWS_CM_00714] [SWS_CM_10016]
[SWS_CM_10017] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10169] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10226] [SWS_CM_10227]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10242] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10250] [SWS_CM_10251]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10254] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10295]
[SWS_CM_10327] [SWS_CM_10361]
[SWS_CM_10391] [SWS_CM_11023]
[SWS_CM_11024] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11138]
[SWS_CM_11139] [SWS_CM_11262]
[SWS_CM_11263]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00203]

Communication Management
shall trigger the application on
reception of an event

[SWS_CM_00181] [SWS_CM_00182]
[SWS_CM_00183] [SWS_CM_00306]
[SWS_CM_00309] [SWS_CM_00709]
[SWS_CM _00710] [SWS_CM_00711]
[SWS_CM_10296] [SWS_CM_10328]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_11025] [SWS_CM_11026]
[SWS_CM_11140] [SWS_CM_11141]

[RS_CM_00204]

The Communication
Management shall map the
protocol independent Service
Oriented Communication to the
configured protocol binding and
shall execute the protocol
accordingly.

[SWS_CM _00201] [SWS_CM_00202]
[SWS_CM _00203] [SWS_CM_00204]
[SWS_CM_00205] [SWS_CM_00206]
[SWS_CM_00207] [SWS_CM_00208]
[SWS_CM_00209] [SWS_CM_00252]
[SWS_CM 00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00264]
[SWS_CM_01046] [SWS_CM_10000]
[SWS_CM_10013] [SWS_CM_10016]
[SWS_CM_10017] [SWS_CM_10034]
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10169] [SWS_CM_10172]
[SWS_CM_10174] [SWS_CM_10218]
[SWS_CM _10219] [SWS_CM_10222]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10242] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10262]
[SWS_CM_10264] [SWS_CM_10265]
[SWS_CM 10266] [SWS_CM_10267]
[SWS_CM_10268] [SWS_CM_10269]
[SWS_CM_10270] [SWS_CM_10271]
[SWS_CM_10272] [SWS_CM_10273]

AUTO SAR

Requirement Description

Satisfied by

[SWS_CM_10274] [SWS_CM_10275]
[SWS_CM_10276] [SWS_CM_10277]
[SWS_CM_10278] [SWS_CM_10279]
[SWS_CM_10280] [SWS_CM_10281]
[SWS_CM_10282] [SWS_CM_10283]
[SWS_CM_10284] [SWS_CM_10285]
[SWS_CM_10287] [SWS_CM_10288]
[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10294]
[SWS_CM_10295] [SWS_CM_10296]
[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10300]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10304]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10357]
[SWS_CM_10358] [SWS_CM_10361]
[SWS_CM_10377] [SWS_CM_10378]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_10381] [SWS_CM_10387]
[SWS_CM_10388] [SWS_CM_10389]
[SWS_CM_10390] [SWS_CM_10391]
[SWS_CM_10429] [SWS_CM_10430]
[SWS_CM_10431] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10444]
[SWS_CM_11000] [SWS_CM_11001]
[SWS_CM_11002] [SWS_CM_11003]

AUTO SAR

Requirement

Description

Satisfied by

[SWS_CM_11004] [SWS_CM_11005]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11013]
[SWS_CM_11014] [SWS_CM_11015]
[SWS_CM_11016] [SWS_CM_11017]
[SWS CM_11018] [SWS_CM_11019]
[SWS_CM_11020] [SWS_CM_11021]
[SWS_CM_11022] [SWS_CM_11023]
[SWS_CM_11024] [SWS_CM_11025]
[SWS_CM_11026] [SWS_CM_11027]
[SWS_CM_11028] [SWS_CM_11029]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11040] [SWS_CM_11041]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11100] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11103]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11106] [SWS_CM_11107]
[SWS CM_11108] [SWS_CM_11109]
[SWS CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11130]
[SWS_CM_11131][SWS_CM_11132]
[SWS_CM_11133] [SWS_CM_11134]
[SWS_CM_11135] [SWS_CM_11136]
[SWS CM_11137] [SWS_CM_11138]
[SWS_CM_11139] [SWS_CM_11140]
[SWS_CM_11141][SWS_CM_11142]
[SWS_CM_11143] [SWS_CM_11144]
[SWS _CM_11145] [SWS_CM_11146]
[SWS CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151][SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]
[SWS CM_11262] [SWS_CM_11263]

[RS_CM_00205]

The Communication
Management shall realize the
SOME/IP service discovery
protocol, the SOME/IP protocol
and the E2E supervision (E2E
protocol).

[SWS_CM_01032] [SWS_CM_01046]
[SWS_CM_01050] [SWS_CM_01051]
[SWS_CM_01052] [SWS_CM_01053]
[SWS_CM_01054] [SWS_CM_01055]
[SWS_CM_01056] [SWS_CM_01057]
[SWS_CM_01058] [SWS_CM_01059]
[SWS_CM_01060] [SWS_CM_01061]
[SWS_CM_01062] [SWS_CM_01063]
[SWS_CM_01064] [SWS_CM_01065]
[SWS_CM_01066] [SWS_CM_01067]
[SWS_CM_01068] [SWS_CM_01069]
[SWS_CM_10000]

[RS_CM_00207]

No description

[SWS_CM_00118] [SWS_CM_10452]
[SWS_CM_10590]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00211]

Communication Management
shall provide an interface to
provide methods to other
applications

[SWS_CM_00191] [SWS_CM_00198]
[SWS_CM_00199] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM _00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00260]
[SWS_CM_00264] [SWS_CM_00265]
[SWS_CM_00301] [SWS_CM_00400]
[SWS_CM_00402] [SWS_CM_00403]
[SWS_CM_00404] [SWS_CM_00405]
[SWS_CM_00406] [SWS_CM_00407]
[SWS_CM_00408] [SWS_CM_00409]
[SWS_CM_00410] [SWS_CM_00411]
[SWS_CM_00414] [SWS_CM_00421]
[SWS_CM_00423] [SWS_CM_00424]
[SWS_CM_00425] [SWS_CM_00426]
[SWS_CM_00449] [SWS_CM_00450]
[SWS_CM_00452] [SWS_CM_00503]
[SWS_CM_00504] [SWS_CM_00505]
[SWS_CM_00509] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10226]
[SWS_CM_10227] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10250]
[SWS_CM_10251] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10254]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]

AUTO SAR

Requirement

Description

Satisfied by

[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10361]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM _10376] [SWS_CM_10391]
[SWS_CM_10409] [SWS_CM_10411]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11262] [SWS_CM_11263]
[SWS_CM_11265] [SWS_CM_11266]

[RS_CM_00212]

Communication Management
shall provide an interface to call
methods of other applications
synchronously

[SWS_CM_00006] [SWS_CM_00192]
[SWS_CM_00194] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10315] [SWS_CM_10316]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10414]
[SWS_CM_10441] [SWS_CM_10442]
[SWS_CM_10443] [SWS_CM_10444]
[SWS_CM_11100] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11103]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11106] [SWS_CM_11107]
[SWS_CM_11108] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11144]
[SWS_CM_11145] [SWS_CM_11146]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00213]

Communication Management
shall provide an interface to call
service methods asynchronously

[SWS_CM_00006] [SWS_CM_00193]
[SWS_CM_00194] [SWS_CM_00196]
[SWS_CM_00197] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10315] [SWS_CM_10316]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10414]
[SWS_CM_10440] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_11100]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11106]
[SWS_CM_11107] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11144]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]

[RS_CM_00213)]

No description

[SWS_CM_11145] [SWS_CM_11146]

[RS_CM_00214]

Communication Management
shall provide an interface to
query the result of an
asynchronously called service
method

[SWS_CM_00193] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10440]

[RS_CM_00215]

Communication Management
shall trigger the application on
completion of an asynchronously
called service method

[SWS_CM _00197] [SWS_CM _10317]
[SWS_CM_10318] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_11104]
[SWS_CM_11108] [SWS_CM_11148]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00216]

Communication Management
shall provide an interface which
aggregates methods to receive a
notification on a changed field
value as well as explicitly getting
and setting the field value

[SWS_CM_00008] [SWS_CM 01031]

[RS_CM_00217]

Communication Management
shall provide a method to
remotely set the field value

[SWS_CM _00113] [SWS_CM_10329]
[SWS_CM 10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]
[SWS_CM_10443] [SWS_CM_11151]
[SWS_CM_11152]

[RS_CM _00218]

Communication Management
shall provide a method to
remotely get the field value

[SWS_CM_00112] [SWS_CM_00114]
[SWS_CM_00115] [SWS_CM_00116]
[SWS_CM_00117] [SWS_CM_00119]
[SWS_CM_00120] [SWS_CM_00128]
[SWS_CM_00129] [SWS_CM_00132]
[SWS_CM_00133] [SWS_CM_10329]
[SWS_CM_10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]
[SWS_CM_10412] [SWS_CM_10413]
[SWS_CM_10415] [SWS_CM_10443]
[SWS_CM_11151] [SWS_CM_11152]

[RS_CM_00219]

Communication Management
shall provide an interface which
aggregates methods to send a
notification on value change and
to register a get and set function
for the field value

[SWS_CM_00007]

[RS_CM_00220]

Communication Management
shall trigger the set method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00221]

Communication Management
shall trigger the get method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00222]

The Communication
Management shall transform
Fully Qualified Service IDs, its
instance and Event ID or Method
ID to E2E Data ID.

[SWS_CM_90401] [SWS_CM_90402]
[SWS_CM_90403] [SWS_CM_90404]
[SWS_CM_90405] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90409] [SWS_CM_90410]
[SWS_CM_90411] [SWS_CM_90412]
[SWS_CM_90413] [SWS_CM_90414]
[SWS_CM_90416] [SWS_CM_90417]
[SWS_CM_90418] [SWS_CM_90419]
[SWS_CM_90430] [SWS_CM_90431]
[SWS_CM_90433]

[RS_CM_00223]

Communication Management
shall protect the transmission of
data using E2E protocol, hidden
behind the event API.

[SWS_CM_90433]

[RS_CM_00225]

Communication Management
shall provide an interface to call
fire&forget service methods

[SWS_CM_90419] [SWS_CM _90431]
[SWS_CM_90434] [SWS_CM_90435]
[SWS_CM_90436]

AUTO SAR

Requirement

Description

Satisfied by

[RS_CM_00315]

The Communication
Management shall support a
change of the configured
protocol binding without
requiring a re-compilation of the
adaptive application

[SWS_CM_10384] [SWS_CM_10385]
[SWS_CM_10386]

[RS_CM_200]

No description

[SWS_CM_11112]

[RS_E2E_08534]

E2E Protocol shall provide E2E
Check status to the application

[SWS_CM_90411] [SWS_CM _90413]
[SWS_CM_90416] [SWS_CM_90417]
[SWS_CM_90418] [SWS_CM_90419]
[SWS_CM_90420] [SWS_CM_90421]
[SWS_CM_90422] [SWS_CM_90423]
[SWS_CM_90424] [SWS_CM_90431]

[RS_E2E_08540]

E2E protocol shall support
protected periodic/mixed
periodic communication

[SWS_CM_90401] [SWS_CM_90402]
[SWS_CM_90403] [SWS_CM_90404]
[SWS_CM_90405] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90409] [SWS_CM_90410]
[SWS_CM_90411] [SWS_CM_90412]
[SWS_CM 90413] [SWS_CM_90414]
[SWS_CM_90415] [SWS_CM_90416]
[SWS_CM_90417] [SWS_CM_90430]
[SWS_CM_90433]

[RS_SEC_03002]

No description

[SWS_CM _90001] [SWS_CM 90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006]

[RS_SEC_03003]

No description

[SWS_CM_90004]

[RS_SEC_03005]

No description

[SWS_CM_90004]

[RS_SEC_03008]

No description

[SWS_CM _90001] [SWS_CM_90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006]

[RS_SEC_03010]

No description

[SWS_CM_90001] [SWS_CM_90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006]

[RS_SEC_04001]

Secure communication shall be
performed through secure
channels

[SWS_CM_90101] [SWS_CM _90102]
[SWS_CM_90103] [SWS_CM_90104]
[SWS_CM_90105] [SWS_CM_90106]
[SWS_CM_90107] [SWS_CM_90108]
[SWS_CM_90109] [SWS_CM_90110]
[SWS_CM_90115] [SWS_CM_90116]
[SWS_CM_90117] [SWS_CM_90118]
[SWS_CM_90120] [SWS_CM_90121]
[SWS_CM_90201] [SWS_CM_90202]
[SWS_CM_90203] [SWS_CM_90204]
[SWS_CM_90205] [SWS_CM_90206]
[SWS_CM_90207] [SWS_CM_90209]
[SWS_CM_90210]

[RS_SEC_04003]

The assignment of
communication to secure
channels shall be defined

[SWS_CM_90102] [SWS_CM_90202]

[RS_SEC_04004]

Using secure channels shall be
transparent on the
communication API

[SWS_CM 90711] [SWS_CM 90112]
[SWS_CM_90113] [SWS_CM_90114]
[SWS_CM 90119]

AUTO SAR

Requirement

Description

Satisfied by

[RS_SEC_05019]

Access to Adaptive AUTOSAR
Foundation and Services

[SWS_CM_90004]

[RS_SOMEIPSD_00006]

SOME/IP Service Discovery
Protocol shall define the format
of the Service Discovery
message

[SWS_CM_00202] [SWS_CM _00203]
[SWS_CM _00204] [SWS_CM_00205]
[SWS_CM_00206] [SWS_CM_00207]
[SWS_CM_00208] [SWS_CM_10377]
[SWS_CM_10378] [SWS_CM_10381]

[RS_SOMEIPSD_00015]

SOME/IP Service Discovery
Protocol shall support to
subscribe to events

[SWS_CM_00206]

[RS_SOMEIPSD_00016]

SOME/IP Service Discovery
Protocol shall support to deny
subscriptions

[SWS_CM_00208]

[RS_SOMEIPSD_00024]

SOME/IP Service Discovery
shall support configurable
timings

[SWS_CM _00201] [SWS_CM _00209]

[RS_SOMEIP_00003]

SOME/IP protocol shall provide
support of multiple versions of a
service interface

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00004]

SOME/IP protocol shall support
event communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]
[SWS_CM_10296] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10379]
[SWS_CM_10380]

[RS_SOMEIP_00005]

SOME/IP protocol shall support
different strategies for event
communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10319]

[RS_SOMEIP_00006]

SOME/IP protocol shall support
uni-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10314]
[SWS_CM_10441]

[RS_SOMEIP_00007]

SOME/IP protocol shall support
bi-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]

AUTO SAR

Requirement

Description

Satisfied by

[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444]

[RS_SOMEIP_00008]

SOME/IP protocol shall support
error handling of RPC
communication

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10317] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10429] [SWS_CM_10430]

[RS_SOMEIP_00009]

SOME/IP protocol shall support
field communication

[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10327] [SWS_CM_10328]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10380] [SWS_CM_10443]
[SWS_CM_10444]

[RS_SOMEIP_00010]

SOME/IP protocol shall support
different transport protocols
underneath

[SWS_CM_10288] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10320]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10341] [SWS_CM_10342]

[RS_SOMEIP_00012]

SOME/IP protocol shall support
session handling

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00014]

SOME/IP protocol shall support
handling of protocol errors on
receiver side

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]

[RS_SOMEIP_00017]

SOME/IP protocol shall support
grouping events into
eventgroups

[SWS_CM_10287] [SWS_CM_10319]

[RS_SOMEIP_00018]

SOME/IP protocol shall support
grouping fields in eventgroups

[SWS_CM_10319]

[RS_SOMEIP_00019]

SOME/IP protocol shall identify
services using unique identifiers

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]

AUTO SAR

Requirement

Description

Satisfied by

[RS_SOMEIP_00021]

SOME/IP protocol shall identify
RPC methods of services using
unique identifiers

[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]

[RS_SOMEIP_00022]

SOME/IP protocol shall identify
events of services using unique
identifiers

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]

[RS_SOMEIP_00025]

SOME/IP protocol shall support
the identification of callers of an
RPC using unique identifiers

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00026]

SOME/IP protocol shall define
the endianness of header and
payload

[SWS_CM_10013] [SWS_CM _10172]

[RS_SOMEIP_00028]

SOME/IP protocol shall specify
the serialization algorithm for
data

[SWS_CM_10034] [SWS_CM_10294]
[SWS_CM_10304] [SWS_CM_10316]
[SWS_CM_10326] [SWS_CM_10336]
[SWS_CM_10348] [SWS_CM_10442]
[SWS_CM_10444]

[RS_SOMEIP_00041]

SOME/IP protocol shall provide
support of multiple versions of
the protocol

[SWS_CM_10291] [SWS_CM_10301]
[SWS_CM _10312] [SWS_CM_10313]
[SWS_CM 10323] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00042]

SOME/IP protocol shall support
unicast and multicast based
event communication

[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10321] [SWS_CM_10322]

[RS_SOMEIP_00050]

SOME/IP protocol shall support
serialization of extensible data
structs

[SWS_CM_01032] [SWS_CM_01046]
[SWS_CM_01050] [SWS_CM_01051]
[SWS_CM_01052] [SWS_CM_01053]
[SWS_CM_01054] [SWS_CM_01055]
[SWS_CM_01056] [SWS_CM_01057]
[SWS_CM_01058] [SWS_CM_01059]
[SWS_CM_01060] [SWS_CM_01061]
[SWS_CM_01062] [SWS_CM_01063]
[SWS_CM_01064] [SWS_CM_01065]
[SWS_CM_01066] [SWS_CM_01067]
[SWS_CM_01068] [SWS_CM_01069]

AUTOSAR

7 Functional specification

7.1 General description

The AUTOSAR Adaptive architecture organizes the software of the AUTOSAR Adap-
tive foundation as functional clusters. These clusters offer common functionality as
services to the applications. The Communication Management (CM) for AUTOSAR
Adaptive is such a functional cluster and is part of "AUTOSAR Runtime for Adaptive
Applications" - ARA. It is responsible for the construction and supervision of communi-
cation paths between applications, both local and remote.

The CM provides the infrastructure that enables communication between Adaptive
AUTOSAR Applications within one machine and with software entities on other ma-
chines, e.g. other Adaptive AUTOSAR applications or Classic AUTOSAR SWCs. All
communication paths can be established at design- , start-up- or run-time.

This specification includes the syntax of the API, the relationship of API to the model
and describes semantics, e.g. through state machines, and assumption of pre-, post-
conditions and use of APls. The specification does not provide constraints on the SW
architecture of a platform implementation, so there is no definition of basic software
modules and no specification of implementation or internal technical architecture of
the Communication Management.

7.1.1 Architectural concepts

The Communication management of AUTOSAR Adaptive can be logically divided into
the following sub-parts:

e Language binding
e End-to-end communication protection
e Communication / Network binding

e Communication Management software

AUTOSAR

Adaptive Application

ara::com API

API
Communication Management

Execution Management G = e e B -2 Dispatching and Discovery

SOME/IP IPC
Transport Transport

TCP/IP IPC

Ethernet Driver

Adaptive Platform Foundation

(Virtual) Machine / Hardware

Figure 7.1: Technical Architecture of Communication Management

In the context of Communication Management, the following types of interfaces are
defined:

e Public Application Interface: Part of the Adaptive AUTOSAR API and specified in
the SWS. This is the standardized ara::com API.

e Functional Cluster Interactions: Interaction between functional clusters. Not nor-
mative, intended to make specification more readable and to support integration
of SW into demonstrator. (dotted arrow in 7.1) And also interactions between
elements within a functional cluster. Not used in specifications, so it is a non-
standardized interface. Used for communication inside Communication Manage-
ment software (grey arrow in 7.1)

Please note, that Language Binding and Communication Binding depend on a specific
configuration by the integrator, but they need to be deployed within the application
binary. This results in the fact that the serialization of the Communication Binding will
run in the execution context of the Adaptive Application.

For the design of ARA API the following constraints apply:
e Support the independence of application software components

e Use of Service-oriented communication without dependency on a specific com-
munication protocol

e Make the API as lean as possible, neither supporting very specific use cases
which could also be done on top of the API, nor supporting component model

AUTOSAR

or higher level concepts. The API is restricted to support core communication
mechanisms.

e Support for dynamic communication:

— No discovery by application middleware, the clients know the server but the
Server does not know the clients. Event subscription is the only dynamic
communication pattern in the application.

— Full service discovery in the application. No communication paths are known
at configuration time. An API for Service discovery allows the application
code to choose the service instance.

e Support both Event/Callback and Polling style usage of the API to enable classic
RTE style paradigms. To support high determinism demands in case of callback-
based / event-based interaction, there shall be the possibility to avoid uncontrolled
context switches.

e Support both synchronous callback-based communication and asynchronous
communication philosophy.

e Support of client/server communication.

e Support of sender/receiver communication with both last-is-best and queued se-
mantics. In case of queued communication, the receiver caches are configurable.

e Support of selection of trigger conditions for task activation.
e Extensions for security.

e Extensions for Quality Of Service QoS.

e Scalability for real-time systems.

e Support of built-in end-to-end communication protection, where a use-case-
specific behavior can be done on top of ARA API.

7.1.2 Design decisions

The design of the ARA API covers the following principles:
e |t uses the Proxy/Skeleton pattern:

— The (service) proxy is the representative of the possibly remote (i.e. other
process, other core, other node) service. It is an instance of a C++ class
local to the application/client, which uses the service.

— The (service) skeleton is the connection of the user provided service imple-
mentation to the middleware transport infrastructure. Service implementa-
tion class is derived from the (service) skeleton.

AUTOSAR

— Beside proxies/skeletons, there might exist a so-called "Runtime" (singleton)
class to provide some essentials to manage proxies and skeletons. But
this is communication management software implementation specific and
therefore not specified in this document, but may be specified in a future
version.

Regarding proxy/skeleton design pattern in general and its role in middleware
implementations, see [9, 10].

e |t supports callback mechanisms on data reception.

e The API has zero-copy capabilities including the possibility for memory manage-
ment in the middleware.

e |t supports filtering of received data.

e Itis aligned with the AUTOSAR service model (services, instances, events, meth-
ods, ...) to allow the generation of proxies and skeletons out of this model.

e Full discovery and service instance selection support on APl level.

e Client/Server Communication uses concepts introduced by C++11 language, e.g.
std::future, std::promise, to fully support method calls between different contexts.

e Abstract from SOME/IP specific behavior, but support SOME/IP service mecha-
nisms, as methods, events and fields.

e Support/implement the standard end-to-end protection protocols, as specified in
[7] and [4].

e Support Event and Polling style usage of the API equally to enable classic RT
style paradigms.

e Fully exploit C++11/14 features in API design to provide usability and comfort for
the application developer.

See ARAComAPI explanatory [1] for more details and explanations on the ARA API
design.

7.1.3 Communication paradigms

Service-Oriented Communication (SoC) as a part of Service-Oriented Architecture
(SOA) [11] is the main communication pattern for Adaptive AUTOSAR Applications.
It allows establishing communication paths both at run-time, so it can be used to build
up dynamic communication with unknown number of participants. Figure 7.2 shows
the basic operation principle of Service-Oriented Communication.

AUTOSAR

Application 1 Service Application 2
Service provider Registry Service requester

offer

call
| |

Figure 7.2: Service-Oriented Communication

|
| find
|
le

Service Discovery decides whether external and internal service-oriented communi-
cation is established. The discovery strategy shall allow either returning a specific
service instance or all available instances providing the requested service at the time
of the request, no matter if they are available locally or remote. The Communication
Management software should provide an optimized implementation for both the Ser-
vice discovery and the communication connection, depending on the location where
the service provider resides. More about Service Discovery can be found in SOME/IP
Service Discovery Protocol Specification [12].

The service class is the central element of the Service-Oriented Communication pat-
tern applied in Adaptive AUTOSAR. It represents the service by collecting the methods
and events which are provided or requested by the applications implementing the con-
crete service functionality.

7.2 End-to-end communication protection for Events

This section specifies the integration of E2E protection in ara: : com for processing
periodic events, that are polled by the Subscriber. Note that there are limitations in
the released E2E functionality, the limitations are documented in chapter 4.1.

[SWS_CM_90402]{DRAFT} | An e2e-protected event shall have its options config-
ured in End2EndEventProtectionProps and E2EProfileConfiguration. |
(RS_CM_00222, RS _E2E 08540)

[SWS_CM_90433]{DRAFT} [The E2E functions mentioned in this section -
E2EProtect and E2ECheck - shall comply with the E2E protection protocol as spec-
ified in [7] and [4]. |(RS_CM_00222, RS_E2E 08540, RS_CM_00223)

AUTO SAR Specification of Communication Management
AUTOSAR AP Release 19-03

7.2.1 Publisher

[SWS_CM_90401]{DRAFT} [For e2e-protected events, E2E protection shall be per-
formed within the context of send, by means of send invoking E2EProtect. |[(
RS CM 00222, RS E2E 08540)

Figure 7.3 shows an overview of the interaction of components involved during the E2E

protection.
- __-'
¥ T T
. i i
B wegmen o e 1 1
#.-“uiq n n
:‘:_Il_‘_" . F-rrl-l-rl-l-l-n :
([B SR ! !
1 1
1 1
BN L i
n I
| oY m i
o U L] :
R L el ity
[
1
i i
Y WEE S E 1
el e/ T 1 1 el 6 1 i R el
"
1
ke i
=L A T :li_k_-_-
Vel T 1 i
e 1
1
ke 1
IR I T P T | ——— N
" P k. |:I'* 1
1
'
|« T — |
Cw g - ¥
i i
[[
1 1
Figure 7.3: E2E Publisher
350f 310 Document ID 717: AUTOSAR_SWS_CommunicationManagement

— AUTOSAR CONFIDENTIAL —

AUTOSAR

[SWS_CM_90430]{DRAFT} | For e2e-protected events, Send shall serialize the sam-
ple according to the agreed serialization protocol, resulting in serialized Sample.
|(RS_CM_00222, RS_EZ2E_08540)

[SWS_CM_90403]{DRAFT} | For e2e-protected events, send shall determine
datalID, based on Service ID, Instance ID and Event ID of this Event in-
stance. |(RS_CM_00222, RS_CM_00200, RS_E2E_08540)

[SWS_CM_90404]{DRAFT} [For e2e-protected events, send shall provide
the serializedSample t0 E2EProtect, where serializedSample is made
of (1) the header that is part of e2e protection and (2) the serialized
data (see [PRS_SOMEIP_00940] and [PRS_SOMEIP_00941]) |(RS_CM_00222,
RS E2E 08540)

[SWS_CM_90405]{DRAFT} | For e2e-protected events, after the e2e protection is
done, send shall add the non-e2e-protected header (if any) and trigger the transmis-
sion. |(RS_CM_00222, RS E2E _08540)

7.2.2 Subscriber - GetNewSamples

[SWS_CM_90406]{DRAFT} [For e2e-protected events, E2ECheck [4] shall be per-
formed within the context of GetNewSamples. |(RS_CM_00222, RS_E2E 08540)

Figure 7.4 shows an overview of the interaction of components involved during the E2E
check.

AUTO SAR

Subscriber application}

There are possibly several
new messages. Update()
processes all of them in a
sequence.

The core E2E logic. DatalD
is determined at latest
during the instantiation of
the proxy.

Each sample is now
accompanied by
ProfileCheckResult
attribute.

If no new
serializedSamples, then
execute Check() so that E2E
knows that no data has
been received
(lost/delayed).

The entire communication
state ("can the samples be
consumed or not") is
available with the new

ara::ct

om Transmission

GetNewSamples(F&& f, size_t maxNumberOfSamples): ara::core::
|

Result<size_t>

GetMessage(): serializedSamples

alt new seriali from Tr

[at I¢a3t one serializedSample - perform for eqch

f(SamplePtr(sample) with
ProfileCheckStatus)

serializedSample]

ProcessNonProtectedHeader(&serializedSample)
l: |

E2Echeck(datalD, &serializedSample): Result
J<__| |

|

|

|
i ProcessE2EProtectedHeader(&serializedSample)

1

J i

|

Yy
-l g

[no pey serializedSamples]

|
i Deserialize(&serializedSample): sample
|

I
Store Result.ProfileCheckStatus in sample

I
Add sample+ProfileCheckStatus to the cache(cache policy, cache size,

filter)
i Store Result as proxy.Result

i Check(datalD, null_ptr): Result

Store Result as proxy.Result

getter function GetResult().

GetResult(): Result

Access data, e.g. samples[idx].speed, samples[idx].GetProfileCheckStatus()

A J
SR SR

Figure 7.4: E2E Subscriber

AUTOSAR

[SWS_CM_90407]1{DRAFT} [For e2e-protected events, GetNewSamples shall first
get the collection of all SerializedSamples that have not been fetched in the last
triggering of this GetNewSamples function. |(RS_CM_00222, RS_E2E_08540)

7.2.2.1 Case 1 - there are one or more serialized samples

For e2e-protected events, in case one or more SerializedSampleS are received,
then for each serializedSample, the following steps are to be done:

[SWS_CM_90408]{DRAFT} [For the given e2e-protected SerializedSample,
GetNewSamples shall process the non-e2e protected header (if any) of the serial-
izedSample. |(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90409]{DRAFT} [GetNewSamples shall determine the DataID based
on Service ID, Service Instance ID, Event ID of this Event instance. |
(RS_CM_00222, RS _CM_00200, RS_E2E_08540)

[SWS_CM_90410]{DRAFT} [For the given e2e-protected SerializedSample,
GetNewSamples shall invoke the E2ECheck, providing to it dataID and serialized-
Sample. |(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90411]{DRAFT} | In return, for the given e2e-protected Serialized-
Sample, E2ECheck shall provide Result containing sMState and ProfileCheck-
Status. |(RS_CM_00222, RS_E2E 08540, RS_E2E_08534)

[SWS_CM_90412]{DRAFT} [For the given e2e-protected SerializedSample,
GetNewSamples shall deserialize it, resulting with deserialized sample. |
(RS _CM 00222, RS E2E 08540)

[SWS_CM_90413]{DRAFT} [For the given e2e-protected SerializedSample,
GetNewSamples shall store the pair sample and ProfileCheckStatus in the ap-
plication cache and it shall update/overwrite event . SMState with Result.SMState.
|(RS_CM_00222, RS _E2E 08540, RS_E2E 08534)

7.2.2.2 Case 2 - there are no serialized samples

In case no e2e-protected SerializedSamples are received, the steps are simpler
and E2E works as a timeout detection.

[SWS_CM_90414]{DRAFT} | In case no e2e-protected SerializedSamples are
received, GetNewSamples shall determine the DataID based on Service ID,
Service Instance ID, Event ID of this Event instance. [(RS_CM_00222,
RS _CM_00200, RS _E2E 08540)

[SWS_CM_90415]{DRAFT} [In case no e2e-protected SerializedSamples are
received, GetNewSamples shall invoke the E2ECheck, providing to it dataID and
null sample. | (RS_E2E_08540)

AUTOSAR

[SWS_CM_90416]{DRAFT} [In case no e2e-protected SerializedSamples are
received, in return, E2ECheck shall provide Result containing sMState and Pro-
fileCheckStatus. |(RS_CM_00222, RS_E2E 08540, RS_E2E 08534)

[SWS_CM_90417]{DRAFT} [In case no e2e-protected SerializedSampleS
are received, GetNewSamples shall update/overwrite event.SMState with Re-
sult.SMState.

|(RS_CM_00222, RS_E2E 08540, RS_E2E_08534)

7.2.3 Subscriber - Callback f

[SWS_CM_90418]{DRAFT} [The user provided callable £, which has been
passed to call of GetNewSamples shall get a smart pointer to pairs made of (sample
and ProfileCheckStatus), where f is called for each sample determined/provided
in the most recent invocation of GetNewSamples. |(RS_CM_00222, RS_E2E 08534)

7.2.4 Subscriber - Access to E2E information

[SWS_CM_90419]{DRAFT} | Each sample shall have a getter function GetPro-
fileCheckStatus allowing to access ProfileCheckStatus of each Sample. |
(RS_CM_00222, RS _CM_00225, RS_E2E_08534)

[SWS_CM_90431]{DRAFT} [Each Event shall have a getter function GetsMState
allowing to access sMsState that was determined by the last run of E2ECheck function
invoked during the last GetNewSamples of the Event (see [SWS_CM_00701]). |
(RS_CM_00222, RS CM_00225, RS _E2E 08534)

7.3 End-to-end communication protection for Methods

This section is a placeholder for the specification of the E2E protection in ara: : com
for methods.

7.4 Network binding

The following chapters describe the requirements according to specific network proto-
col bindings.

Since the selection of a particular network protocol binding is an integrator driven de-
ployment decision, any change in the selection of a particular network protocol binding
or changes in the various attributes and parameters of a particular network protocol
binding shall be possible without requiring a re-compilation of the involved adaptive

AUTOSAR

applications. The required changes to the involved adaptive application shall be limited
to a re-linking (either static or dynamic) of the involved adaptive application.

[SWS_CM_10384]{DRAFT} Change of Service Interface Deployment | A change
of the service interface deployment shall be possible without re-compiling the involved
adaptive applications. — This means that the following changes in the service interface
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

e changes to the concrete type of ServiceInterfaceDeployment and the com-
posed ServiceMethodDeployment, ServiceFieldDeployment, and Ser—
viceEventDeployment (e.g., changing a SomeipServiceInterfaceDe-
ployment t0 @ UserDefinedServiceInterfaceDeployment)

e changes to one or more attributes of meta classes derived from Servi-
ceInterfaceDeployment, ServiceMethodDeployment, ServiceField-
Deployment, and ServiceEventDeployment (e.g., changing the value of
SomeipEventDeployment.separationTime)

Note that changes to SomeipServiceInterfaceVersion.majorVersion are an
exception here, since any change to SomeipServicelInterfaceVersion.ma-—
jorVersion indicates an incompatible change of the serviceInterface and thus
affects the involved adaptive applications mandating a re-compilation of the involved
adaptive applications. |(RS_CM_00315)

[SWS_CM_10385]{DRAFT} Change of Service Instance Deployment | A change
of the service instance deployment shall be possible without re-compiling the involved
adaptive applications. — This means that the following changes in the service instance
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

e changes to the concrete type of ProvidedApServiceInstance and/or Re-
quiredApServicelInstance (e.g., changing a ProvidedSomeipService—
InstancetoaProvidedUserDefinedServicelInstance andaRequired-
SomeipServiceInstance t0 a RequiredUserDefinedServiceInstance)

e changes to one or more attributes of meta class derived from ProvidedApSer-
viceInstance and/or RequiredApServicelInstance (e.g., changing the
value of the SomeipProvidedEventGroup.multicastThreshold or the
SomeipSdServerServiceInstanceConfig.serviceOfferTimeToLive).

Note that changes t0 SomeipServiceInterfaceVersion.majorVersion are an
exception here, since any change to SomeipServiceInterfaceVersion.ma-
jorVersion indicates an incompatible change of the ServiceInterface and thus
affects the involved adaptive applications mandating a re-compilation of the involved
adaptive applications. |(RS_CM_00315)

[SWS_CM_10386]{DRAFT} Change of Network Configuration | A change of the
network configuration shall be possible without re-compiling the involved adaptive ap-

AUTOSAR

plications. — This means that the following changes in the network configuration shall
be possible without the need for a re-compilation of the adaptive applications:

e changes to one or more attributes of a concrete ServicelInstance-
ToMachineMapping (e.g., changing the value of the SomeipService-
InstanceToMachineMapping.udpPort Or the SomeipServicelInstance-—
ToMachineMapping.tcpPort.

|(RS_CM _00315)

Abstract network protocol bindings for service ports shall be specified inside the service
instance manifest to deploy network bindings of service instances.

[SWS_CM_10590]{DRAFT} Abstract Network Protocol Binding | The usage of
abstract network protocol binding for ProvidedApServiceInstance and Re-
quiredApServiceInstance shall be supported to deploy network bindings of Ser—
viceInterfaces. An abstract network protocol binding shall cover SOME/IP, DDS
and UserDefined protocols and is specified inside the service instance manifest. It
is used with an InstanceSpecifier and shall be specified as followed:

<port context>::<port name>, where:

e <port context> specifies the instantiation context of the port which might be
an instantiation path or any other unique identifiable information.

e <port name> specifies the port name.

Note: it is possible to specify multiple technology bindings for a port (Multi-Binding). |
(RS_CM_00207)

7.4.1 SOME/IP Network binding

[SWS_CM_10000]{DRAFT} | The SOME/IP network binding shall implement the
SOME/IP Protocol and the SOME/IP Service Discovery Protocol defined in [5] and
[12]. |(RS_CM_00204, RS_CM_00205)

[SWS_CM_10013]{DRAFT} [All headers shall be encoded in network byte order Big
Endian (MostSignificantByteFirst) [RFC 791]. |(RS_CM_00204, RS_SOMEIP_00026)

This means that Length and Type fields shall be always in network byte order.

[SWS_CM_10172]{DRAFT} [The byte order of the parameters inside the pay-
load shall be defined by byteOrder of ApSomeipTransformationProps. |
(RS_CM_00204, RS_SOMEIP_00026)

7.4.1.1 Service Discovery

[SWS_CM_00201]{DRAFT} Start of service discovery protocol on Server side
[The registration of a new offered service which is bound to SOME/IP shall trig-

AUTOSAR

ger the start of the initial wait phase of the SOME/IP service discovery protocol. |
(RS_CM_00204, RS_CM_00101, RS_SOMEIPSD _00024)

The different phases of SOME/IP Service Discovery on the Server side are configured
in the Manifest in the ProvidedSomeipServicelInstance element. The configura-
tion is described in more detail in TPS_ManifestSpecification by

e [TPS_MANI_03012] (Initial Wait Phase),
e [TPS_MANI_03013] (Repetition Wait Phase),
e [TPS_MANI_03014] (Main Phase).

[SWS_CM_00209]{DRAFT} Start of service discovery protocol on Client side |
The search for a new service which is bound to SOME/IP shall trigger the start of
the initial wait phase of the SOME/IP service discovery protocol. |(RS_CM_00204,
RS _CM_00102, RS_SOMEIPSD 00024)

The different phases of SOME/IP Service Discovery on the Client side are configured in
the Manifest in the RequiredSomeipServiceInstance element. The configuration
is described in more detail in TPS_ManifestSpecification by

e [TPS_MANI_03026] (Initial Wait Phase),
e [TPS_MANI_03027] (Repetition Wait Phase).

[SWS_CM_00202]{DRAFT} SOME/IP FindService message | The entries in the
SOME/IP FindService message shall be as follows:

e The entry type shall be set to FindService (0x00).

e The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfaceld.

e The Instance ID shall be derived from the Manifest where the Required-
SomeipServiceInstance element defines the requiredServiceInstan-
celd for the SomeipServiceInterfaceDeployment that is referenced by
the RequiredSomeipServiceInstance in the role serviceInterface. If
the requiredsServiceInstanceIdis setto"ANY"then OxFFFF shall be used.

e Major Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest where the SomeipServiceInterfacevVer—
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the majorversion.

e Minor Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest from the requiredMinorversion attribute
in the RequiredSomeipServicelInstance. If the minorversion is set to

"ANY" then OxFFFF FFFF shall be used.

e TTL shall be derived from the Manifest where the SomeipSdClientService-
InstanceConfig element that is referenced by the RequiredSomeipServi-

AUTOSAR

celInstanceintherole sdClientConfig definesthe serviceFindTimeTo-
Live.

Configuration Option shall be used in the find message if at least one capa-
bilityRecordisdefinedinthe SomeipSdClientServiceInstanceConfig
element that is referenced by the RequiredSomeipServicelInstance in the
role sdClientConfig. The content of the Configuration Option shall be derived
from the key/value pairs defined in each capabilityRecord.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102, RS_SOMEIPSD_00006)

[SWS_CM_00203]{DRAFT} SOME/IP OfferService message | The entries in the
SOME/IP OfferService message shall be as follows:

The entry type shall be set to OfferService (0x01).

The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfacelId.

The Instance ID shall be derived from the Manifest where the Provided-
SomeipServiceInstance element defines the serviceInstancelId for the
SomeipServiceInterfaceDeployment that is referenced by the Provid-
edSomeipServicelInstance intherole serviceInterface.

Major Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceInterfacevVer—
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the majorversion.

Minor Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceInterfacevVer—
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the minorversion.

TTL shall be derived from the Manifest where the SomeipSdServerService-
InstanceConfig element that is referenced by the ProvidedSomeipServi-
celInstance in the role sdServerConfig defines the serviceOfferTime-
ToLive.

IPv4 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa—
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint inthe role unicastNetworkEndpoint where an IPv4
Address is configured in theIpv4Configuration element.

IPv6é Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa—
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint inthe role unicastNetworkEndpoint where an IPv6
Address is configured in theTpvé6Configuration element.

AUTOSAR

The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipServiceIn-
stanceToMachineMapping element that maps the ProvidedSomeipServi-
ceInstance t0 an EthernetCommunicationConnector of a Machine de-

fines the TP and PortNumber.

— UDP shall be used if SomeipServiceInstanceToMachineMap-—
ping.udpPort is configured.

— TCP shall be used if SomeipServiceInstanceToMachineMap-
ping.tcpPort is configured.

Configuration Option shall be used in the offer message if at least one capa-
bilityRecord is defined for the ProvidedSomeipServicelInstance in the
referenced SomeipSdServerServiceInstanceConfig. The content of the
Configuration Option shall be derived from the key/value pairs defined in each
capabilityRecord.

|(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_SOMEIPSD_00006)

[SWS_CM_00204]{DRAFT} SOME/IP StopOffer message | The entries in the
SOME/IP StopOffer message shall be as follows:

The entry type shall be set to StopOfferService (0x01).

Serviceld shall be set to the same value as in the OfferService message.
Instanceld shall be set to the same value as in the OfferService message.
Major Version shall be set to the same value as in the OfferService message.
Minor Version shall be set to the same value as in the OfferService message.
TTL shall be set to 0x000000 value.

IPv4 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

IPv6 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

Configuration Option shall be set to the same value as in the OfferService mes-
sage.

|(RS_CM_00204, RS_CM_00105, RS_SOMEIPSD_00006)

[SWS_CM_10377]{DRAFT} Sending SOME/IP SubscribeEventgroup messages
- initial [The subscription to at least one Event (ServiceInterface.event) of
an Eventgroup (SomeipEventGroup) by invoking the Subscribe method (see
[SWS_CM _00141]) of the specific Event class of the ServiceProxy class shall
cause the sending of a SOME/IP SubscribeEventgroup messages in case there is
no active subscription for the particular Eventgroup (either because there was no
previous subscription to this particular Eventgroup or the TTL of every received Sub-

AUTOSAR

scribeGroupAck message (see [SWS_CM_00206]) for the particular Eventgroup has
already expired).

The subscription to at least one Event of an Eventgroup by invoking the Subscribe
method (see [SWS_CM_00141]) of the specific Event class of the ServiceProxy
class shall not cause the sending of a SOME/IP SubscribeEventgroup messages in
case there is an active subscription for the particular Eventgroup (because there
was some previous subscription to this particular Eventgroup and the TTL of at least
one received SubscribeGroupAck message (see [SWS_CM_00206]) for the particular
Eventgroup has not yet expired). |(RS_CM_00204, RS_CM_00200, RS_CM_00103,
RS_SOMEIPSD 00006)

[SWS_CM_10381]{DRAFT} Sending SOME/IP SubscribeEventgroup messages -
renewal | If the TTL of an active subscription for a particular Eventgroup is about to
expire and there is at least one active subscription for an Event of this Eventgroup,
a SubscribeEventgroup message shall be sent to refresh the active subscription
to the particular Eventgroup. |(RS_CM_00204, RS_CM_00200, RS_CM_00103,
RS _SOMEIPSD 00006)

[SWS_CM_00205]{DRAFT} Content of SOME/IP SubscribeEventgroup message
[The entries in the SOME/IP SubscribeEventgroup message shall be as follows:

e The entry type shall be set to SubscribeEventgroup (0x06).
e The Service ID shall be taken from the offer message.

e The Instance ID shall be taken from the offer message.

e Major Version shall be derived from the offer message.

e Eventgroup ID shall be derived from Manifest where the RequiredSomeipSer-
viceInstance element aggregates the SomeipRequiredEventGroup in the
role requiredEventGroup. The SomeipRequiredEventGroup contains the
eventGroup reference to the SomeipEventGroup wWhere the eventGroupId
is defined.

e TTL shall be derived from Manifest where the RequiredSomeipServiceIn-
stance element aggregates the SomeipRequiredEventGroup inthe role re-
quiredEventGroup. The SomeipRequiredEventGroup aggregates the sd-
ClientEventTimingConfig where the timeToLive is defined.

¢ |IPv4 Endpoint Option shall be sent if the offer message contains an IPv4 End-
point Option. In this case the IPv4 Address sent in the IPv4 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping t0 an EthernetCommunicationConnector of
aMachine. The EthernetCommunicationConnector refers to a Network—
Endpoint in the role unicastNetworkEndpoint where an IPv4 Address is
configured in theTpv4Configuration element.

AUTOSAR

IPv6 Endpoint Option shall be sent if the offer message contains an IPv6 End-
point Option. In this case the IPv6 Address sent in the IPv6 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping t0 an EthernetCommunicationConnector of
aMachine. The EthernetCommunicationConnector refersto a Network—
Endpoint in the role unicastNetworkEndpoint where an IPv6 Address is
configured in theTpvé6Configuration element.

The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipEventGroup
points either t0 SomeipEventDeployments where the transportProtocol
is set to udp or to tcp. The SomeipServiceInstanceToMachineMapping
element that maps the RequiredSomeipServiceInstancetoan Ethernet-—
CommunicationConnector of a Machine defines the TP and PortNumber.

— UDP shall be used if SomeipServiceInstanceToMachineMap-
ping.udpPort is configured and the SomeipEventGroup contains
SomeipEventDeploymentS where the transportProtocol is set to
udp. The UDP Port shall be derived from SomeipServiceInstance-
ToMachineMapping.udpPort.

— TCP shall be used if SomeipServiceInstanceToMachineMap-
ping.tcpPort is configured and the SomeipEventGroup contains
SomeipEventDeploymentS where the transportProtocol is set to
tcp. The TCP Port shall be derived from SomeipServiceInstance-
ToMachineMapping.tcpPort.

|(RS_CM_00204, RS_CM_00200, RS_CM_00103, RS_SOMEIPSD_00006)

[SWS_CM_00206]{DRAFT} SOME/IP SubscribeEventgroupAck message | The
entries in the SOME/IP SubscribeEventgroupAck message shall be as follows:

The entry type shall be set to SubscribeEventgroupAck (0x07).

Serviceld shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupAck message.

Instanceld shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupAck message.

TTL shall be set to the same value as in the SubscribeEventgroup message that
is answered by this SubscribeEventgroupAck message.

IPv4 Multicast Option shall be derived from the ManifestifamulticastThresh-
o1d with a value greater 0 is defined for the SomeipProvidedEventGroup and

AUTOSAR

a ipv4MulticastIpAddress is defined in the SomeipServicelInstance-
ToMachineMapping that maps the ProvidedSomeipServiceInstance that
aggregates the someipProvidedEventGroup t0 an EthernetCommunica-
tionConnector of a Machine.

IPv6 Multicast Option shall be derived from the ManifestifamulticastThresh-
o1d with a value greater 0 is defined for the SomeipProvidedEventGroup and
a ipveMulticastIpAddress is defined in the SomeipServiceInstance-
ToMachineMapping that maps the ProvidedSomeipServiceInstance that
aggregates the SomeipProvidedEventGroup t0 an EthernetCommunica-
tionConnector of a Machine.

The Transport Layer Protocol shall be set to UDP. Only UDP is supported as
transport layer protocol in the IPv4 Multicast Option and/or IPv6 Multicast Option.

The UDP Port shall be derived from the the Manifest where the Provid-
edSomeipServicelInstance that aggregates the someipProvidedEvent -
Group is mapped with the SomeipServiceInstanceToMachineMapping to
an EthernetCommunicationConnector of aMachine. The SomeipServi-
ceInstanceToMachineMapping defines the eventMulticastUdpPort.

|(RS_CM_00204, RS_SOMEIPSD 00015, RS_SOMEIPSD _00006)

[SWS_CM_00208]{DRAFT} SOME/IP SubscribeEventgroupNack message | The
entries in the SOME/IP SubscribeEventgroupNack message shall be as follows:

The entry type shall be set to SubscribeEventgroupNack (0x07).

Serviceld shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupNack message.

Instanceld shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupNack message.

TTL shall be set to the 0x000000 value.

|(RS_CM_00204, RS_SOMEIPSD 00016, RS_SOMEIPSD_00006)

[SWS_CM_10378]{DRAFT} Sending SOME/IP StopSubscribeEventgroup mes-
sages | Stopping the subscription of an Event (ServiceInterface.event) of
an Eventgroup (SomeipEventGroup) by invoking the Unsubscribe method (see
[SWS_CM_00151]) of the specific Event class of the ServiceProxy class shall not
cause the sending of a SOME/IP StopSubscribeEventgroup message if there are still
active subscriptions for other Events of the same Eventgroup.

AUTOSAR

Stopping the subscription of the last Event of an Eventgroup by invoking the Un-
subscribe method (see [SWS_CM_00151]) of the specific Event class of the Ser-
viceProxy class shall cause the sending of a SOME/IP StopSubscribeEventgroup
message. |(RS_CM_00204, RS _CM_00104, RS_SOMEIPSD_00006)

[SWS_CM_00207]{DRAFT} Content of SOME/IP StopSubscribeEventgroup mes-
sage | The entries in the SOME/IP StopSubscribeEventgroup message shall be as
follows:

e The entry type shall be set to StopSubscribeEventgroup (0x06).
e Serviceld shall be set to the same value as in the SubscribeEventgroup message.

¢ Instanceld shall be set to the same value as in the SubscribeEventgroup mes-
sage.

e Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage.

e Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message.

e TTL shall be set to the 0x000000 value.

¢ |Pv4 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

e |IPv6 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

|(RS_CM_00204, RS_CM_00104, RS_SOMEIPSD_00006)

7.4.1.2 Accumulation of SOME/IP messages

[SWS_CM_10387]{DRAFT} Data accumulation for UDP data transmission | To
allow for the transmission of multiple SOME/IP event, method request and method
response messages within a single UDP datagram, data accumulation for UDP data
transmission shall be supported. | (RS_CM_00204)

[SWS_CM_10388]{DRAFT} Enabling of data accumulation for UDP data trans-
mission | Data accumulation for UDP data transmission over the udpPort and
unicastNetworkEndpoint defined onthe EthernetCommunicationConnector
that is referenced by a SomeipServiceInstanceToMachineMapping shall be en-
abled if the attribute SomeipServiceInstanceToMachineMapping.udpCollec—
tionBufferSizeThreshold is set to a value. In this case all event and method
messages that are configured for data accumulation shall be aggregated in a buffer un-
til a transmission trigger (see [SWS_CM_10389] and [SWS_CM_10390]) arrives and
the data transmission starts. | (RS_CM_00204)

AUTOSAR

[SWS_CM_10389]{DRAFT} Configuration of a data accumulation on a Provid-
edServiceInstance for transmission over UDP | For a ProvidedServiceIn-
stance all method responses and events for which the udpCollectionTrigger
is set to never shall be aggregated in a buffer until a trigger arrives that starts the data
transmission.

The following trigger options shall be supported:

e a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is setto always.

e the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

e the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

e adding the method response or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

|(RS_CM_00204)

[SWS_CM_10390]{DRAFT} Configuration of a data accumulation on a Re-
quiredSomeipServiceInstance for transmission over UDP | For a Required-
SomeipServicelInstance all method requests for which the udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

e a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is setto always.

e the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

¢ the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

e adding the method request or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

|(RS_CM_00204)

In the following sections the term "sending of a SOME/IP message shall be requested”
will be used to describe that fact that the sending of the message is requested but
may be deferred due to data accumulation for UDP data transmission according to
[SWS_CM_10388], [SWS_CM_10389], and [SWS_CM_10390].

AUTOSAR

7.4.1.3 Execution context of message reception actions

In the following sections the term "upon reception" will be used to describe that fact that
certain actions (e.g, the deserialization of the payload according to [SWS_CM_10294])
will be performed at a point in time between the actual reception of a message and
the call of the corresponding API (e.g., the GetNewSamples (see [SWS_CM_00701])
method of the respective Event class). This specification deliberately does not explic-
itly state whether these actions will be performed in the context of message reception,
in the context of the API call, or in a completely seperate execution context to leave
room for potential optimizations of a concrete ara::com implementation.

The only restriction imposed here refers to the execution context of the EventRe-
ceiveHandler (see [SWS_CM_00309]). — Executing the EventReceiveHandler
in the context of the GetNewSamples (see [SWS_CM_00701]) method is not allowed,
since according to [SWS_CM_00181] the EventReceiveHandlershall use the Get -
NewSamples method to access the retrieved event data.

7.4.1.4 Handling Events

[SWS_CM_10287]{DRAFT} Conditions for sending of a SOME/IP event message
[The sending of a SOME/IP event message shall be requested by invoking the send
method of the respective Event class (see [SWS_CM_00162] and [SWS_CM_90437])
if there is at least one active subscriber and the offer of the service containing the
event has not been stopped (either because the TTL contained in the SOME/IP Of-
ferService message (see [SWS_CM_00203]) has expired or because the StopOf-
ferService method (see [SWS_CM_00111]) of the Serviceskeleton class has
been called). An active subscriber is an adaptive application that has invoked the
Subscribe method of the respective Event class (see [SWS_CM_00141]) and
has not canceled the subscription by invoking the Unsubscribe method of the re-
spective Event class (see [SWS_CM_00151]) and where the subscription has not
yet expired since the TTL contained in the SOME/IP SubscribeEventgroup mes-
sage (see [SWS_CM_00205]) has been exceeded. | (RS_CM_00204, RS_CM_00201,
RS SOMEIP_00004, RS SOMEIP 00005, RS SOMEIP _00017)

[SWS_CM_10288]{DRAFT} Transport protocol for sending of a SOME/IP event
message | The SOME/IP event message shall be transmitted using UDP if the thresh-
old defined by the multicastThreshold attribute of the SomeipProvidedEvent-
Group that is aggregated by the ProvidedSomeipServiceInstance in the role
eventGroup in the Manifest has been reached (see [PRS_SOMEIPSD_00134]). The
SOME/IP event message shall be transmitted using the transport protocol defined by
the attribute SomeipServiceInterfaceDeployment.eventDeployment.trans—
portProtocol in the Manifest if this threshold has not been reached (see
[PRS_SOMEIPSD_00802]). |(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS _SOMEIP_00010)

AUTOSAR

[SWS_CM_10289]{DRAFT} Source of a SOME/IP event message | The SOME/IP
event message shall use the unicast IP address and port taken from the IPv4/v6
Endpoint Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP OfferService mes-
sage ([SWS_CM_00203]) as source address and source port for the transmission. |
(RS_CM_00204, RS _CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00042)

[SWS_CM_10290]{DRAFT} Destination of a SOME/IP event message | The
SOME/IP event message shall use the multicast IP address and the port taken
from the IPv4/v6 Multicast Option (see [PRS_SOMEIPSD 00322]) of the SOME/IP
SubscribeEventgroupAck message (see [SWS_CM_00206]) as destination address
and destination port for the transmission if the threshold defined by the mul-
ticastThreshold attribute of the SomeipProvidedEventGroup that is aggre-
gated by the ProvidedSomeipServiceInstance in the role eventGroup in
the Manifest has been reached (see [PRS_SOMEIPSD 00134]). The SOME/IP
event message shall use the unicast IP address and the port taken from the
IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD _00304]) of the SOME/IP Sub-
scribeEventgroup message ([SWS_CM_00205]) as destination address and des-
tination port for the transmission if this threshold has not been reached (see
[PRS_SOMEIPSD 00134]). In case multiple Endpoint Options have been contained in
the SOME/IP SubscribeEventgroup message, the one matching the selected transport
protocol (see [SWS_CM_10289]) shall be used. |(RS_CM_00204, RS _CM_00201,
RS _SOMEIP_00004, RS _SOMEIP_00042)

[SWS_CM_10291]{DRAFT} Content of the SOME/IP event message | The entries
in the SOME/IP event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser—
viceInterfaceld.

e The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

¢ In case of inactive Session Handling the Session ID (see [PRS_SOMEIP_00703])
is unused for event messages and thus shall be set to 0x000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]). In case of active Session
Handling the Session ID is used for event messages and thus shall be incre-
mented (with proper wrap around) upon every transmission of an event message
(see [PRS_SOMEIP_00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521],
and [PRS_SOMEIP_00925]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

AUTOSAR

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

e The Return Code (see [PRS_SOMEIP_00040]) is unused for event messages
and thus (according to [PRS_SOMEIP_00040]) shall be set to £_0K (0x00).

e The Payload shall contain the serialized payload (i.e., the serialized variable-
DataPrototype composed by the ServiceInterfaceinrole event) accord-
ing to the SOME/IP serialization rules.

| (RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041,
RS_SOMEIP_00022, RS _SOMEIP_00003, RS _SOMEIP_00004) The serializa-
tion rules are explained in section 7.4.1.7.

[SWS_CM_10292]{DRAFT} Checks for a received SOME/IP event message |
Upon reception of a SOME/IP event message the following checks shall be conducted:

¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.
o Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

e Use the Message Type (see [PRS_SOMEIP_00055]) which is set to NOTIFI-
CATION (0x02) to determine that the received SOME/IP message is actually a
SOME/IP event messages.

e Use the Service ID (see [PRS_SOMEIP_00040]) and the servicelInter-
facelId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the event1d at-
tribute of one of the SomeipEventDeployments of the SomeipServicelIn-
terfaceDeployment.

¢ Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.
e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches

SomeipServicelInterfaceDeployment.servicelnterfaceVersion.ma—
jorVersion.

¢ Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_0K (0x00).

If any of the above checks fails the received SOME/IP event message
shall be discarded and and the incident shall be logged (if logging is en-
abled for the ara::com implementation). |(RS_CM_00204, RS_CM_00200,
RS _CM_00201, RS _SOMEIP_00019, RS _SOMEIP_00022, RS_SOMEIP_00003,
RS _SOMEIP_00004, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10293]{DRAFT} Identifying the right event | Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the

AUTOSAR

SomeipServicelnterfaceDeployment element as well as the Event ID (see
[PRS_SOMEIP_00040]) and the eventId attribute of the SomeipEventDeploy-
mentS Of the SomeipServiceInterfaceDeployment, the right event shall be
identified. |(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004,
RS SOMEIP_00022)

[SWS_CM_10379]{DRAFT} Silently discarding SOME/IP event messages for un-
subscribed events | If the event identified according to [SWS_CM_10293] does not
have an active subscription because the Ssubscribe method (see [SWS_CM_00141])
of the specific Event class of the SserviceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Event class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10294], [SWS_CM_10295],
and [SWS_CM_10296] shall not be performed). |(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004)

[SWS_CM_10296]{DRAFT} Invoke receive handler | In case a receive handler
was registered using the setReceiveHandler method (see [SWS_CM _00181]) of
the respective Event class for the event determined according to [SWS_CM_10293]
this registered receive handler shall be invoked. |(RS_CM_00204, RS_CM_00203,
RS _SOMEIP_00004)

[SWS_CM_10294]{DRAFT} Deserializing the payload | Based on the event deter-
mined according to [SWS_CM_10293] the Payload of the SOME/IP event message
(i.e., the serialized VariableDataPrototype composed by the ServiceInter—
face in role event) shall be deserialized according to the SOME/IP serialization
rules. |(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00028)
The serialization rules are explained in section 7.4.1.7.

[SWS_CM_10295]{DRAFT} Providing the received event data | The deserial-
ized payload containing the event data shall be provided via the GetNewSam-
ples (see [SWS_CM_00701]) method of the respective Event class for the event
determined according to [SWS_CM_10293]. |(RS_CM_00204, RS_CM_00202,
RS _SOMEIP_00004)

7.4.1.5 Handling Method Calls

[SWS_CM_10297]{DRAFT} Conditions for sending of a SOME/IP request mes-
sage [The sending of a SOME/IP request message shall be requested by in-
voking the function call operator (operator ()) of the respective Method class
(see [SWS_CM_00196]) if the providing service instance has not stopped offer-
ing the service (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the StopOfferSer-—
vice method (see [SWS_CM 00111]) of the ServiceSkeleton class has been
called). |(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006,
RS _SOMEIP_00007)

AUTOSAR

[SWS_CM_10441]{DRAFT} Failures in sending of a SOME/IP request mes-
sage | If the sending of the SOME/IP request message fails locally (in a
way which is notified to the ara::com implementation), the ara::com im-
plementation shall make the Future returned by the function call operator
(operator ()) of the respective Method class (see [SWS_CM_00196]) ready ac-
cording to [SWS_CM_10440]. |(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS _SOMEIP_00006, RS _SOMEIP_00007)

[SWS_CM_10298]{DRAFT} Transport protocol for sending of a SOME/IP
request message | The SOME/IP request message shall be transmitted
using the transport protocol defined by the attribute SomeipServicelIn-
terfaceDeployment.methodDeployment.transportProtocol in the Mani-
fest. |(RS_CM_00204, RS _CM_00212, RS _CM_00213, RS_SOMEIP_00006,
RS SOMEIP_00007, RS SOMEIP_00010)

[SWS_CM_10299]{DRAFT} Source of a SOME/IP request message | The SOME/IP
request message shall use the unicast IP address defined in the Manifest by
the Ipv4Configuration/Ipv6Configuration attribute of the NetworkEnd-
point that is referenced (in role unicastNetworkEndpoint) by the Ether-
netCommunicationConnector of a Machine which in turn is mapped to the
RequiredSomeipServiceInstance by means of a SomeipServiceInstance-
ToMachineMapping as source address for the transmission. The udpPort shall
be used as source port for the transmission in case the selected transport protocol
(see [SWS_CM_10298]) is UDP. The tcppPort shall be used as source port for the
transmission in case the selected transport protocol (see [SWS_CM_10298]) is TCP. |
(RS_CM_00204, RS _CM_00212, RS_CM_00213, RS_SOMEIP_00010)

[SWS_CM_10300]{DRAFT} Destination of a SOME/IP request message | The
SOME/IP request message shall use the unicast IP address and port taken from
the IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP Of-
ferService message ([SWS_CM_00203]) as destination address and destination port
for the transmission. In case multiple Endpoint Options have been contained in the
SOME/IP OfferService message, the one matching the selected transport protocol (see
[SWS_CM_10298]) shall be used. |(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS _SOMEIP_00006, RS _SOMEIP_00007)

[SWS_CM_10301]{DRAFT} Content of the SOME/IP request message | The en-
tries in the SOME/IP request message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

AUTOSAR

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. - This may be achived by dynamically
generating unique client IDs upon construction of the ServiceProxy.

e The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the
first call of a particular method by a given client and shall be incremented
by 1 after each call performed by this client for the respective method (see
[PRS_SOMEIP_00533]). Once the Session ID reaches OxFFFF, it shall wrap
around and start with 0x0001 again (see [PRS_SOMEIP_00521]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to RE-
QUEST_NO_RETURN (0x01) in case the ClientServerOperation referenced
by methodDeployment.method contains a fireAndForget attribute which is
set to true. The Message Type shall be set to REQUEST (0x00) otherwise.

e The Return Code (see [PRS_SOMEIP_00040]) is unused for request messages
and thus (according to [PRS_SOMEIP_00920]) shall be set to £_0K (0x00).

e The Payload shall contain the serialized payload (i.e., the ArgumentDataPro-
totypes of the ClientServerOperation which are not referenced by any
of the ClientServerOperation’s possible ApplicationErrorsinrole er—
rorContext With direction setto in and inout serialized according to their
order) according to the SOME/IP serialization rules.

|(RS_CM_00204, RS _CM_00200, RS _CM_00212, RS _CM_00213,
RS_SOMEIP_0000e, RS_SOMEIP_00007, RS_SOMEIP_00003,
RS_SOMEIP_00012, RS_SOMEIP_00021, RS_SOMEIP_00025,

RS_SOMEIP_00041) The SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10302]{DRAFT} Checks for a received SOME/IP request message |
Upon reception of a SOME/IP request message the following checks shall be con-
ducted:

¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.
¢ Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

e Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
QUEST_NO_RETURN (0x01) or REQUEST (0x00) to determine that the received
SOME/IP message is actually a SOME/IP request message.

AUTOSAR

e Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
d1d attribute of one of the SomeipMethodDeployments of the SomeipSer—
viceInterfaceDeployment.

e Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to RE-
QUEST_NO_RETURN (0x01) in case the the ClientServerOperation ref-
erenced by methodDeployment.method of the SomeipMethodDeployment
with matching methodId attribute contains a fireAndForget attribute which is
set to true. Verify that the Message Type is set to REQUEST (0x00) otherwise.

e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServicelInterfaceDeployment.servicelInterfaceVersion.ma—
jorVersion.

¢ Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_0OK (0x00).

If any of the above checks fails the received SOME/IP request message shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation). |(RS_CM_00204, RS _CM_00200, RS _CM_00212,
RS _CM_00213, RS _SOMEIP_00006, RS _SOMEIP_00007, RS_SOMEIP_00003,
RS SOMEIP 00019, RS SOMEIP_00021, RS SOMEIP_00008,
RS _SOMEIP_00014)

[SWS_CM_10303]{DRAFT} Identifying the right method | Using the Service
ID (see [PRS_SOMEIP_00040]) and the servicelInterfacelId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipMethodDeploy-
ments of the SomeipServiceInterfaceDeployment, the right method shall
be identified. |(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS _SOMEIP_00006, RS _SOMEIP_00007, RS SOMEIP_00021)

[SWS_CM_10304]{DRAFT} Deserializing the payload | Based on the method
determined according to [SWS_CM_10303] the Payload of the SOME/IP re-
quest message shall be deserialized according to the SOME/IP serialization
rules. |(RS_CM_00204, RS _CM_00212, RS_CM_00213, RS_SOMEIP_00006,
RS _SOMEIP_00007, RS_SOMEIP_00028) The SOME/IP serialization rules are ex-
plained in section 7.4.1.7.

[SWS_CM_10306]{DRAFT} Invoke the method - event driven | In case a Method-
CallProcessingMode oOf either kEvent oOr kEventSingleThread has been
passed to the constructor of the ServiceSkeleton (see [SWS_CM_00130]), the de-
serialized payload containing the method data (i.e., method ID and input arguments)
shall be used to invoke the service method (see [SWS_CM _00191]) identified ac-
cording to [SWS_CM_10303] of the serviceSkeleton class as a consequence to
the reception of the SOME/IP request message. |(RS_CM_00204, RS_CM_00212,
RS CM 00213, RS _SOMEIP_00006, RS _SOMEIP_00007)

AUTOSAR

[SWS_CM_10307]{DRAFT} Invoke the method - polling | In case a Method-
CallProcessingMode of kPoll has been passed to the constructor of the Ser-
viceSkeleton (see [SWS_CM_00130]), the deserialized payload containing the
method data (i.e., method ID and input arguments) shall be used to invoke the
service method (see [SWS_CM _00191]) identified according to [SWS_CM_10303]
of the ServicesSkeleton class upon a call to the ProcessNextMethodCall
method (see [SWS_CM_00199]) of the Serviceskeleton class. |(RS_CM_00204,
RS CM_00212, RS CM 00213, RS _SOMEIP_00006, RS _SOMEIP_00007)

[SWS_CM_10308]{DRAFT} Conditions for sending of a SOME/IP response mes-
sage | The sending of a SOME/IP response message shall be requested upon avail-
ability of a result of the ara: :core: :Future, which either contains a valid value or
an ara::core: :ErrorCode matching one of the possible ApApplicationErrors
referenced by the ClientServerOperation intherole possibleError of the ser-
vice method (see [SWS_CM_10306] and [SWS_CM_10307]) in case the Message
Type of the corresponding SOME/IP request message was set to REQUEST (0x00). |
(RS_CM_00204, RS CM_00212, RS _CM_00213, RS _SOMEIP_00007)

[SWS_CM_10309]{DRAFT} Transport protocol for sending of a SOME/IP re-
sponse message | The SOME/IP response message shall be transmitted using
the transport protocol defined by the attribute SomeipServiceInterfacebDeploy-
ment.methodDeployment.transportProtocol inthe Manifest. |(RS_CM_00204,
RS CM_00212, RS CM 00213, RS_SOMEIP_00007, RS _SOMEIP_00010)

[SWS_CM_10310]{DRAFT} Source of a SOME/IP response message | The
SOME/IP response message shall use the unicast IP address defined in the Mani-
fest by the ITpv4Configuration/Ipv6Configuration attribute of the Network-
Endpoint that is referenced (in role unicastNetworkEndpoint) by the Eth-
ernetCommunicationConnector of a Machine which in turn is mapped to the
ProvidedSomeipServiceInstance by means of a SomeipServiceInstance-
ToMachineMapping as source address for the transmission. The udpPort shall
be used as source port for the transmission in case the selected transport proto-
col (see [SWS_CM_10309]) is UDP. The tcppPort shall be used as source port
for the transmission in case the selected transport protocol (see [SWS_CM_10309])
is TCP. |(RS_CM_00204, RS_CM_00212, RS _CM_00213, RS_SOMEIP_00007,
RS _SOMEIP_00010)

[SWS_CM_10311]{DRAFT} Destination of a SOME/IP response message |
The SOME/IP response message shall use the unicast source IP address and
the source port of the corresponding received SOME/IP request message (see
[SWS_CM_10299]) as destination address and destination port for the transmission. |
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10312]{DRAFT} Content of the SOME/IP response message | The en-
tries in the SOME/IP response message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

AUTOSAR

e The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

e The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to ERROR (0x81)
in case the ClientServerOperation returned one of the possible ApAppli-
cationErrors referenced by the ClientServerOperation in role possi-
bleError'. The Message Type shall be set to RESPONSE (0x80) otherwise.

e The Return Code (see [PRS_SOMEIP_00040]) shall be set to E_NOT_0OK (0x01)
in case the ClientServerOperation raised one of the possible 2ApAppli-
cationErrors referenced by the ClientServerOperation in role possi-
bleError. The Return Code shall be set to E_0K (0x00) otherwise.

e The Payload shall contain the serialized payload according to the SOME/IP
serialization rules. In case of NO raised ApApplicationError, the Ar-
gumentDataPrototypes of the ClientServerOperation with direction
set to inout and out shall be serialized according to their order. — other-
wise in case of a raised ApApplicationError, which is represented as an
ara::core: :ErrorCode contained in the ara: :core: :Result, the payload
shall contain the serialized application error according to [SWS_CM_10428].

|(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS _CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00012,
RS _SOMEIP_00021, RS_SOMEIP_00025, RS _SOMEIP_00041,

RS_SOMEIP_00008) The SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10428]{DRAFT} payload representing application error | A raised ap-
plication error shall be represented by a SOME/IP union: The type field of the union

"Note that this is in fact an incompatibility with the AUTOSAR classic platform (i.e., in cases where an
AUTOSAR adaptive platform server operates with an AUTOSAR classic platform client) which defines
that a Message Type of RESPONSE (0x80) shall be used in case an ApplicationErrors is raised. —
Please consult the release notes of the AUTOSAR classic platform regarding details about this incom-
patibility issue and how to create a project specific work-around.

AUTOSAR

shall be set to 0x01. The element of the union with type field set to 0x01 shall be a
SOME/IP struct with the following elements in depicted order:

10

an uint64 representing the ApApplicationErrorDomain.value, to which
the raised ApApplicationError belongs (ApApplicationError.errorDo-
main).

an int 32 representing the ApApplicationError.errorCode, which is repre-
sented on binding level as ara: :core: :ErrorCode: :Value ().

an int32 representing additional (vendor specific) support data, which is repre-
sented on binding level as ara: :core: :ErrorCode: : SupportData ().

a variable lenght string representing a user message, which is represented on
binding level as ara: :core: :ErrorCode: :UserMessage ().

[SWS_CM_10313]{DRAFT} Checks for a received SOME/IP response message |
Upon reception of a SOME/IP response message the following checks shall be con-
ducted:

Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.
Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
SPONSE (0x80) or ERROR (0x81) to determine that the received SOME/IP mes-
sage is actually a SOME/IP response message or error response message.

Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
facelId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
d1d attribute of one of the SomeipMethodDeployments of the SomeipSer—
viceInterfaceDeployment.

Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.servicelnterfaceVersion.ma—
jorVersion.

Verify that the Client ID (see [PRS_SOMEIP_00702]) matches the client from the
corresponding SOME/IP request message (see [SWS_CM_10301]).

The Session ID (see [PRS_SOMEIP_00703]) matches the client from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

If any of the above checks fails the received SOME/IP response message shall
be discarded and the incident shall be logged (if logging is enabled for the

ara:

:com implementation). |(RS_CM_00204, RS_CM_00200, RS_CM_00212,

RS _CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00012,

AUTOSAR

RS_SOMEIP_00019, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS _SOMEIP_00041, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10314]{DRAFT} Identifying the right method | Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfacelId attribute of the
SomeipServicelInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipMethodDeploy-—
mentS oOf the SomeipServiceInterfaceDeployment, the right method shall
be identified. |(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS _SOMEIP_00006, RS _SOMEIP_00007, RS SOMEIP _00021)

[SWS_CM_10315]{DRAFT} Discarding orphaned responses | In case the method
call has been canceled according to [SWS_CM_00194] in the mean time, the received
response/error messages of the canceled methods shall be ignored. |(RS_CM_00204,
RS CM 00212, RS CM 00213)

[SWS_CM_10357]{DRAFT} Distinguishing errors from normal responses |
The Message Type (see [PRS_SOMEIP_00055]) and the Return Code (see
[PRS_SOMEIP_00040]) of the SOME/IP message shall be used to determine whether
the received SOME/IP message is a normal response (Message Type set to RE-
SPONSE (0x80) and Return Code set to 0x0) or an error response (Message Type
set to ERROR (0x81) or Return Code set to a value different from 0x0)? w.r.t. the further
processing according to [SWS_CM_10316], [SWS_CM_10358], [SWS_CM_10429],
[SWS_CM_10430] and [SWS_CM_10317]. |(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10316]{DRAFT} Deserializing the payload - normal response mes-
sages | Based on the method determined according to [SWS_CM_10314] the Pay-
load of the response message shall be deserialized according to the SOME/IP se-
rialization rules. — Therefore the ArgumentDataPrototypes wWith direction set
to inout and out shall be deserialized according to their order. |(RS_CM_00204,
RS _CM_00212, RS CM_00213, RS _SOMEIP_00007, RS _SOMEIP_00028) The
SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10442]{DRAFT} Failures during deserialization of response mes-
sages | In case of failures during deserialization of response messages, the
ara::com implementation shall make the Future returned by the function call op-
erator (operator ()) of the respective Method class (see [SWS_CM_00196]) ready
according to [SWS_CM_10440]. |(RS_CM_00204, RS _CM_00212, RS_CM_00213,
RS SOMEIP_00007, RS _SOMEIP_00028)

[SWS_CM_10358]{DRAFT} Identifying the right application error in a mes-
sage with Message Type set to RESPONSE (0x80) [If the Return Code see
[PRS_SOMEIP_00040]) contains a value larger than Ox1F the corresponding value

°The additional case of SOME/IP response messages with a Return Code (see
[PRS_SOMEIP_00040]) set to a value different from 0x0 is in place for the sake of compatibility
with the AUTOSAR classic platform (i.e., AUTOSAR adaptive platform client and AUTOSAR classic
platform server) which defines that a Message Type of RESPONSE (0x80) shall be used even in case
ApplicationErrors are raised.

AUTOSAR

of the ApApplicationError.errorCode attribute shall be determined by subtract-
ing Ox1F from the Return Code value. Using this computed ApApplication-—
Error.errorCode attribute value and the ApApplicationError.errorCode at-
tribute of all ApApplicationErrors referenced in role possibleApError by the
ClientServerOperation corresponding to the method determined according to
[SWS_CM_10314], the right application error shall be identified.

If this computed ApApplicationError.errorCode attribute value does not match
any of the ApApplicationError.errorCode attributes of all ApApplication-
Errors referenced in role possibleError by the ClientServerOperation, the
error response message shall be discarded, the incident shall be logged (if logging is
enabled for the ara: : com implementation), and the Future returned by the function
call operator (operator ()) of the respective Method class (see [SWS_CM_00196])
shall be made ready according to [SWS_CM_10440].

If this computed ApApplicationError.errorCode attribute value does match
more than one of the ApApplicationError.errorCode attributes of all ApAp-
plicationErrors referenced in role possibleError by the ClientServerOp-
eration, the error response message shall be discarded, the incident shall be
logged (if logging is enabled for the ara: : com implementation), and the Future re-
turned by the function call operator (operator ()) of the respective Method class
(see [SWS_CM_00196]) shall be made ready according to [SWS_CM_10440]. |
(RS_CM_00204, RS _SOMEIP_00008)

Note: This is for backward compatibility to old servers using RESPONSE (0x80) even in
case of application errors.

[SWS_CM_10429]{DRAFT} Identifying the right application error in a mes-
sage with Message Type set to ERROR (0x81) [If the Return Code see
[PRS_SOMEIP_00040]) contains a value equal to 0x01 (E_NOT_OK) then the cor-
responding ApApplicationError shall be identfied by deserializing the Payload of
the message according to the error payload format described in [SWS_CM_10428]. |
(RS_CM_00204, RS _SOMEIP_00008)

[SWS_CM_10430]{DRAFT} Handling invalid messages with Message Type set to
RESPONSE (0x81) | If the Return Code see [PRS_SOMEIP_00040]) contains a value
NOT equal to 0x01 or the value is equal to 0x01, but either the contained payload
does NOT comply with [SWS_CM_10428] or the application error identified by the de-
serialized ApApplicationErrorDomain.value and ApApplicationError.er—
rorCode is not referenced in role possibleError by the related ClientServer-
Operation, the error response message shall be discarded, the incident shall be
logged (if logging is enabled for the ara: : com implementation), and the Future re-
turned by the function call operator (operator ()) of the respective Method class
(see [SWS_CM_00196]) shall be made ready according to [SWS_CM_10440]. |
(RS_CM _00204, RS SOMEIP_00008)

[SWS_CM_10317]{DRAFT} Making the Future ready | In order to make the Fu-
ture returned by the function call operator (operator ()) of the respective Method
class (see [SWS_CM_00196]) ready, depending on the type or received message

AUTOSAR

(see [SWS_CM_10357]) either the set_value operation (see [SWS_CORE_00345]
and [SWS_CORE_00346]) or the setError (see [SWS_CORE_00347]) operation
of the Promise corresponding to this Future shall be invoked. This will unblock
any blocking get, wait, wait_for, and wait_until calls that have been per-
formed on this Future. — The set_value operation shall be invoked in case of
a received normal response message using the deserialized payload according to
[SWS_CM_10316] as an argument. The setError operation shall be invoked in case
of a received error response message using the determined application error accord-
ing to [SWS_CM_10358] and [SWS_CM_10429] of type ara::core: :ErrorCode
as an argument. |(RS_CM_00204, RS _CM_00212, RS_CM_00213, RS_CM_00215,
RS _SOMEIP_00007, RS_SOMEIP_00008)

[SWS_CM_10318]{DRAFT} Invoke the notification function | If a notification func-
tion has been registered with the Future’s then method (see [SWS_CM_00197]),
this notification function shall be invoked. |(RS_CM_00204, RS_CM_00212,
RS CM 00213, RS CM 00215, RS SOMEIP_00007)

7.4.1.6 Handling Fields

[SWS_CM_10319]{DRAFT} Conditions for sending of a SOME/IP event mes-
sage | The sending of a SOME/IP event message shall be requested by invok-
ing the Update method of the respective Field class (see [SWS_CM _00119])
or if the Future returned by the SetHandler registered with Register-
SetHandler (see [SWS_CM_00116]) becomes ready if there is at least one
active subscriber and the offer of the service containing the event has not
been stopped (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the StopOfferSer-—
vice method (see [SWS_CM_00111]) of the Serviceskeleton class has been
called). An active subscriber is an adaptive application that has invoked the
Subscribe method of the respective Field class (see [SWS_CM_00120]) and
has not canceled the subscription by invoking the Unsubscribe method of
the respective Field class (see [SWS_CM _00120]) and where the subscription
has not yet expired since the TTL contained in the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has been exceeded. |(RS_CM_00204,
RS _CM_00201, RS_SOMEIP_00004, RS _SOMEIP_00009, RS_SOMEIP_00005,
RS _SOMEIP_00017, RS _SOMEIP_00018)

[SWS_CM_10320]{DRAFT} Transport protocol for sending of a SOME/IP event
message | The SOME/IP event message shall be transmitted using UDP if the thresh-
old defined by the multicastThreshold attribute of the SomeipProvidedEvent-
Group that is aggregated by the ProvidedSomeipServiceInstance in the role
eventGroup in the Manifest has been reached (see [PRS_SOMEIPSD_00134]).
The SOME/IP event message shall be transmitted using the transport protocol
defined by the attribute SomeipServiceInterfaceDeployment.fieldDeploy-
ment.notifier.transportProtocol in the Manifest if this threshold has not

AUTOSAR

been reached (see [PRS_SOMEIPSD_00802]). |(RS_CM_00204, RS _CM_ 00201,
RS _SOMEIP_00004, RS _SOMEIP_00009, RS _SOMEIP_00010)

[SWS_CM_10321]{DRAFT} Source of a SOME/IP event message | The source
address and the source port of the SOME/IP event message shall set accord-
ing to [SWS_CM_10289]. |(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS _SOMEIP_00009, RS _SOMEIP_00042)

[SWS_CM_10322]{DRAFT} Destination of a SOME/IP event message | The
destination address and the destination port of the SOME/IP event message
shall be set according to [SWS_CM_10290]. |(RS_CM_00204, RS_CM_00201,
RS _SOMEIP_00004, RS _SOMEIP_00009, RS _SOMEIP_00042)

[SWS_CM_10323]{DRAFT} Content of the SOME/IP event message | The entries
in the SOME/IP event message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser—
vicelInterfaceld.

e The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
fieldDeployment.notifier.eventId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

¢ In case of inactive Session Handling the Session ID (see [PRS_SOMEIP_00703])
is unused for event messages and thus shall be set to 0x000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]). In case of active Session
Handling the Session ID is used for event messages and thus shall be incre-
mented (with proper wrap around) upon every transmission of an event message
(see [PRS_SOMEIP_00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521],
and [PRS_SOMEIP_00925]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

e The Return Code (see [PRS_SOMEIP_00040]) is unused for event messages
and thus (according to [PRS_SOMEIP_00040]) shall be set to £_0K (0x00).

AUTOSAR

e The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) according to the SOME/IP
serialization rules.

|(RS_CM_00204, RS _CM 00200, RS CM 00201, RS _SOMEIP_00041,
RS _SOMEIP_00022, RS SOMEIP_00003, RS SOMEIP_00004,
RS_SOMEIP_00009) The SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10324]{DRAFT} Checks for a received SOME/IP event message |
Upon reception of a SOME/IP event message the checks defined in [SWS_CM_10292]
shall be conducted. If any of the above checks fails the received SOME/IP
event message shall be discarded and and the incident shall be logged
(if logging is enabled for the ara::com implementation). |(RS_CM_00204,
RS _CM_00201, RS _SOMEIP_00019, RS _SOMEIP_00022, RS _SOMEIP_00003,
RS SOMEIP 00004, RS SOMEIP 00009, RS SOMEIP 00014)

[SWS_CM_10325]{DRAFT} Identifying the right event | Using the Service
ID (see [PRS_SOMEIP_00040]) and the servicelInterfacelId attribute of the
SomeipServiceInterfaceDeployment element as well as the Event ID (see
[PRS_SOMEIP_00040]) and the eventId attribute of the SomeipFieldDe-
ployment.notifiers of the SomeipServiceInterfaceDeployment, the right
event shall be identified. |(RS_CM_00204, RS_CM_00200, RS_CM_00201,
RS_SOMEIP_00004, RS _SOMEIP_00009, RS _SOMEIP_00022)

[SWS_CM_10380]{DRAFT} Silently discarding SOME/IP event messages for un-
subscribed events | If the event identified according to [SWS_CM_10325] does not
have an active subscription because the Ssubscribe method (see [SWS_CM_00141])
of the specific Field class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Field class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10326], [SWS_CM_10327],
and [SWS_CM_10328] shall not be performed). |(RS_CM_00204, RS_CM_00203,
RS _SOMEIP_00004, RS _SOMEIP_00009)

[SWS_CM_10328]{DRAFT} Invoke receive handler | In case a ReceiveHandler
was registered using the SsetReceiveHandler method (see [SWS_CM_00120]) of
the respective Field class for the event determined according to [SWS_CM_10325]
this registered receive handler shall be invoked. |(RS_CM_00204, RS_CM_00203,
RS _SOMEIP_00004, RS _SOMEIP_00009)

[SWS_CM_10326]{DRAFT} Deserializing the payload | Based on the event deter-
mined according to [SWS_CM_10325] the Payload of the SOME/IP event message
(i.e., the serialized Field composed by the ServiceInterface in role field)
shall be deserialized according to the SOME/IP serialization rules. |(RS_CM_00204,
RS CM_00201, RS_SOMEIP_00004, RS _SOMEIP_00009, RS SOMEIP_00028)
The SOME/IP serialization rules are explained in section 7.4.1.7.

AUTOSAR

[SWS_CM_10327]{DRAFT} Providing the received event data | The deserial-
ized payload containing the event data shall be provided via the GetNewSam-
ples (see [SWS_CM _00701]) method of the respective Field class for the event
determined according to [SWS_CM_10325]. |(RS_CM_00204, RS_CM_00202,
RS_SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10329]{DRAFT} Conditions for sending of a SOME/IP request mes-
sage | The sending of a SOME/IP request message shall be requested by invok-
ing the set or Get method of the respective Field class (see [SWS_CM_00112]
and [SWS_CM _00113]) if the providing service instance has not stopped offer-
ing the service (either because the TTL contained in the SOME/IP OfferSer-
vice message (see [SWS_CM_00203]) has expired or because the StopOf-
fersService method (see [SWS_CM_00111]) of the Serviceskeleton class has
been called). |(RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218,
RS SOMEIP 00007, RS SOMEIP_00009)

[SWS_CM_10443]{DRAFT} Failures in sending of a SOME/IP request mes-
sage | If the sending of the SOME/IP request message fails locally (in a way
which is notified to the ara::com implementation), the ara::com implementa-
tion shall make the Future returned by the sSet or Get method of the re-
spective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) ready ac-
cording to [SWS_CM_10440]. |(RS_CM_00212, RS_CM_00213, RS_CM_00217,
RS _CM_00218, RS _SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10330]{DRAFT} Transport protocol for sending of a SOME/IP re-
quest message | The SOME/IP request message for the set method shall be
transmitted using the transport protocol defined by the attribute SomeipSer-
viceInterfaceDeployment.fieldDeployment.set.transportProtocol

in the Manifest. The SOME/IP request message for the Get method shall be
transmitted using the transport protocol defined by the attribute SomeipServi-
celnterfaceDeployment.fieldDeployment.get.transportProtocol re-
spectively. |(RS_CM_00204, RS_CM_00212, RS _CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10331]{DRAFT} Source of a SOME/IP request message | The source
address and the source port of the SOME/IP request message shall be set ac-
cording to [SWS_CM_10299]. |(RS_CM_00204, RS _CM _00212, RS_CM_00213,
RS _SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10332]{DRAFT} Destination of a SOME/IP request message | The des-
tination address and the destination port of the SOME/IP request message shall be set
according to [SWS_CM_10300]. |(RS_CM_00204, RS _CM_00212, RS_CM_00213,
RS _SOMEIP_00007, RS _SOMEIP_00009)

[SWS_CM_10333]{DRAFT} Content of the SOME/IP request message | The en-
tries in the SOME/IP request message shall be as follows:

AUTOSAR

e The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser—
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00038]) for the set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element
defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter—
faceDeployment element defines the fieldDeployment.get.methodId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. — This may be achieved by dynamically
generating unique client IDs upon construction of the ServiceProxy.

e The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the
first call of the particular method by a given client and shall be incremented
by 1 after each call performed by this client for the respective method (see
[PRS_SOMEIP_00533]). Once the Session ID reaches OxFFFF, it shall wrap
around and start with 0x0001 again (see [PRS_SOMEIP_00521]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to REQUEST (0x00).

e The Return Code (see [PRS_SOMEIP_00040]) is unused for request messages
and thus (according to [PRS_SOMEIP_00920]) shall be set to £_0K (0x00).

e The Payload for the request message for the set method shall contain the seri-
alized payload (i.e., the serialized Fie1d composed by the ServiceInterface
in role £ield) according to the SOME/IP serialization rules. The Payload for the
request message for the Get method will be empty.

|(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_CM_ 00217, RS _CM_00218,
RS_SOMEIP_00003, RS_SOMEIP_00012, RS_SOMEIP_00021,

RS _SOMEIP_00025, RS SOMEIP_00041) The SOME/IP serialization rules are
explained in section 7.4.1.7.

[SWS_CM_10334]{DRAFT} Checks for a received SOME/IP request message |
Upon reception of a SOME/IP request message the following checks shall be con-
ducted:

¢ Verify that the Protocol Version (see [PRS_SOMEIP_00052)) is set to 0x01.

AUTOSAR

¢ Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

e Use the Message Type (see [PRS_SOMEIP_00055]) which is set to REQUEST
(0x00) to determine that the received SOME/IP message is actually a SOME/IP
request message.

e Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

e Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
d1d attribute of one of the SomeipMethodDeployments of the SomeipSer—
viceInterfaceDeployment.

e Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to REQUEST
(0x00).

e Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.servicelnterfaceVersion.ma—
jorVersion.

¢ Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_0K (0x00).

If any of the above checks fails the received SOME/IP request message shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation). |(RS_CM_00204, RS _CM_00200, RS_CM_00212,
RS CM_00213, RS_SOMEIP_00007, RS _SOMEIP_00009, RS SOMEIP_00003,
RS _SOMEIP_00019, RS SOMEIP_00021, RS _SOMEIP_00008,
RS SOMEIP_00014)

[SWS_CM_10335]{DRAFT} Identifying the right method | Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipFieldDe-
ployment.sets and SomeipFieldDeployment.gets of the SomeipServiceIn-
terfaceDeployment, the right method shall be identified. |(RS_CM_00204,
RS _CM_00200, RS CM_00212, RS _CM_00213, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00007, RS _SOMEIP_00009, RS SOMEIP_00021)

[SWS_CM_10336]{DRAFT} Deserializing the payload | Based on the method
determined according to [SWS_CM_10335] the Payload of the SOME/IP re-
quest message shall be deserialized according to the SOME/IP serialization
rules. |(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS SOMEIP_00028) The SOME/IP serialization rules are ex-
plained in section 7.4.1.7.

[SWS_CM_10338]{DRAFT} Invoke the registered set/get handlers - event driven
[In case a MethodCallProcessingMode oOf either kEvent oOr kEventSin-—
gleThread has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the deserialized payload containing the method data (i.e.,
method ID and input arguments) shall be used to invoke a registered SetHandler

AUTOSAR

resp. GetHandler (see [SWS_CM_00114] and [SWS_CM_00116]) of the Field
class as a consequence to the reception of the SOME/IP request message. |
(RS_CM_00204, RS CM_00212, RS_CM 00213, RS _CM_00220, RS CM_00221,
RS _SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10339]{DRAFT} Invoke the registered set/get handlers - polling | In
case a MethodCallProcessingMode Of kPol1l has been passed to the construc-
tor of the ServiceSkeleton (see [SWS_CM_00130]), the deserialized payload con-
taining the method data (i.e., method ID and input arguments) shall be used to in-
voke a registered SetHandler resp. GetHandler (see [SWS_CM_00114] and
[SWS_CM_00116]) of the Field class upon a call to the ProcessNextMethod-
Call method (see [SWS_CM_00199]) of the ServiceSkeleton class. |
(RS_CM_00204, RS _CM_00212, RS_CM _00213, RS _CM_00220, RS_CM_00221,
RS _SOMEIP_00007, RS _SOMEIP_00009)

[SWS_CM_10340]{DRAFT} Conditions for sending of a SOME/IP response mes-
sage | The sending of a SOME/IP response message shall be requested upon
the return of a registered SetHandler resp. GetHandler (see [SWS_CM_00114]
and [SWS_CM_001186]). |(RS_CM_00204, RS CM_00212, RS_CM_00213,
RS_CM_00220, RS _CM_00221, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10341]{DRAFT} Transport protocol for sending of a SOME/IP re-
sponse message | The SOME/IP response message for the set method shall
be transmitted using the transport protocol defined by the attribute SomeipSer-
viceInterfaceDeployment.fieldDeployment.set.transportProtocol

in the Manifest. The SOME/IP response message for the Get method shall be
transmitted using the transport protocol defined by the attribute SomeipServi-
ceInterfaceDeployment.fieldDeployment.get.transportProtocol re-
spectively. |(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS _SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10342]{DRAFT} Source of a SOME/IP response message | The source
address and the source port of the SOME/IP response message shall be set ac-
cording to [SWS_CM_10310]. |(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS _SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10343]{DRAFT} Destination of a SOME/IP response message | The
destination address and the destination port of the SOME/IP response message
shall be set according to [SWS_CM_10311]. |(RS_CM_00204, RS_CM_00212,
RS _CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10344]{DRAFT} Content of the SOME/IP response message | The en-
tries in the SOME/IP response message shall be as follows:

e The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceld.

e The Method ID (see [PRS_SOMEIP_00038]) for the set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element

AUTOSAR

defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SsomeipServiceInter—
faceDeployment element defines the fieldDeployment.get.methodId.

e The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

e The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

e The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

e The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

e The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

e The Message Type (see [PRS_SOMEIP_00055]) shall be set to RESPONSE
(0x80).

e The Return Code (see [PRS_SOMEIP_00040]) shall be set to £_0x (0x00).

e The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) which has either been pro-
vided by the value of the Future returned by the registered SetHandler resp.
GetHandler or obtained internally) according to the SOME/IP serialization rules.

|(RS_CM_00204, RS _CM_00212, RS _CM_00213, RS _CM_00217,
RS _CM_00218, RS _SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003,
RS_SOMEIP_00012, RS_SOMEIP_00021, RS_SOMEIP_00025,

RS _SOMEIP_00041, RS SOMEIP_00008) The SOME/IP serialization rules are
explained in section 7.4.1.7.

[SWS_CM_10345]{DRAFT} Checks for a received SOME/IP response mes-
sage [Upon reception of a SOME/IP response message the checks defined in
[SWS_CM_10313] shall be conducted. If any of the above checks fails the received
SOME/IP event message shall be discarded and the incident shall be logged (if logging
is enabled for the ara::com implementation). |(RS_CM_00204, RS _CM_00212,
RS _CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003,
RS _SOMEIP_00012, RS _SOMEIP_00019, RS _SOMEIP_00021,
RS _SOMEIP_00025, RS _SOMEIP_00041, RS _SOMEIP_00008,
RS _SOMEIP_00014)

[SWS_CM_10346]{DRAFT} Identifying the right method | Using the Service
ID (see [PRS_SOMEIP_00040]) and the servicelInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see

AUTOSAR

[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipFieldDe-
ployment.sets and SomeipFieldDeployment.gets oOf the SomeipServiceIn-
terfaceDeployment, the right method shall be identified. |(RS_CM_00204,
RS CM _00200, RS CM 00212, RS CM 00213, RS CM 00217, RS _CM_00218,
RS _SOMEIP_00007, RS _SOMEIP_00009, RS SOMEIP _00021)

[SWS_CM_10347]{DRAFT} Discarding orphaned responses | Orphaned re-
sponses shall be discarded according to [SWS_CM_10315]. |(RS_CM_00204,
RS CM 00212, RS CM 00213)

[SWS_CM_10348]{DRAFT} Deserializing the payload | Based on the method
determined according to [SWS_CM_10346] the Payload of the SOME/IP re-
sponse message shall be deserialized according to the SOME/IP serialization
rules. |(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS SOMEIP_00009, RS SOMEIP_00028) The SOME/IP serialization rules are ex-
plained in section 7.4.1.7.

[SWS_CM_10444]{DRAFT} Failures during deserialization of response mes-
sages | In case of failures during deserialization of response messages, the
ara: : com implementation shall make the Future returned by the set or Get method
of the respective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) ready
according to [SWS_CM_10440]. |(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS _SOMEIP_00007, RS _SOMEIP_00009, RS _SOMEIP_00028)

[SWS_CM_10349]{DRAFT} Making the Future ready | In order to make the Fu-
ture returned by the sSet or Get method of the respective Field class (see
[SWS_CM_00113] and [SWS_CM_00112]) ready, the set_value operation (see
[SWS_CORE_00345] and [SWS_CORE_00346]) of the Promise corresponding to
this Future shall be invoked using the deserialized payload as an argument. This
will unblock any blocking get, wait, wait_for, and wait_until calls that have
been performed on this Future. |(RS_CM_00204, RS _CM_00212, RS_CM_00213,
RS _CM_00215, RS _SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10350]{DRAFT} Invoke the notification function | Any registered noti-
fication function shall be invoked according to [SWS_CM_10318]. |(RS_CM_00204,
RS_CM_00212, RS _CM_00213, RS_CM_00215, RS_SOMEIP_00007,
RS_SOMEIP_00009)

7.4.1.7 Serialization of Payload

[SWS_CM_10034]{DRAFT} [The serialization of the payload shall be based on the
definition of the serviceInterface of the data. |(RS_CM_00204, RS_CM_00201,
RS SOMEIP_00004, RS SOMEIP 00005, RS SOMEIP_00028)

[SWS_CM_10169]{DRAFT} [To allow migration the deserialization shall ignore pa-
rameters attached to the end of previously known parameter list. |(RS_CM_00204,
RS _CM_00202)

AUTOSAR

This means: Parameters that were not defined in the ServiceInterface used to
generate or parametrize the deserialization code but exist at the end of the serialized
data will be ignored by the deserialization.

[SWS_CM_10259]{DRAFT} [After the serialized data of a variable data length Dat -
aPrototype a padding for alignment purposes shall be added for the configured
alignment (see [SWS_CM_10260]) if the variable data length bataPrototype is not
the last element in the serialized data stream. |(RS_CM_00204, RS_CM_00201,
RS CM_00202, RS _CM _00211) This requirement does not apply for the serialization
of extensible structs and methods (see chapter 7.4.1.7.4).

[SWS_CM_10260]{DRAFT} [If SomeipDataPrototypeTransformation-
Props.someipTransformationProps. alignment is set for a variable data
length data element, the value of SomeipbDataPrototypeTransformation-—
Props.someipTransformationProps.alignment shall define the alignment.
This requirement does not apply for the serialization of extensible structs and
methods. |(RS_CM_00204, RS _CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211) (see chapter 7.4.1.7.4)

[SWS_CM_11262]{DRAFT} | |If SomeipDataPrototypeTransformation-—
Props.someipTransformationProps.alignment iS not set for a variable data
length data element, the value of TransformationPropsToServiceInter—
faceElementMappingSet.mapping.transformationProps.alignment shall
define the alignment. This requirement does not apply for the serialization of ex-
tensible structs and methods. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211) (see chapter 7.4.1.7.4)

[SWS_CM_11263]{DRAFT} | |If SomeipDataPrototypeTransformation-—
Props.someipTransformationProps.alignment and Transformation-—
PropsToServiceInterfaceElementMappingSet.mapping.transformation—
Props.alignment are both not set for a variable data length data element, no
alignment shall be applied. |(RS_CM_00204, RS _CM_00201, RS_CM_00202,
RS _CM_00211)

[SWS_CM_10263]{DRAFT} | After serialized fixed data length data elements, the
SOME/IP network binding shall never add automatically a padding for alignment. |
(RS_CM_00201, RS_CM_00211)

Note:
If the following data element shall be aligned, a padding element of according size
needs to be explicitly inserted into the CppImplementationDataType.

[SWS_CM_10037]{DRAFT} | Alignment shall always be calculated from start
of SOME/IP message. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

This attribute defines the memory alignment. The SOME/IP network binding does not
try to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

AUTOSAR

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

[SWS_CM_10016]{DRAFT} [If more data than expected shall be deserialized, the
unexpected data shall be discarded. The known fraction shall be considered. |
(RS_CM_00204, RS_CM_00202)

[SWS_CM_10017]{DRAFT} | If less data than expected shall be deserialized and the
data to be deserialized belong to a Field, the initvalue should be used if it is de-
fined. Otherwise the data shall be discarded and the incident shall be logged (if logging
is enabled for the ara: : com implementation). |(RS_CM_00204, RS_CM_00202)

In the following the serialization of different parameters is specified.

7.4.1.7.1 Basic Data Types

[SWS_CM_10036]{DRAFT} | The primitive StdCppImplementationDataTypes
defined in [13] which shall be supported for serialization are listed in Table 7.1. |
(RS_CM_00204, RS _CM 00201, RS _CM 00202, RS _CM _00211)

Type Description Size [bit] Remark

boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)

uint8_t unsigned Integer 8

uint16_t unsigned Integer 16

uint32_t unsigned Integer 32

uint64_t unsigned Integer 64

int8_t signed Integer 8

int16_t signed Integer 16

int32_t signed Integer 32

int64_t signed Integer 64

float floating point number 32 IEEE 754 binary32 (Single Preci-
sion)

double floating point number 64 IEEE 754 binary64 (Double Preci-
sion)

Table 7.1: Primitive sStdCppImplementationDataTypes supported for serialization

The Byte Order is specified common for all parameters by byteOrder of ApSomeip-
TransformationProps.

7.4.1.7.2 Enumeration Data Types

[SWS_CM_10361]{DRAFT} [Enumeration Data Types shall be serialized ac-
cording to [SWS_CM_10036] based on their underlying primitive StdCppImplemen-—
tationDataType (i.e., the Primitive Cpp Implementation Data Type that

AUTOSAR

is defined as the underlying type of the enumeration as defined in [SWS_CM_00424])
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.4.1.7.3 Scale Linear And Texttable Data Types

[SWS_CM_10391]{DRAFT} [Scale Linear And Texttable Data Types
shall be serialized according to [SWS_CM _10361] based on the Enumeration
Data Type they were specified with (see [SWS_CM_10409]). |(RS_CM_00204,
RS _CM_00201, RS _CM _ 00202, RS _CM_00211)

7.4.1.7.4 Structured Data Types (structs)

[SWS_CM_10042]{DRAFT} [A Structure Cpp Implementation Data Type
shall be serialized in order of depth-first traversal. |(RS_CM_00204, RS_CM_00201,
RS CM _00202, RS CM _00211)

The SOME/IP network binding doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP network binding shall not automatically add such padding.

So if for example a struct includes a uint8_t and a uint32_t, they are just written se-
quentially into the buffer. This means that there is no padding between the uint8 and
the first byte of the uint32_t; therefore, the uint32_t might not be aligned. So the sys-
tem designer has to consider to add padding elements to the data type to achieve the
required alignment or set it globally.

Warning about unaligned structs or similar shall not be done in the SOME/IP network
binding but only in the tool chain used to generate the SOME/IP network binding.

The SOME/IP network binding does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_CM_00252]{DRAFT} | If attribute SomeipDataPrototypeTransforma-—
tionProps.someipTransformationProps.sizeOfStructLengthField is set
to a value equal to 0, no length field shall be inserted in front of the serialized struct
for which the ApSomeipTransformationProps is defined via SomeipbataProto-

typeTransformationProps.someipTransformationProps. |(RS_CM_00204,
RS _CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10252]{DRAFT} [If atftribute SomeipDataPrototypeTransforma-

tionProps.someipTransformationProps.sizeOfStructLengthField is set
to a value greater 0, a length field shall be inserted in front of the serialized struct

AUTO SAR

for which the ApSomeipTransformationProps is defined via SomeipbataProto—

typeTransformationProps.someipTransformationProps. |(RS_CM_00204,
RS _CM 00201, RS_CM _ 00202, RS _CM _00211)

[SWS_CM_10268]{DRAFT} [If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of
the serialized struct for which the ApSomeipTransformationProps IS de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma-—

tionProps. |(RS_CM_00204, RS_CM_00201, RS _CM_00202, RS _CM_00211)
[SWS_CM_00253]{DRAFT} [|If attribute TransformationPropsToServi-

ceInterfaceElementMappingSet.mapping.transformationProps.size—
OfStructLengthField is set to a value equal to 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.size—
OfStructLengthField is not set, no length field shall be inserted in front of
the serialized struct for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-

Props. |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_00254]{DRAFT} [|If attribute TransformationPropsToServi-

ceInterfaceElementMappingSet.mapping.transformationProps.size—
OfStructLengthField is set to a value greater 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StructLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via

SomeipDataPrototypeTransformationProps.someipTransformation-—
Props. |(RS_CM_00204, RS _CM_00201, RS _CM_00202, RS_CM_00211)

[SWS_CM_10269]{DRAFT} | If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder

is set and attribute SomeipDataPrototypeTransformationProps.someip-—
TransformationProps.byteOrder is not set, the attribute Transformation-
PropsToServicelInterfaceElementMappingSet.mapping.transformation-
Props.byteOrder shall define the byte order for the length field that shall be inserted
in front of the serialized struct for which the ApSomeipTransformationProps is

defined via SomeipDataPrototypeTransformationProps.someipTransfor—
mationProps. |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_00255]{DRAFT} [|If attribute TransformationPropsToServi-
celnterfaceElementMappingSet.mapping.transformationProps.size—
OfStructLengthField is not set and attribute SomeipDataPrototypeTrans—
formationProps.someipTransformationProps.sizeOfStructLengthField
is not set, no length field shall be inserted in front of the serialized struct. |
(RS_CM_00204, RS CM 00201, RS _CM 00202, RS _CM 00211)

[SWS_CM_10270]{DRAFT} [If attribute TransformationPropsToServicelIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder is

AUTOSAR

not set and attribute SomeipDataPrototypeTransformationProps.someip—
TransformationProps.byteOrder is not set, a byte order of mostSignifi-
cantByteFirst (i.e., big endian) shall be used for the length field that shall be in-
serted in front of the serialized associative struct. |(RS_CM_00204, RS_CM_00201,
RS CM 00202, RS CM 00211)

[SWS_CM_10253]{DRAFT} [If SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfStructLengthField defines the

data type for the length field of a struct, the data shall be:

e unt8if sizeOfStructLengthField equals 1

e uint16if sizeOfStructLengthField equals 2

e uint32if sizeOfStructLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_00211)
[SWS_CM_00256]{DRAFT} [If TransformationPropsToServicelIn-

terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StructLengthField defines the the data type for the length field of a struct, the
data shall be:

e UiNt8if sizeOfStructLengthField equals 1

e UINt16if sizeOfStructLengthField equals 2

e uint32if sizeOfStructLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10218]{DRAFT} | The serializing SOME/IP network binding shall write the
size (in bytes) of the serialized struct (without the size of the length field) into the length
field of the struct. |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10219]{DRAFT} [If the length is greater than the expected length of a
struct (as specified in the data type definition) a deserializing SOME/IP network binding
shall only interpret the expected data and skip the unexpected. |(RS_CM_00204,
RS _CM_00201, RS _CM_00202, RS_CM_00211)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

AUTOSAR

Struct=1 uint32 a
float32 b 1
uint32 a float32 b_2
float32 b[2] serialization > uint32 d
Struct_2 ¢ Struct 2 float32e_1
= float32e 2
uint32d

float32 e[2]

Struct_3f

Figure 7.5: Serialization of Structs without Length Fields (Example)

Struct 1 uint16 If1
uint32 a
uint32 a float32 b_1
float32 b[2] serialization > float32 b 2
uint16 If2
uint32 d
float32e_1
float32 e _2
uint16 If3

Struct_2 ¢ Struct_2

uint32 d
float32 e[2]

Struct_3f

Figure 7.6: Serialization of Structs with Length Fields (Example)

[SWS_CM_01046]{DRAFT} Definition of t1vDataId [Regarding the definition of
tlvDataId see [TPS_MANI_01097] and [constr_1594] for details. |(RS_CM_00204,
RS CM 00205, RS SOMEIP_00050)

7.4.1.7.5 Structured Datatypes and Arguments with ldentifier and optional
Members

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can

AUTOSAR

skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Structs are modeled in the Manifest using CppImplementationDataType Of
category STRUCTURE and members are represented by CppImplementation-
DataTypeElements. Method arguments are represented by ArgumentDataProto-

types.

The assignment of Data IDs is modeled in the Manifest in the context of Transforma-—
tionPropsToServicelnterfaceElementMapping. Refer to [6] for more details.

Moreover, the usage of Data IDs allows describing structs with optional members.
Whether a member is optional or not, is defined in the Manifest using the attribute
CppImplementationDataTypeElement.isOptional.

Whether an optional member is actually present in the struct or not, must be
determined during runtime. This is realized in the Adaptive Platform using the
ara::core: :Optional class template (see 8.1.2.4.2 Optional Data Types).

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

[SWS_CM_90439]{DRAFT} [The length of a tag shall be two bytes. |()
[SWS_CM_90440]{DRAFT} [The tag shall consist of

e reserved (Bit 7 of the first byte)

e wire type (Bit 6-4 of the first byte)

e Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)

|() Refer to Figure 7.7 for the layout of the tag. Bit 7 is the high-
est significant bit of a byte, bit 0 is the lowest significant bit of a byte.

7 0o 7 0 |7/15/31 0
% Wire Type Datsai IgD é:'r?)her Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...
Byten Byten+1 Byten+2..

Figure 7.7: SOME/IP Struct Tag Layout

[SWS_CM_90441]{DRAFT} [The lower significant part of the Data ID of the member
shall be encoded in bits 7-0 of the second byte of the tag. The higher significant part
of the Data ID of the member shall be encoded in bits 3-0 of the first byte. |()

Example: The Data ID of the member is 1266 (dec). Then bits 3-0 of the first byte are
set to 0x4. The second byte is set to OxF2.

[SWS_CM_90442]{DRAFT} [The wire type shall determine the type of the following
data of the member. The value shall be assigned as shown in Table 7.2. |()

AUTOSAR

Wire Type Value

0 8 Bit Data Base data type

1 16 Bit Data Base data type

2 32 Bit Data Base data type

3 64 Bit Data Base data type

4 Complex Data Type: Array, Struct, String, Union with length
field size 1 byte (configured in data definition)

5 Complex Data Type: Array, Struct, String, Union with length
field size 1 byte (ignore static definition)

6 Complex Data Type: Array, Struct, String, Union with length
field size 2 byte (ignore static definition)

7 Complex Data Type: Array, Struct, String, Union with length

field size 4 byte (ignore static definition)

Table 7.2: Message Types

Note: Wire type 4 ensures the compatibility with the current approach where the size
of length fields is statically configured. This approach has the drawback that changing
the size of the length field during evolution of interfaces is always incompatible. Thus,
wire types 5, 6 and 7 allow to encode the size of the used length field in the transferred
byte stream.

[SWS_CM_90443]{DRAFT} [If TransformationPropsToServicelnter—
faceElementMappingSet.mapping.transformationProps.isDynami-
cLengthFieldSize is set to false or is not defined, the serializer shall use
wire type 4 for serializing complex types and shall use the fixed size length fields.
The size is defined in TransformationPropsToServiceInterfaceEle-—
mentMappingSet.mapping.transformationProps.sizeOfStructLength-
Field, sizeOfArrayLengthField Or sizeOfStringLengthField. |()

[SWS_CM_90444]{DRAFT} | |If TransformationPropsToServicelnter—
faceElementMappingSet.mapping.transformationProps.isDynami-
cLengthFieldSize is set to true, the transformer shall use wire types 5,6,7
for serializing complex types and shall chose the size of the length field according to
this wire type. |()

[SWS_CM_90445]{DRAFT} | A deserializer shall always be able to handle the wire
types 4, 5, 6 and 7 independent of the setting of TransformationPropsToSer-
viceInterfaceElementMappingSet.mapping.transformationProps.isDy-—
namicLengthFieldSize. |()

[SWS_CM_90446]{DRAFT} [If a Data ID is defined for an ArgumentDataPro-
totype Of CppImplementationDataType by means of TransformationProp-—
sToServicelInterfaceElementMappingSet.TlvDataIdDefinition.id, a tag
shall be inserted in the serialized byte stream. |()

Note: regarding existence of Data IDs, refer to [6].

[SWS_CM_90447]{DRAFT} [If the datatype of the serialized member / argument is
a basic datatype (wire types 0-3) and a Data ID is configured, the tag shall be inserted

AUTOSAR

directly in front of the member/argument. No length field shall be inserted into the
serialized stream. |()

[SWS_CM_90448]{DRAFT} | If the datatype of the serialized member/argument is not
a basic datatype (wire type 4-7) and a Data ID is configured, the tag shall be inserted
in front of the length field. |()

[SWS_CM_90449]{DRAFT} | If the datatype of the serialized member/argument is
not a basic datatype and a Data ID is configured, a length field shall always be inserted
in front of the member/argument. |()

Rationale: The length field is required to skip unknown members/arguments during
deserialization.

[SWS_CM_90450]{DRAFT} [The length field shall always contain the length up to
the next tag of the struct, but does not include the tag size and length field size itself. |

()

[SWS_CM_90451]{DRAFT} [TransformationPropsToServiceInter—
faceElementMappingSet.mapping.transformationProps.byteOrder shall
define the byte order for the length field. |()

[SWS_CM_90452]{DRAFT} [TransformationPropsToServiceInter—
faceElementMappingSet.mapping.transformationProps.byteOrder is

not defined, a byte order of mostSignificantByteFirst shall be used for the length field.

10

[SWS_CM_90453]{DRAFT} | If the member itself is of type struct, there shall be ex-
actly one length field. |()

[SWS_CM_90454]{DRAFT} [If the member itself is of type dynamic length string,
there shall be exactly one length field. | ()

[SWS_CM_90455]{DRAFT} | If the member itself is of type fixed length string, there
shall be exactly one length field corresponding to dynamic length strings. |()

Note: When serialized without tag, fixed length strings do not have a length field. For
the serialization with tag, a length field is also required for fixed length strings in the
same way as for dynamic length strings.

[SWS_CM_90456]{DRAFT} [If the member itself is of type array or vector, there shall
be exactly one length field. |()

[SWS_CM_90457]{DRAFT} [If the member itself is of type fixed length array, there
shall be exactly one length field corresponding to dynamic length arrays. |()

[SWS_CM_90467]{DRAFT} [If the member itself is of type associative map, there
shall be exactly one length field. |()

[SWS_CM_90458]{DRAFT} | If the member itself is of type Variant, there shall be
exactly one length field. The length field is added with a size of 8,16 or 32 bit. |()

AUTOSAR

[SWS_CM_90459]{DRAFT} [If the member itself is of type Variant, the length field
shall cover the size of the type field, data and padding bytes. |()

Note: For the serialization without tags, the length field of Variants does not cover the
type field. For the serialization with tags, it is required that the complete content of the
serialized Variant is covered by the length field.

[SWS_CM_90460]{DRAFT} | A member of a non-extensible (standard) struct which is
of type extensible struct, shall be serialized according to the requirements for extensible
structs. |()

[SWS_CM_90461]{DRAFT} [A member of an extensible struct which is of type non-
extensible (standard) struct, shall be serialized according to the requirements for stan-
dard structs. |()

[SWS_CM_90462]{DRAFT} [For extensible structs and extensible methods no align-
ment shall be applied. |()

Rationale: When alignment greater 8 bits is used, the serializer may add padding bytes
after variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[SWS_CM_90463]{DRAFT} [The serializer shall not include optional members in the
serialized byte stream if the has_value() method of the member returns false. |()

[SWS_CM_90464]{DRAFT} | If optional members are not available in the serialized
byte stream, the deserializer shall mark the member as not available using the reset()
method. |()

[SWS_CM_90465]{DRAFT} [If the deserializer reads an unknown Data ID (i.e. not
contained in its data definition), it shall skip the unknown member/argument by using
the information of the wire type and length field. |()

[SWS_CM_90466]{DRAFT} [If the deserializer cannot find a required (i.e. non-
optional) member defined in its data definition in the serialized byte stream, the de-
serialization shall be aborted and Unchecked Exception shall be raised. |()

For examples, please refer to [5].

7.4.1.7.6 Strings

[SWS_CM_10053]{DRAFT} | Strings shall be encoded using Unicode and ter-
minated with a "\0"-character. |(RS_CM_00204, RS _CM_00201, RS_CM_00202,
RS CM _00211)

[SWS_CM_10054]{DRAFT} [Different Unicode encoding shall be supported includ-
ing UTF-8, UTF-16BE, and UTF-16LE. Since these encoding have a dynamic length
of bytes per character, the maximum length in bytes is up to three times the length of
characters in UTF-8 plus 1 Byte for the termination with a "\0" or two times the length of

AUTOSAR

the characters in UTF-16 plus 2 Bytes for a "\0". UTF-8 character can be up to 6 bytes
and an UTF-16 character can be up to 4 bytes. |(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS _CM _00211)

[SWS_CM_10285]{DRAFT} Responsibility of proper string encoding | The appli-
cation provides the string always in the UTF-8 encoding. The SOME/IP binding has
to re-encode the data to the on-the-wire encoding that is configured by ApSomeip-
TransformationProps.stringEncoding. |(RS_CM_00204, RS_CM_00201,
RS CM_00202, RS _CM _00211)

[SWS_CM_10055]{DRAFT} [UTF-16LE and UTF-16BE strings shall be zero termi-
nated with a "\0" character. This means they shall end with (at least) two 0x00 Bytes. |
(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10056]{DRAFT} [UTF-16LE and UTF-16BE strings shall have an even
length. |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10057]{DRAFT} | For UTF-16LE and UTF-16BE strings having an odd
length the last byte shall be silently removed by the receiving SOME/IP network bind-
ing. | (RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10248]{DRAFT} [In case of UTF-16LE and UTF-16BE strings having an
odd length, after removal of the last byte, the two bytes before shall be 0x00 bytes (ter-
mination) for a string to be valid. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211)

[SWS_CM_10058]{DRAFT} | All strings shall always start with a Byte Order Mark
(BOM). |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

For the specification of BOM, see [14] and [15]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

[SWS_CM_10059]{DRAFT} [The receiving SOME/IP network binding implementa-
tion shall check the BOM and handle a missing BOM or a malformed BOM as an
error by discarding the complete payload and logging the incident (if logging is enabled
for the ara::com implementation). | (RS_CM_00204, RS _CM_00201, RS_CM_00202,
RS _CM_00211)

[SWS_CM_10060]{DRAFT} [The BOM shall be added by the SOME/IP sending
network binding implementation. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM 00211)

[SWS_CM_10242]{DRAFT} Model representation of UTF-8 Strings | An UTF-8
String shall be represented by an CppImplementationDataType

e with category equal to STRING

e which may be mapped to an ApplicationDataType With category equal to
STRING using a DataTypeMap

AUTO SAR

e with ApplicationPrimitiveDataType.swDataDefProps.sw—
TextProps.baseType.baseTypeDefinition.baseTypekEncoding set
to UTF-8 in case that the DataTypeMap is defined.

|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

Please note that according to [constr_1674] the only supported encoding of CppIm-
plementationDataType With category equal to STRING is UTF-8.

According to SOME/IP serialized strings start with a length field of 8, 16 or 32 bit which
preceeds the actual string data. The value of this length field holds the length of the
string including the BOM and any string termination in units of bytes.

[SWS_CM_10271]{DRAFT} [If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfStringLengthField is set
to a value greater 0, a length field shall be inserted in front of the serialized string
for which the ApSomeipTransformationProps is defined via SomeipbataProto-—

typeTransformationProps.someipTransformationProps. |(RS_CM_00204,
RS _CM 00201, RS _CM 00202, RS _CM _00211)

[SWS_CM_10272]{DRAFT} [If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of
the serialized string for which the ApSomeipTransformationProps is de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma—

tionProps. |(RS_CM_00204, RS_CM_00201, RS _CM_00202, RS _CM_00211)
[SWS_CM_10273]{DRAFT} [|If attribute TransformationPropsToServi-

ceInterfaceElementMappingSet.mapping.transformationProps.size-
OfstringLengthField is set to a value greater 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-—

Props. |(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_10274]{DRAFT} [If attribute TransformationPropsToServicelIn-

terfaceElementMappingSet.mapping.transformationProps.byteOrder

is set and attribute SomeipDataPrototypeTransformationProps.someip—
TransformationProps.byteOrder is not set, the attribute Transformation-—
PropsToServicelnterfaceElementMappingSet.mapping.transformation—
Props.byteOrder shall define the byte order for the length field that shall be inserted
in front of the serialized string for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor—

mationProps. |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

AUTOSAR

[SWS_CM_10275]{DRAFT} [If attribute TransformationPropsToServi-

ceInterfaceElementMappingSet.mapping.transformationProps.size—
OfstringLengthField is not set or set a value of 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField is not set or set to a value of 0, a length field of 4 bytes with the
data type uint32 shall be inserted in front of the serialized string. |(RS_CM_00204,
RS _CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10276]{DRAFT} [If attribute TransformationPropsToServiceln-
terfaceElementMappingSet.mapping.transformationProps.byteOrder Iis
not set and attribute SomeipDataPrototypeTransformationProps.someip—
TransformationProps.byteOrder is not set, a byte order of mostSignificant—
ByteFirst (i.e., big endian) shall be used for the length field that shall be inserted
in front of the serialized string. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM _00211)

[SWS_CM_10277]{DRAFT} | |If SomeipDataPrototypeTransformation-—

Props.someipTransformationProps.sizeOfStringLengthField defines the
the data type for the length field of a string, the data shall be:

e unt8if sizeOfStringLengthField equals 1

e uint16if sizeOfStringLengthField equals 2

e uint32if sizeOfStringLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_10278]{DRAFT} [If TransformationPropsToServiceIn—

terfaceElementMappingSet.mapping.transformationProps.sizeOf—-
StringLengthField defines the the data type for the length field of a string, the
data shall be:

e UiNt8if sizeOfStringLengthField equals 1

e UINt16if sizeOfStringLengthField equals 2

e uint32if sizeOfStringLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10245]{DRAFT} Serialization of strings [Serialization of strings shall
consist of the following steps:

1. Add the Length Field - The value of the length field shall be filled
with the number of bytes needed for the string (i.e., the result of
ara::core::String::length()), including the BOM and any string termi-
nation that needs to be added.

2. Appending BOM right after the length field according to the configured Ap-
SomeipTransformationProps.byteOrder, if BOM is not already available

AUTOSAR

in the first 3 (UTF-8) bytes of the to be serialized array containing the string. If
the BOM is already present, simply copy the BOM into the output buffer.

Perform the re-encoding from UTF-8 to UTF-16 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-8 to UTF-16BE shall be done if the configured
ApSomeipTransformationProps.byteOrder is setto mostSignificant—
ByteFirst. The re-encoding rom UTF-8 to to UTF-16LE shall be done if the
configured ApSomeipTransformationProps.byteOrder is setto mostSig-
nificantBytelast.

Copying the string data into the output buffer.

. Termination of the string with 0x00(UTF-8) or 0x0000 (UTF-16) if not terminated

yet by appending 0x00(UTF-8) or 0x0000 (UTF-16).

|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10247]{DRAFT} Deserialization of strings | Deserialization of strings
shall consist of the following steps:

1.

Check whether the string starts with a BOM. If not, the complete payload shall be
discarded and the incident shall be logged (if logging is enabled for the ara::com
implementation).

Check whether BOM has the same value as ApSomeipTransformation—
Props.byteOrder. If not, error handling shall be performed according to
[SWS_CORE_00001].

Remove the BOM

Silently discard the last byte of the string in case of an UTF-16 string with odd
length (in bytes)

Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, error handling shall be performed according to [SWS_CORE_00001].

Perform the re-encoding from UTF-16 to UTF-8 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-16BE to UTF-8 shall be done if the configured
ApSomeipTransformationProps.byteOrder is setto mostSignificant-—
ByteFirst. The re-encoding from UTF-16LE to UTF-8 shall be done if the
configured ApSomeipTransformationProps.byteOrder is setto mostSig-
nificantBytelast.

Copy the string data (i.e., everything but the BOM and any string termination
added during serialization).

|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

AUTOSAR

7.4.1.7.7 Vectors and arrays

SOME/IP supports arrays with static and dynamic length but there is no definition of
vectors on this abstraction level. Therefore, vectors are mapped to arrays with dynamic
length. The SOME/IP specification requires to add a length field of 8, 16 or 32 bit in
front of data structures with dynamic length. The length field of arrays describes the
total number of bytes. Note that this section uses only the term array which can also
be used to realize vectors.

[SWS_CM_00257]{DRAFT} [If attribute SomeipDataPrototypeTransforma-—
tionProps.someipTransformationProps.sizeOfArrayLengthField is setto
a value equal to 0, no length field shall be inserted in front of the serialized ar-
ray for which the ApSomeipTransformationProps is defined via SomeipDat-—
aPrototypeTransformationProps.someipTransformationProps. — Note
that omitting the length field by setting someipTransformationProps.sizeO-
fArrayLengthField to O is only allowed for arrays with static length (i.e., fixed
length arrays) though (see also [constr_3447]). |(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS_CM_00211)

[SWS_CM_10256]{DRAFT} [If atftribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfArrayLengthField is setto
a value greater 0, a length field shall be inserted in front of the serialized array for
which the ApSomeipTransformationProps is defined via SomeipbDataProto-

typeTransformationProps.someipTransformationProps. |(RS_CM_00204,
RS _CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10279]{DRAFT} [If attribute SomeipDataPrototypeTransforma-—
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of
the serialized array for which the ApSomeipTransformationProps is de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma—

tionProps. |(RS_CM_00204, RS_CM_00201, RS _CM_00202, RS _CM_00211)
[SWS_CM_00258]{DRAFT} | If attribute TransformationPropsToServiceIn-—

terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value equal to 0 and attribute SomeipbataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr—
rayLengthField is not set, no length field shall be inserted in front of the serialized
array for which the ApSomeipTransformationProps is defined via SomeipDat-
aPrototypeTransformationProps.someipTransformationProps. — Note
that omitting the length field by setting someipTransformationProps.sizeO-
fArrayLengthField to O is only allowed for arrays with static length (i.e., fixed
length arrays) though (see also [constr_3447]). |(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS _CM _00211)

AUTO SAR

[SWS_CM_00259]{DRAFT} [If attribute TransformationPropsToServicelIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-

rayLengthField is setto a value greater 0 and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.sizeOfArrayLength-
Field is not set, a length field shall be inserted in front of the serialized array for
which the ApSomeipTransformationProps is defined via SomeipbataProto-

typeTransformationProps.someipTransformationProps. |[(RS_CM_00204,
RS _CM 00201, RS_CM _00202, RS _CM _00211)

[SWS_CM_10280]{DRAFT} [If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder

is set and attribute SomeipDataPrototypeTransformationProps.someip-—
TransformationProps.byteOrder is not set, the attribute Transformation-
PropsToServiceInterfaceElementMappingSet.mapping.transformation—
Props.byteOrder shall define the byte order for the length field that shall be inserted
in front of the serialized array for which the ApSomeipTransformationProps is

defined via SomeipDataPrototypeTransformationProps.someipTransfor—
mationProps. |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10258]{DRAFT} | If attribute TransformationPropsToServiceln-
terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-

rayLengthField is not set and attribute SomeipDataPrototypeTransforma-—
tionProps.someipTransformationProps.sizeOfArrayLengthField IS not
set, a length field of 4 bytes with the data type uint32 shall be inserted in front of the
serialized array. | (RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10281]{DRAFT} [If attribute TransformationPropsToServicelIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder s
not set and attribute SomeipbDataPrototypeTransformationProps.someip—
TransformationProps.byteOrder is not set, a byte order of mostSignificant-
ByteFirst (i.e., big endian) shall be used for the length field that shall be inserted
in front of the serialized array. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211)

[SWS_CM_10257]{DRAFT} [If SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfArrayLengthField defines the
the data type for the length field of a array, the data shall be:

e uint8if sizeOfArrayLengthField equals 1

e uint16if sizeOfArrayLengthField equals 2

e UInt32if sizeOfArrayLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_00260]{DRAFT} | If TransformationPropsToServicelnter-

faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField defines the the data type for the length field of a array, the
data shall be:

AUTOSAR

e uUnt8if sizeOfArrayLengthField equals 1

e uint16if sizeOfArrayLengthField equals 2

e uint32if sizeOfArrayLengthField equals 4
|(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10076]{DRAFT} [A array shall be serialized as the concatenation of the
following elements:

¢ the length indicator which holds the length (in bytes) of the following array
e the array which contains the serialized elements of the array

where the size of the length field shall be determined as specified by ApSomeip-
TransformationProps.sizeOfArrayLengthField which applies to the array |
(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10234]{DRAFT} [A vector is represented in adaptive platform by a Cp-
pImplementationDataType with the category VECTOR. The payload is defined by a
templateArgument that points with the templateType reference to the data type of
elements that are contained in the vector. Note that vectors are realized with dynamic
sized arrays on SOME/IP level. |(RS_CM_00204, RS _CM_00201, RS_CM_00202,
RS _CM_00211)

[SWS_CM_10235]{DRAFT} [An array is represented in adaptive platform by an cp-
pImplementationDataType with the category ARRAY. The payload is defined by a
templateArgument that points with the templateType reference to the data type of
elements that are contained in the array. Note that CopImplementationDataType
with the category ARRAY are realized with fixed length arrays on SOME/IP level. |
(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

In case of nested arrays, the same scheme applies.

[SWS_CM_10222]{DRAFT} | The serializing SOME/IP network binding shall write the
size (in bytes) of the serialized array (without the size of the length field) into the length
field. |(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

The layout of arrays with dynamic length is shown in 7.8 and Figure 7.9 where 1._1
and 1_2 denote the length in bytes. The serialization of one- and multi-dimensional
dynamic length arrays is described in the next two subchapters.

One-dimensional

A one-dimensional array carries a number of elements of the same type.

Length n Element_1 Element_2 Element_3 Element_n

8,16 or 32 bit element size e

n [byte]

N
\ 4

Figure 7.8: One-dimensional arrays (Example)

[SWS_CM_10070]{DRAFT} [A one-dimensional array shall be serialized by
concatenating the arrays elements in order. |(RS_CM_00204, RS_CM_00201,
RS CM_00202, RS CM 00211)

Multi-dimensional

[SWS_CM_10072]{DRAFT} | The serialization of multi-dimensional arrays shall
happen in depth-first order. |(RS_CM_00204, RS _CM_00201, RS _CM_00202,
RS CM _00211)

1 1 1 1
Il Length n 1| Element_a[1][j...k_1] 1| Element_a[2][j...k_2] !
1 1 1 1 1 1
i i LM Es || Eia Eix1 i L2 WE ; ||Ei Eix o i .
: : : nnn : : T :
: i " :
: I A :
! L_1 [byte ! L_2 [byte
| 8,160r32bit 1 I _t [byte] > le =2 boyte] >
n [byte]

v

o
N

Figure 7.9: Multi-dimensional arrays (Example)

In case of multi-dimensional dynamic length arrays, each array (serialized as SOME/IP
array) needs to have its own length field. See 1._1 and 1._2 in Figure 7.9.

7.4.1.7.8 Associative Maps

Associative map is modeled as StdCppImplementationDataType With cate-
gory ASSOCIATIVE_MAP in the Manifest. As stated in the AUTOSAR Manifest
Specification [6] the “natural” language binding in C++ for an associative map is
ara::core: :Map<key_type,value_type> where key_type is the data type
used for the key of a map element and value_type is the data type for the value
of a map element. Hereby key_type and value_type are derived from defined
CppTemplateArguments aggregated by the Associative Map Cpp Implemen-—
tation Data Type. Please see [SWS_CM_00409] for more details.

AUTOSAR

[SWS_CM_10261]{DRAFT} Serialization of an associative map | As far as serial-
ization is concerned the serialized representation of an associative map shall consist
of the following parts without any intermediate padding:

e Length field: A length field describing the size of the associative map excluding
the length field itself in units of bytes.

e Elements: The individual map elements themselves
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_10262]{DRAFT} Insertion of an associative map length field |

If attribute SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps.sizeOfArraylLengthField is set to a value greater 0, a length field
shall be inserted in front of the serialized associative map for which the ApSomeip-
TransformationProps is definedvia SomeipDataPrototypeTransformation—
Props.someipTransformationProps. — Note that omitting the length field by
setting someipTransformationProps.sizeOfArrayLengthField to 0 is only
allowed for arrays with static length (i.e., fixed length arrays) though (see also
[constr_3447]). |(RS_CM_00204, RS_CM_00204, RS _CM_00201, RS_CM_00202,
RS _CM_00211)

[SWS_CM_10282]{DRAFT} [If atftribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of the se-
rialized associative map for which the ApSomeipTransformationProps is de-

fined via SomeipDataPrototypeTransformationProps.someipTransforma—
tionProps. |(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00264]{DRAFT} | If attribute TransformationPropsToServiceIn-—
terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is setto a value greater 0 and attribute SomeipbataPrototype-
TransformationProps.someipTransformationProps.sizeOfArraylLength-
Field is not set, a length field shall be inserted in front of the serialized associative
map for which the ApSomeipTransformationProps is defined via SomeipDat-—
aPrototypeTransformationProps.someipTransformationProps. — Note
that omitting the length field by setting someipTransformationProps.sizeO-
fArrayLengthField to O is only allowed for arrays with static length (i.e., fixed
length arrays) though (see also [constr_3447]). |(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10283]{DRAFT} | If attribute TransformationPropsToServiceIn-—
terfaceElementMappingSet.mapping.transformationProps.byteOrder

is set and attribute SomeipDataPrototypeTransformationProps.someip-—
TransformationProps.byteOrder is not set, the attribute Transformation-
PropsToServicelInterfaceElementMappingSet.mapping.transformation—
Props.byteOrder shall define the byte order for the length field that shall be inserted

AUTOSAR

in front of the serialized associative map for which the ApSomeipTransformation—
Props is defined via SomeipDataPrototypeTransformationProps.someip—
TransformationProps. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM _00211)

[SWS_CM_10267]{DRAFT} Insertion of an associative map length field
[If attribute TransformationPropsToServicelnterfaceElementMap—
pingSet.mapping.transformationProps.sizeOfArrayLengthField is not
set and attribute SomeipDataPrototypeTransformationProps.someipTrans—
formationProps.sizeOfArrayLengthField is not set, a length field of 4 bytes
with the data type uint32 shall be inserted in front of the serialized associative map. |
(RS_CM_00204, RS _CM_00201, RS_CM _00202, RS_CM_00211)

[SWS_CM_10284]{DRAFT} [If attribute TransformationPropsToServiceln-
terfaceElementMappingSet.mapping.transformationProps.byteOrder Iis
not set and attribute SomeipDataPrototypeTransformationProps.someip—
TransformationProps.byteOrder is not set, a byte order of mostSignifi-
cantByteFirst (i.e., big endian) shall be used for the length field that shall be in-
serted in front of the serialized associative map. |(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS CM _00211)

[SWS_CM_10264]{DRAFT} Size of the associative map length field | If Someip-

DataPrototypeTransformationProps.someipTransformationProps.size-
OfArrayLengthField defines the the data type for the length field of an associative
map, the data shall be:

e uUnt8if sizeOfArrayLengthField equals 1

e uint16if sizeOfArrayLengthField equals 2

e Unt32if sizeOfArrayLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)
[SWS_CM_00265]{DRAFT} | If TransformationPropsToServicelnter-—

faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField defines the the data type for the length field of an associative map,
the data shall be:

e Uint8if sizeOfArrayLengthField equals 1

e Unt16if sizeOfArrayLengthField equals 2

e uint32if sizeOfArrayLengthField equals 4
|(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10265]{DRAFT} Serialization of associative map elements | The in-
dividual elements of the associative map shall be serialized as a sequence of key-
value pairs without any additional intermediate padding. Hereby the key attribute of
an element shall be serialized first followed by the value attribute of this element. |
(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

AUTOSAR

Table 7.3 illustrates the serialized form of an example map consisting of 3 elements
where each element consists of a key-value pair of type uint16 each. The size0O-
fArrayLengthField is set to 4 bytes.

length field = 4 Bytes

keyO value0
key1 value1
key2 value2

Table 7.3: Example of a serialized associative map

[SWS_CM_10266]{DRAFT} Applicability of mandatory padding after variable
length data elements | Any mandatory padding after variable length data elements
according to [TPS_MANI_03104] shall be applied after the serialized key attribute
as well as after the value attribute in case the respective attributes is typed by a
variable length data type. This requirement does not apply for the serialization of
extensible structs and methods. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211) (see chapter 7.4.1.7.4)

Note: Adhering to [SWS_CM_10266] is essential to ensure interoperability with the
AUTOSAR classic platform where maps may be modelled as ApplicationAr-
rayDataType With a dynamicArraySizeProfile of VSA_LINEAR where each
array element is an ApplicationRecordDataType Of variable length and thus
[TPS_SYST _02126] applies to the individual ApplicationRecordElements.

7.4.1.7.9 Variants

A Variant (type-safe union) can contain different types of elements. For example, if one
defines a Variant of type uint8 and type uint16, the Variant shall carry an element of
uint8 or uint16. When using different types of elements the alignment of subsequent
parameters may be distorted. To resolve this, padding might be needed.

[SWS_CM_10088]{DRAFT} [The default serialization layout of Variants are specified
by the union data type in SOME/IP which is shown in Table 7.4. |(RS_CM_00201,
RS _CM_00202, RS_CM_00211)

Length field (optional)
Type field
Element including padding [sizeof(padding) = length - sizeof(element)]

Table 7.4: Default serialization layout of unions (Variants)

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of unions (Variants). The
length field of a union (Variant) describes the number of bytes in the union (Variant).

This allows the deserializing network binding to quickly calculate the position where the
data after the union (Variant) begin in the serialized data stream. This gets necessary
if the union (Variant) contains data which are larger than expected, for example if a

AUTOSAR

struct was extended with appended new members and only the first "old" members are
deserialized by the SOME/IP network binding.

[SWS_CM_10254]{DRAFT} | If attribute sizeOfUnionLengthField of Ap-
SomeipTransformationProps is set to a value greater 0, a length field shall be
inserted in front of the serialized Variant for which the ApSomeipTransformation—
Props is defined. |(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10255]{DRAFT} | If ApSomeipTransformationProps.sizeOfU-
nionLengthField is present for a Variant specified the data type of the length field
for the Variant shall be determined by the value of ApSomeipTransformation-
Props.sizeOfUnionLengthField:

e uint8if sizeOfUnionLengthField equals 1

e Uint16if sizeOfUnionLengthField equals 2

e uint32if sizeOfUnionLengthField equals 4
|(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_10226]{DRAFT} | The serializing SOME/IP network binding shall write the
size (in bytes) of the serialized Variant (including padding bytes but without the size of
the length field and type field) into the length field of the Variant. This requirement does
not apply for the serialization of extensible structs and methods. |(RS_CM_00201,
RS_CM_00202, RS_CM_00211) (see chapter 7.4.1.7.4)

[SWS_CM_10227]{DRAFT} [If the length is greater than the expected length of a
Variant a deserializing SOME/IP network binding shall only interpret the expected data
and skip the unexpected. | (RS_CM_00201, RS_CM_00202, RS_CM_00211)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

The type field describes the type of the element. The length of the type field can be 32,
16, 8 or 0 bits.

[SWS_CM_10250]{DRAFT} [The data type of the type field of a Variant shall be de-
termined using the ara: :core: :Variant: :index () member function. The Variant
template class is specified in [16]. |(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10251]{DRAFT} [The value of the type field shall be set to the value
which is returned by the ara::core::vVariant::index () member function and
incremented by 1.

Note: The ara: :core::Variant::index () member function returns a zero-based
index of the element hold in the Variant. A negative index represents a valueless
Variant. |(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10098]{DRAFT} [Possible values of the type field are defined by the ele-
ments of the Variant. The types are encoded in ascending order starting with 1 reusing
the index encoding format of the Variant incremented by 1. The encoded value 0

AUTOSAR

is reserved for the NULL type - i.e. a valueless (empty) Variant. |(RS_CM_00201,
RS _CM_00202, RS_CM _00211)

[SWS_CM_10099]{DRAFT} [The element is serialized depending on the type in the
type field. This also defines the length of the data. All bytes behind the data that are
covered by the length, are padding. The deserializer shall skip the padding bytes by
calculating the required number according to the formula given in [SWS_CM_10088].
|(RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.4.1.7.9.1 Example: Variant of uint8/uint16 both padded to 32 bit

In this example a length of the length field is specified as 32 bits. The Variant shall
support a uint8 and a uint16 as elements. Both are padded to the 32 bit boundary
(length=4 Bytes).

A uint8 will be serialized like this:

Length = 4 Bytes
Type = 1
uint8 | Padding 0x00 | Padding 0x00 | Padding 0x00

A uint16 will be serialized like this:

Length = 4 Bytes
Type =2
uint16 | Padding 0x00 | Padding 0x00

7.4.2 Signal-Based Network binding

The applications on the adaptive platform communicate with each other in a service-
oriented manner. When exchanging information with software components executed
on an AUTOSAR classic platform which make use of signal-based communication,
a conversion between this signal-based communication and the service-oriented com-
munication needs to take place. Hereby the signals of a received signal-based commu-
nication is being made available as elements of a provided ServiceInterface. The
signals of a sent signal-based communication are being made available as elements of
a required serviceInterface. The conversion between signal-based communica-
tion and service-oriented communication may be performed by a software component
on an AUTOSAR classic platform gateway ECU or by an adaptive application on an
AUTOSAR adaptive platform ECU.

Note: Behavioral details of this signal-based “network binding” are currently not spec-
ified in this specification. The actual implementation is completely proprietary. Details
on serialization, timing and transmission/reception behavior, however, can be found in
the specifications of the AUTOSAR Classic Platform.

AUTOSAR

The modeling of the signal-based communication and the mapping between the indi-
vidual elements of a ServiceInterface to the corresponding ISignalTrigger—
ings is defined in the chapter “Signal-based communication” in [6].

[SWS_CM_10174]{DRAFT} Mix of signal-based and SOME/IP communication |
A combination of signal-based network binding and SOME/IP network binding shall
be possible in a way to support the reception of a mix of signal-based communication
and SOME/IP communication within a single UDP datagram or a single TCP stream on
one UDP/TCP socket. Such a mix can occur when using [17] with enabled PDU-header
option on the sender side. | (RS_CM_00204)

7.4.3 DDS Network binding

[SWS_CM_11000]{DRAFT} [The DDS network binding shall comply with the DDS
Minimum Profile defined in [18], the DDS Wire Interoperability protocol (RTPS) defined
in [19], and the DDS-XTYPES Minimal Programming Interface and Network Interoper-
ability Profiles defined in [20]. |(RS_CM_00204)

7.4.3.1 Service Discovery

[SWS_CM_11001]{DRAFT} Mapping of OfferService method [When instructed to
offer a Service, the DDS Binding shall perform the following operations:

e [SWS_CM 11002] It shall assign a DDS DomainParticipant to the Service In-
stance.

e [SWS_CM_11003] It shall assign a DDS Topic and a DDS DataWriter to ev-
ery VariableDataPrototype defined in the ServiceInterface in the role
event.

e [SWS_CM_11029] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DataReader, to provide ac-
cesstoall ClientServerOperations defined inthe ServiceInterface the
role method.

e [SWS_CM_11030] It shall assing a DDS Topic and a DDS DataWriter to every
Field defined in the ServiceInterface inthe role field with its hasNoti-
fier attribute set to true.

e [SWS _CM_11031] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DDS DataReader, to provide
access to all the Fields defined in the SserviceInterface intherole field
with hasGetter and/or hasSetter attributes set to t rue via getter/setter invo-
cation.

e [SWS CM _11004] It shall add the Service and Service Instance IDs to the DDS
DomainParticipant's USER_DATA QoS Policy.

AUTOSAR

|(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11002]{DRAFT} Assigning a DDS DomainParticipant to a Service In-
stance | The DDS Binding shall assign a DDS DomainParticipant to every Ser-
vice Instance. The configuration of the DomainParticipant is described in the
TPS_ManifestSpecification:

e The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the domainId.

e The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the gosProfile.

Before creating a new DomainParticipant, the DDS binding shall first look for existing
DomainParticipants in the current process that match the configuration criteria speci-
fied above®. If the search is successful, the binding shall assign the DomainParticipant
found to the Service*; otherwise, the binding shall create a new DomainParticipant
according to the desired configuration and assign it to the Service.

Once the DomainParticipant is available to the Service Instance, the binding implemen-
tation shall create a DDS Publisher and a DDS Subscriber to enclose all DataWriters
and DataWriters associated with the Instance. The Partition QoS of both the DDS
Publisher and DDS Subscriber shall contain the following partition name:

"ara.com://services/<svcId>_<svcInId>"
Where:

<sveId> isthe Service Id derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfacelId.

<sveInId> is the Instance Id derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

Publisher and Subscriber objects may be reused across events and other resources
provided by the Service Instance; therefore, they shall not be removed until the enclos-
ing DomainParticipant is destroyed.

|(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11003]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Event in the Servicelnterface | The DDS binding shall assign a DDS Topic to
every event in the SserviceInterface according to the mapping rules specified
in [SWS_CM_11015]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required

3The DDS APIs that provide the ability to find existing DomainParticipants search in the scope of the
address space of the current process—only local DomainParticipants may be reused.

4The rules specified in this binding ensure the creation of only one DomainParticipant for a given
Domain and set of QoS settings (qosProfile).

AUTOSAR

criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the event as defined in [SWS_CM_11015].

Once all DDS Topics representing the events in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per event using the DDS Publisher created in
[SWS_CM_11002]. The DataWriter shall be configured according to the gosProfile
specified in the associated DdsEventQosProps.

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. |(RS_CM_00204,
RS _CM_00200, RS_CM_00101)

[SWS_CM_11029]{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Methods in the Servicelnterface [The DDS
binding shall instantiate a DDS Service [21] to handle requests to all the methods in
the serviceInterface.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service that handles those method calls according to the mapping rules spec-
ified in [SWS_CM_11100]. Since these DDS Topics may already be available in the
DomainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the service
shall first look for existing Topics in the DomainParticipant matching the required crite-
ria. If the search is unsuccessful, the DomainParticipant shall create new DDS Request
and Reply Topics to represent the DDS Service as specified in [SWS_CM_11100].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

e [SWS_CM_11106] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

e [SWS_CM_11107] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. |(RS_CM_00204,
RS _CM _00200, RS _CM_00101) The handling of method calls with DDS is specified
in 7.4.3.3.

[SWS_CM_11030]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Field in the Servicelnterface with its hasNotifier attribute equal to true | The
DDS binding shall assign a DDS Topic to every field in the ServicelInterface
with its hasNotifier attribute set to t rue according to the mapping rules specified
in [SWS_CM_11130]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required

AUTOSAR

criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the field as defined in [SWS_CM_11130].

Once all DDS Topics representing the fields in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per £ield with the hasNotifier attribute set to
true using the DDS Publisher created in [SWS_CM_11002]. The DataWriter shall
be configured according to the gqosProfile specified in the associated DdsField-
QosProps.

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. |(RS_CM_00204,
RS _CM_00200, RS_CM _00101)

[SWS_CM_11031]{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Field Getters/Setters in the Servicelnter-
face | The DDS binding shall instantiate a DDS Service [21] to handle get/set requests
toallthe fieldsinthe ServiceInterface with hasGetter and/or hasSetter set
o true.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service according to the mapping rules specified in [SWS_CM_11144]. Since
these DDS Topics may already be available in the DomainParticipant assigned to the
Service Instance (e.g., because a different Service Instance assigned to the same Do-
mainParticipant may have created them), the service shall first look for existing Topics
in the DomainParticipant matching the required criteria. If the search is unsuccessful,
the DomainParticipant shall create new DDS Request and Reply Topics to represent
the DDS Service as specified in [SWS_CM_11144].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

e [SWS_CM_11149] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

e [SWS_CM_11150] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. |(RS_CM_00204,
RS_CM_00200, RS _CM_00101) The handling of fields with DDS is specified in sec-
tion 7.4.3.4.

[SWS_CM_11004]{DRAFT} Adding Service and Service Instance IDs to the DDS
DomainParticipant’s USER_DATA QoS Policy [The binding implementation shall
configure the USER_DATA QoS Policy of the DDS DomainParticipant associated with
the Service Instance to propagate the Service and Instance IDs using the native DDS
discovery mechanisms defined in [19]. The USER_DATA QoS Policy appends a user-
defined value to the DomainParticipant’s discovery messages. This information shall

AUTOSAR

be used by ara::com Clients and DDS native applications to identify a DomainPartici-
pant as an “ara::com DomainParticipant” that provides one or more Service Instances.

Service and Service Instance IDs shall be encoded in the USER_DATA QoS Policy in
string format according to the following pattern:

"ara.com://services/<svcId>_<svcInId>[&<svcId>_<svcInId>]=*"

Where:

<sveId> is the Service Id derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfacelId.

<sveInId> is the Instance Id derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

Because a DomainParticipant may be associated with one or more Service Instances,
the syntax specified above allows appending one or more <svcId>_<svcInId> pairs
to the USER_DATA QoS:

o If USER_DATA QoS is empty, the binding implementation shall set it to

"ara.com://services/<svcId> <svcInId>".

e Else, if USER_DATA QoS is not empty, the binding implementation shall append
the Service Id and Instance Id to the current value preceded by an ampersand
symbol (i.e., "&<svcId>_<svcInId>").

|(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11005]{DRAFT} Mapping of StopOfferService method | When in-
structed to stop offering a Service, the DDS Binding shall perform the following op-
erations:

¢ |t shall remove the appropriate Service and Instance IDs from the USER_DATA
QoS Policy of the DDS DomainParticipant assigned to the Service Instance.

e [t shall remove all DDS DataWriters associated with events inthe ServiceIn-
terface created in previous calls to the Of ferService () method.

e |t shall remove all DDS DataWriters and DataReaders associated with the
ClientServerOperations defined in the role method created in previous
calls to the OfferService () method.

e |t shall remove all DDS DataWriters associated with fields inthe ServiceIn-
terface with their hasNotifier attribute set to true created in previous calls
to the OfferService () method.

e It shall remove all DDS DataWriters and DataReaders associated with the
fields in the ServiceInterface with hasGetter and/or hasSetter at-
tributes set to t rue created in previous calls to the Of ferService () method.

|(RS_CM_00204, RS_CM_00105)

AUTOSAR

[SWS_CM_11006]{DRAFT} Mapping of FindService method | When instructed to
find remote Services, the DDS Binding shall perform the following operations:

e [SWS _CM _11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Services Instances. If such DomainParticipant does not exist, the
DDS binding shall create a new one as specified in [SWS_CM_11008].

e [SWS_CM_11009] It shall iterate the list of discovered remote DomainPartici-
pants and look for those associated to Service Instances that match the filter
criteria specified in the FindService () call.

e It shall return a HandleType object for every Service Instance that matches the
filter criteria. The Handle object shall contain a reference to both the Domain-
Participant that was used in the discovery phase and the DDS Publisher and
Subscriber created to match the partition of the remote service instance (see
[SWS_CM_11009]), so that they can be used to create the appropriate DataWrit-
ers and DataReaders to handle remote communication.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11007]{DRAFT} Finding a DDS DomainParticipant suitable for per-
forming client-side operations | The DDS binding shall provide client-side methods
with a DDS DomainParticipant capable of discovering and communicating with remote
DDS DomainParticipants assigned to the requested Service Instance(s). The configu-
ration of the DomainParticipant is described in the TPS_ManifestSpecification:

e The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the domainId.

e The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element definesthe gosProfile.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11008]{DRAFT} Creating a DDS DomainParticipant suitable for per-
forming client-side operations | To create a DomainParticipant capable of dis-
covering and communicating with remote DDS DomainParticipants assigned to Ser-
vice Instances, the binding implementation shall use the configuration parameters
in the TPS_ManifestSpecification described in [SWS_CM_11007]. |(RS_CM_00204,
RS _CM_00200, RS_CM_00102)

[SWS_CM_11009]{DRAFT} Discovering remote Service Instances through DDS
DomainParticipants | DDS DomainParticipants created or retrieved in the context
of Service Discoverty are responsible for discovering remote DomainParticipants as-
signed to ara::com Service Instances.

To retrieve the list of discovered Service Instances, the DDS binding shall iterate first
the list of remote DomainParticipants the DomainParticipant has discovered so far.
This shall be done by calling read () on the DomainParticipant’s built-in DataReader
for the DCPSParticipant Topic. DCPSParticipant is a standard DDS Topic de-
fined in [19] that DomainParticipants use to inform other DomainParticipants of their

AUTOSAR

presence in the network. Among other things, DCPSParticipant Topics propagate
the DomainParticipant’s USER_DATA QoS Policy; therefore, these messages provide
all the necessary information to identify remote DomainParticipants associated with
ara::com Service Instances.

The DDS binding shall analyze the content of the USER_DATA QoS of each remote Do-
mainParticipant and check whether they are associated with Service Instances match-
ing the following criteria:

If requiredServiceInstancelId is set to “ANY”, the binding shall return a new
handle for each service instance found in remote DomainParticipants’ USER_DATA
QoS according to the following pattern:

"ara.com://services/.x<svcId>.x"

Else, if requiredServiceInstancelId is set to any value other than “ANY”, the
binding shall return a new handle for every service instance found in remote Domain-
Participants’ USER_DATA QoS according to the following pattern:

"ara.com://services/.x<svcId>_<regSvcInId>.x"

Where:
<sveId> is the corresponding serviceInterfaceld.
<reqSveInId> is the corresponding requiredServiceInstanceId.

Before returning new handles, the binding implementation shall ensure that the Do-
mainParticipant used in the discovery phase has one DDS Publisher and one DDS
Subscriber per service instance found matching the filter criteria®. The Partition QoS
of both DDS Publisher and DDS Subscriber shall contain the following partition name
to match the partition in which the DataReaders and DataWriters associated with the
remote service instance are operating (in consonance with [SWS_CM_11002)):

"ara.com://services/<svcId>_<reqSvcInId>"

If the binding implementation does not find a DDS Publisher with the aforementioned
requirements, it shall create a new one and configure the Publisher’s Partition QoS with
the partition name defined above. Likewise, if it does not find a DDS Subscriber with
those requirements, it shall create a new one and configure it accordingly.

Publisher and Subscriber objects may be reused across proxies associated with a
remote service instance; therefore, they shall not be removed until the enclosing Do-
mainParticipant is destroyed.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11010]{DRAFT} Mapping of StartFindService method | When in-
structed to start a continuous service search, the DDS Binding shall perform the fol-
lowing operations:

SThese Publishers and Subscribers will be used to enclose all the DDS DataWriters and DataRead-
ers, respectively, that will handle communication with the corresponding remote service instance’s DDS
DataReaders and DataWriters.

AUTOSAR

e [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Service Instances. If such DomainParticipant does not exist, the
DDS binding shall create it as specified in [SWS_CM_11008].

e [SWS_CM_11011] It shall define a DDS BuiltinParticipantListener capable of call-
ing the given FindServiceHandler upon the occurrence of any of the following
events:

1. A remote DomainParticipant assigned to a matching Service is discovered.

2. A remote DomainParticipant assigned to a matching Service does not con-
tain the service anymore (i.e., any time a remote DomainParticipant stopped
offering a matching Service by removing it from its USER_DATA QoS).

3. A remote DomainParticipant assigned to a matching Service ceases
to exist (i.e., the instance state is either NOT_ALIVE_DISPOSED or
NOT_ALIVE_NO_WRITERS).

e [SWS _CM _11012] It shall bind the defined BuiltinParticipantListener to the Do-
mainParticipant.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11011]{DRAFT} Defining a DDS BuiltinParticipantListener [The DDS
Binding implementation shall defineaBuiltinParticipantListener classto han-
dle notifications whenever a remote DomainParticipant is discovered. This class shall
derive from the standard DataReaderListener class [18], specifying that the data
type of the samples to be handled is ParticipantBuiltinTopicData—the data
type associated with the built-in DataReader for samples of DcPSParticipant Topic
[19].

BuiltinParticipantListener shall implement the following methods according
to the specified instructions:

e A Constructor that takes as a parameter references to a FindServiceHan-
dler and a requiredServiceInstanceId. These references shall be stored
in member variables so that they can be used by subsequent executions of
on_data_available ()—which is the method the listener calls every time a
new DomainParticipant is discovered.

e An on_data_available () method that calls FindServiceHandler us-
ing the value of the member variable requiredServiceInstanceId. If
the returned ServiceHandleContainer contains more than one element,
on_data_available () shall invoke FindServiceHandler and pass the
container as a parameter; otherwise the method shall return and perform no
further action.

|(RS_CM_00204, RS_CM_00200, RS_CM_00102)

AUTOSAR

[SWS_CM_11012]{DRAFT} Binding a BuiltinParticipantListener to a DDS Do-
mainParticipant | To bind a BuiltinParticipantListener to a DDS Domain-
Participant, the DDS binding implementation shall create a new BuiltinPartici-
pantListener object (see [SWS_CM_11011]) passing FindServiceHandler and
requiredServiceInstancelId to the listener's constructor. Then service shall then
bind the newly created listener to the DomainParticipant using the set_listener ()
method with StatusMask = DATA_AVAILABLE_STATUSE.

The BuiltinParticipantListener shall be removed when the enclosing DomainParticipant
is destroyed. |(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11013]{DRAFT} Mapping of StopFindService method | When in-
structed to stop a continuous service search initiated by a previous callto StartFind-
Service (), the DDS Binding shall perform the following operations:

e [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable
of finding remote Service Instances. If such DomainParticipant does not exist,
StopFindService () shall return and perform no further action.

e [SWS _CM_11014] It shall unbind the BuiltinParticipantListener from
the retrieved DDS DomainParticipant’.

|(RS_CM_00204, RS_CM_00200)

[SWS_CM_11014]{DRAFT} Unbinding a BuiltinParticipantListener from a DDS
DomainParticipant [When instructed to unbind a BuiltinParticipantListener
from a DDS DomainParticipant, the DDS binding implementation service shall invoke
the DomainParticipant’s set_listener () method to disable the listener. In that
case, set_listener () shall be called with StatusMask = STATUS_MASK_NONE.
|(RS_CM_00204, RS _CM_00200)

7.4.3.2 Handling Events

[SWS_CM_11015]{DRAFT} Mapping Events to DDS Topics | The DDS binding
shall map every variableDataPrototype defined in the ServiceInterface in
the role event to a DDS Topic. The equivalent DDS Topic shall be configured as
follows:

e The Topic Name shall be derived from the Manifest, where the DdsEventDe-
ployment element defines the topicName.

e The Topic Data Type shall be defined as specified in [SWS_CM_11008], and shall
be registered under the equivalent data type’s name.

6Note that the syntax of set_listener () and StatusMask is described in terms of the DDS
Platform-Independent Model specified in [18]. Different Platform-Specific Mappings, such as the DDS-
CPP-PSM specified in [22], map these concepts into more language-friendly constructs.

"Note that with the behavior specified for FindService () and StartFindService () —the only
methods capable of creating DomainParticipants—guarantees that the DomainParticipant used by sub-
sequent calls to StartFindService () and StopFindService () will be the same.

AUTOSAR

|(RS_CM 00204, RS_CM_00201)

[SWS_CM_11016]{DRAFT} DDS Topic data type definition | The data type of a
DDS Topic representing an Event shall be constructed according to the following IDL
definition®:

1 struct <eventTypeName>EventType {

2 @key uintl6 instance_id;

3 @external <eventTypeName> data;
4 };

Where:

<eventTypeName> is the Cpp Implementation Data Type symbol

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

data is a reference (per language mapping of the Gexternal annotation) to the ac-
tual value of the event, which shall be constructed and encoded according to
the DDS serialization rules.

|(RS_CM_00204, RS _CM_00201)
The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11017]{DRAFT} Mapping of Send method | When instructed to send an
event message, the DDS Binding shall construct a new sample of the equivalent DDS
Topic data type (see [SWS_CM_11016]) as follows:

e The Instance Id field (instance_1id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-
celd.

e The Data field (data) shall point to the data input parameter of the Send ()
method.

That sample shall be then passed as a parameter to the write () method of the DDS
DataWriter associated with the event, which shall serialize the sample according to
the serialization rules, and publish it over DDS. |(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11018]{DRAFT} Mapping of Subscribe method | When instructed to
subscribe to an event, the DDS binding shall create a DDS DataReader using the
DDS Subscriber created for the proxy in [SWS_CM_11009]. The rules to create the
DataReader are specified in [SWS_CM_11019].

|(RS_CM_00204, RS_CM_00103)

8DDS types are often defined in OMG IDL [23], which provides a standard language-independent
format to represent data types and interfaces. Even though we use IDL throughout the specification
to define data types, the use of IDL to is not mandated (i.e., a compliant implementation could choose
to hand-craft these types, run code generation from an equivalent XML syntax, or run vendor-specific
mechanisms to generate the actual data types).

AUTOSAR

[SWS_CM_11019]{DRAFT} Creating a DDS DataReader for event subscrip-
tion | The DDS binding shall create a DDS DataReader for the Topic associ-
ated with the event (see [SWS_CM_11015]). To ensure the proxy communi-
cates only with the service instance it is bound to, the binding implementation shall
use the DDS Subscriber created in [SWS_CM_11009] (whose partition name is
"ara.com://services/<svcId>_<reqgSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsEven-
tQosProps element defines the gqosProfile that shall be used. To configure
the DataReader’s cache size according to the maxSampleCount specified in the
Subscribe () method call, the value of the DataReader’'s HISTORY QoS speci-
fied in gosProfile shall be overridden as follows:

— history.kind = KEEP_LAST_HISTORY_QOS
— history.depth = <maxSampleCount>

e Listener shall be aninstance of the DataReaderListener class specified in
[SWS_CM_11020].

e StatusMask shall be setto STATUS_MASK_NONE.
|(RS_CM_00204, RS_CM_00103)

[SWS_CM_11020]{DRAFT} Defining a DDS DataReaderListener | The DDS Bind-
ing implementation shall define a DataReaderListener class capable of handling
notifications when a new sample is received and/or when the matched status of the
subscription changes. This class shall derive from the standard DataReaderLis-
tener class [18], specifying that the samples to be handled are of the Topic data type
specified in [SWS_CM_11016].

The DataReaderListener shall implement the following methods according to the
specified instructions:

e A Constructor that initializes two member variables that hold references to an
EventReceiveHandler and a SubscriptionStateChangeHandler.

e Anon_data_available () method that calls the EventReceiveHandler ifit
has been set and there are valid samples in the DataReader’s cache.

e An on_subscription_matched () method that calls GetSubscription-
State () and passes the resulting SubscriptionState 10 Subscription-
StateChangeHandler if it has been set.

e A set_event_receive_handler () method that takes as an input parameter
a reference t0 an EventReceiveHandler and updates the member variable
holding a reference to an EventReceiveHandler to point to the input parame-
ter.

AUTOSAR

e A set_subscription_state_change_handler () method that takes as an
input parameter a reference to a SubscriptionStateChangeHandler and
updates the member variable holding a reference to a SubscriptionState—
ChangeHandler to point to the input parameter.

|(RS_CM_00204, RS _CM_00103)

[SWS_CM_11021]{DRAFT} Mapping of Unsubscribe method | When instructed
to unsubscribe from a service event, the DDS binding shall delete the DataReader
associated with the event. | (RS_CM_00204, RS_CM_00104)

[SWS_CM_11022]{DRAFT} Mapping of GetSubscriptionState method | When
instructed to provide the subscription state, the DDS binding shall check if the
DataReader associated with the subscription exists:

o If it does exist, the binding shall call the DataReader’s
get_subscription_matched_status () method next.

— If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, GetSubscriptionState () shall return
SubscriptionState = kSubscribed.

— Otherwise, it shall return SubscriptionState = kSubscription-

Pending.

e Else, if it does not exist—which indicates that either Subscribe ()
has never invoked or Unsubscribe() has been called before—
GetSubscriptionState () shall return SubscriptionState = kNot-
Subscribed.

|(RS_CM_00204, RS_CM_00106)

[SWS_CM_11023]{DRAFT} Mapping of GetNewSamples method | When in-
structed to get new samples, the DDS binding shall perform a take () on the
DataReader as follows:

e If amaxNumberOfSamples is specified, the binding implementation shall invoke
take () withmax_samples = maxNumberOfSamples.

e Else, if N0 maxNumberOfSamples is specified (i.e., if maxNumberOfSamples
is equal to the default value std: :numeric_limits<size_t>::max()), the
binding implementation shall invoke take () without specifying a max_samples
limit.

After calling take (), the binding implementation shall invoke the callable f for ev-
ery valid sample taken from the DataReader’s cache (i.e., every sample with Sample-

Info.valid_data equalto true), providing £ with a reference to the corresponding
sample.

|(RS_CM_00204, RS_CM_00202)

AUTOSAR

[SWS_CM_11024]{DRAFT} Mapping of GetFreeSampleCount method [When
instructed to provide the number of free sample slots, the binding implementa-
tion shall return the number free sample slots in the DDS DataReader’s cache. |
(RS_CM_00204, RS_CM_00202)

[SWS_CM_11025]{DRAFT} Mapping of SetReceiveHandler method | When in-
structed to register an EventReceiveHandler, the binding implementation shall per-
form the following operations:

¢ It shall get a reference to the DataReader’s listener using the get_1listener ()
method.

e It shall use the set _event receive handler () method to instruct the lis-
tener to invoke the new EventReceiveHandler whenever there is data avail-
able.

¢ It shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and statusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE of
DATA_AVAILABLE_STATUS, setitto DATA_AVAILABLE_STATUS.

- If the original value of StatusMask was
SUBSCRIPTION_MATCHED_STATUS, set it to
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set

it to DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS.
|(RS_CM_00204, RS_CM_00203)

[SWS_CM_11026]{DRAFT} Mapping of UnsetReceiveHandler method | When in-
structed to unregister an EventReceiveHandler, the binding implementation shall
perform the following operations:

e It shall get a reference to the DataReader’s listener using the get_listener ()
method.

e lt shall use the set_event receive handler () method to unset the internal
EventReceiveHandler thatis called whenever there is data available.

¢ It shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and statusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE oOr
DATA_AVAILABLE_STATUS, setitto STATUS_MASK_NONE.

- If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

AUTOSAR

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set
it to SUBSCRIPTION_MATCHED_STATUS.

|(RS_CM_00204, RS_CM_00203)

[SWS_CM_11027]{DRAFT} Mapping of SetSubscriptionStateHandler method |
When instructed to register a SubscriptionStateChangeHandler, the binding im-
plementation shall perform the following operations:

e |t shall get a reference to the DataReader’s listener using the get_listener ()
method.

e It shall use the set_subscription_state_change_handler () method to
instruct the listener to invoke the new SubscriptionStateChangeHandler
whenever there is a change in the SubscriptionMatchedStatus.

¢ It shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and StatusMask set as follows:

— If the original value of sStatusMask was STATUS_MASK_NONE
or SUBSCRIPTION_MATCHED_STATUS, set it 10 SUBSCRIP-
TION_MATCHED_STATUS.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS.

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set
itto DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

|(RS_CM_00204, RS _CM_00106)

[SWS_CM_11028]{DRAFT} Mapping of UnsetSubscriptionStateHandler method
[When instructed to unregister a SubscriptionStateChangeHandler, the binding
implementation shall perform the following operations:

e |t shall get a reference to the DataReader’s listener using the get_listener ()
method.

e It shall use the set_subscription_state_change_handler () method to
instruct the listener to unset the internal SubscriptionStateChangeHandler
that is called whenever there is a change in the SubscriptionMatchedSta-
tus.

e |t shall update the DataReader’s listener by calling set_listener () with 1is-
tener equal to the new listener object and StatusMask set as follows:

— If the original value of StatusMask was STATUS_MASK_NONE Or SUB-
SCRIPTION_MATCHED_STATUS, set itto STATUS_MASK_NONE.

— If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

AUTOSAR

- If the original value of StatusMask was
DATA_AVAILABLE_STATUS | SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVATILABLE_STATUS.

|(RS_CM_00204, RS_CM_00106)

7.4.3.3 Handling Method Calls

The RPC over DDS Specification (DDS-RPC) [21] introduces the concept of DDS Ser-
vices. These Services provide the mechanisms required to define and implement
methods that can be invoked remotely by DDS “client” applications using the build-
ing blocks of the DDS data-centric publish-subscribe middleware [18]. In this section,
we specify how to handle ara::com method calls over DDS by defining the appropriate
mapping between ara::com service methods and DDS service methods.

[SWS_CM_11100]{DRAFT} Mapping Methods to DDS Service Methods and Top-
ics | Every ServicelInterface containing one or more ClientServerOpera-—
tions defined in the role method shall have an associated DDS Service to enable
ara::com Service Instances to offer those operations, and to enable client applications
to invoke them. The equivalent DDS Service shall provide all of the methods of the
corresponding ServicelInterface.

DDS Services shall be constructed according to the Basic Service Mapping Profile of
the RPC over DDS specification [21], which assigns two DDS Topics to every DDS Ser-
vice: a Request Topic and a Reply Topic. Thus, every serviceInterface containing
one or more ClientServerOperations defined in the role method shall trigger the
creation of two equivalent DDS Topics.

The equivalent DDS Request Topic shall be configured as follows:

e The Request Topic Name shall be derived from the Manifest, where the DdsR-
pcServiceDeployment element associated with the methods defines the re-
questTopicName.

e The Request Topic Data Type shall be defined as specified in [SWS_CM_11101],
and shall be registered under the equivalent data type’s name.

The equivalent DDS Reply Topic shall be configured as follows:

e The Reply Topic Name shall be derived from the Manifest, where the DdsRpc-
ServiceDeployment element associated with the methods defines the reply-
TopicName.

e The Reply Topic Data Type shall be defined as specified in [SWS_CM_11102],
and shall be registered under the equivalent data type’s name.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

AUTOSAR

[SWS_CM_11101]{DRAFT} DDS Service Request Topic data type definition | As
specified in section 7.5.1.1.6 of [21], the Request Topic data type is a structure com-
posed of a Request Header with metadata a Call Structure with data. The IDL definition
of the Request Topic data type is the following:
struct <svcId>Method_Request ({
dds: :rpc::RequestHeader header;

1
2
3 <svcId>Method_Call data;
4 };

Where:
<sveId> is the corresponding servicelInterfacelId.

dds: : rpc: :RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [21].

<svcId>Method_Call is the union that holds the value of the input parameters of
the corresponding methods, according to the rules specified in section 7.5.1.1.6
of [21].

dds: :rpc: :RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [21]. On top of that, the binding implementation shall set instanceName (a mem-
ber of the RequestHeader structure that specifies the DDS Service instance name)
to a string representation of the serviceInstanceId of the service instance that
provides the methods.

<svcId>Method_Call shall be constructed as specified in section 7.5.1.1.6 of [21]:
e The name of the union shall be <svcId>Method_Call.
e The union discriminator shall be a 32-bit signed integer.

e The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

e The union shall have a case label for each ClientServerOperation defined
inthe ServiceInterface with the role method, where:

— The integer value of the case label shall be a 32-bit hash of
the ClientServerOperation’s shortName. The binding imple-
mentation shall compute the hash as specified in section 7.5.1.1.2
of [21]. Representations of the service interface in OMG IDL
[23] shall define 32-bit signed integer constants (i.e., const int32
<svcId>Method_ <methodName>_ Hash; where <methodName> is the
shortName of the ClientServerOperation) to simplify the represen-
tation of the union cases (see below).

— The member name for the case label shall be the shortName of the
ClientServerOperation.

AUTOSAR

— The type for each case label shall be <sv-—
cId>Method_<methodName>_1In, which shall be constructed as specified
in section 7.5.1.1.4 of [21] (see below).

The IDL definition of the <svcId>Method_Call union is the following:

union <svcId>Method_Call switch (int32) {

default:
dds::rpc::UnknownOperation unknownOp;

case <svcId>Method_<methodOName>_ Hash:
<svcId>Method_<methodOName>_In <methodOName>;

case <svclId>Method_<methodlName>_Hash:
<svcId>Method_<methodlName>_In <methodlName>;

//

case <svcld>Method_<methodNName>_Hash:
<svcId>Method_<methodNName>_In <methodNName>;

© 00 N o 0o »~A W N =

- o

}i

As defined in section 7.5.1.1.4 of [21], the <svcId>Method_<methodName>_1In
structure shall contain as members all the ArgumentDataPrototypes of the
ClientServerOperation with direction set to in or inout. The IDL repre-
sentation of <svcId>Method_<methodName>_1In is the following:

1 struct <svcId>Method_<methodName>_In {
2 <ArgumentDataPrototype[0]>;

3 <ArgumentDataPrototype[l]>;

4 VAR

5 <ArgumentDataPrototype[n]>;

6 };

In accordance with [21], for methods with no input parameters, the DDS binding shall
generate a <svcId>Method_<methodName>_1In structure with a single member
named dummy of type dds: : rpc: : UnusedMember (see section 7.5.1.1.1 of [21]).

The resulting Request Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Method_Call union, shall be serialized as
specified in section 7.4.3.5 of [20]. | (RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00200)

[SWS_CM_11102]{DRAFT} DDS Service Reply Topic data type definition | As
specified in section 7.5.1.1.7 of [21], the Reply Topic data type is a structure com-
posed of a Reply Header with metadata and a Return Structure with data. The IDL
definition of the Reply Topic data type is the following:

1 struct <svcId>Method_Reply {

2 dds: :rpc::ReplyHeader header;

3 <svcId>Method_Return data;

4 };

Where:
<svcId> is the corresponding serviceInterfaceId.

dds: :rpc: :ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [21].

AUTOSAR

<svcId>Method_Return is the union that holds the return values (i.e., return values,

output parameter values, and/or errors) of the corresponding response, according
to the rules specified in section 7.5.1.1.7 of [21].

dds: :rpc: :ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of

[21].

<svcId>Method_Return shall be constructed as specified in section 7.5.1.1.7 of

[21]:

e The name of the union shall be <svcId>Method_Return.
e The union discriminator shall be a 32-bit signed integer.

e The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

e The union shall have a case label for each ClientServerOperation defined
inthe ServiceInterface with the role method, where:

— The integer value of the case label shall be a 32-bit hash of

the ClientServerOperation’s shortName. The binding imple-
mentation shall compute the hash as specified in section 7.5.1.1.2
of [21]. Representations of the service interface in OMG IDL
[23] shall define 32-bit signed integer constants (i.e., const int32
<svcId>Method_ <methodName> Hash; where <methodName> is the
shortName of the ClientServerOperation) to simplify the represen-
tation of the union cases (see below).

The member name for the case label shall be the shortName of the
ClientServerOperation.

The type for each case label shall be <sv-
cId>Method_<methodName>_ Result, which shall be constructed
as specified in section 7.5.1.1.4 of [21] (see below).

The IDL definition of <svcId>Method_Return is the following:

© 0 N o o &~ 0w N o=

- o

As

union <svcId>Method_Return switch (int32) {
default:

dds::rpc::UnknownOperation unknownOp;

case <svcId>Method_<methodOName>_Hash:

<svcId>Method_<methodOName>_Result <methodOName>;

case <svcId>Method_<methodlName>_ Hash:

<svcId>Method_<methodlName>_Result <methodlName>;

case <svcId>Method_ <methodNName>_Hash:

<svcId>Method_<methodNName>_Result <methodNName>

defined in section 7.5.1.1.5 of [21], the <sv-

cId>Method_<methodName> Result union shall be constructed as follows:

e The union discriminator shall be a 32-bit signed integer.

AUTOSAR

e The union shall have a case with label dds: : RETCODE_OK to represent a suc-
cessful return:

— The value of RETCODE_OK shall be 0x00, as specified in section 2.3.3 of
[18].

— The successful case shall have a single member named result of type
<svcId>Method_<methodName>_Out (see below).

e The union shall also have a case with label dds: : RETCODE_ERROR to represent
the ApApplicationError the method may return:

— The value of RETCODE_ERROR shall be 0x01, as specified in section 2.3.3
of [18].

— The error case shall have a single member named [error] of type
ara::core: :ErrorCode (see [SWS_CM_10428]).

The IDL representation of <svcId>Method_<methodName>_Result is the follow-
ing:
union <svcId>Method_ <methodName>_Result switch (int32) {
case dds::RETCODE_OK:
<svcId>Method_<methodName>_Out result;
case dds::RETCODE_ERROR:
ara::core: :ErrorCode error;

o g A W N =

}i

Lastly, as defined in section 7.5.1.1.5 of [21], the <sv-
cId>Method_<methodName>_ Out structure be constructed as follows:

e The structure shall contain as members all the ArgumentDataPrototypes of
the ClientServerOperation with direction setto out or inout.

e The members of the structure representing out and inout arguments shall ap-
pear in the structure in the same order as they were declared.

e For non-void methods, the structure shall include a last member named
return_ of the method’s return type. If the method has an argument
named return_, the member shall be renamed according to the rules spec-
ified in section 7.5.1.1.5 of [21]. If the return type of the method is of
ara::core: :Result<ValueType, ErrorType> thenthe ValueType is con-
sidered as <ReturnType>.

e If the method has no return value, no out, and no inout argu-
ments, the structure shall contain a single member named dummy of type
dds: :rpc: :UnusedMember (in accordance with section 7.5.1.1.1 of [21]).

The IDL representation of <svcId>Method_<methodName>_Out is the following:

1 struct <svcId>Method_<methodName>_Out {
2 <ArgumentDataPrototype[0]>;

3 <ArgumentDataPrototypel[l]>;

4 //

5 <ArgumentDataPrototype[n]>;

AUTOSAR

6 [<ReturnType> return_;]
7}

The resulting Reply Topic data type shall be encoded according to the DDS se-
rialization rules. Unions, such as the <svcId>Method_<methodName>_Result
union, shall be serialized as specified in section 7.4.3.5 of [20]. |(RS_CM_00204,
RS CM 00212, RS CM 00213, RS _CM _00200)

[SWS_CM_10431]{DRAFT} Mapping of ara::core::ErrorCode | A ApApplica-
tionError shall be represented according to the following IDL [23]:

module ara { module core {

1
2

3 struct ErrorCode {

4 uint64 error_domain_value;
5 int32 error_code;

6 int32 support_data;

7 string user_message;

8
9

}i

o };}; // module ara::core

Where:

error_domain_value is a 64-bit unsigned integer representing the ApApplica-
tionErrorDomain. value, to which the raised ApApplicationError be-
longs.

error_code is a 32-bit signed integer representing the ApApplica-
tionError. errorCode, Wwhich is represented on binding level as
ara::core::ErrorCode: :Value().

support_data is a 32-bit signed integer representing additional (ven-
dor specific) support data, which is represented on binding level as
ara::core::ErrorCode: :SupportData ().

user_message IS a variable length string representing a user message, which is rep-
resented on binding level as ara: :core: :ErrorCode: :UserMessage ().

ara::core: :ErrorCode shall be serialized according to the DDS serialization rules.
|(RS_CM_00204)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11103]{DRAFT} Creating a DataWriter to handle method requests on
the client side | The DDS binding shall create a DDS DataWriter for the Request Topic
associated with the methods of the ServiceInterface (see [SWS_CM_11101])
upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Publisher created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<regSvcInId>") to
create the DataWriter.

AUTOSAR

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS _CM_00212, RS_CM_00213)

[SWS_CM_11104]{DRAFT} Creating a DataReader to handle method responses
on the client side [The DDS binding shall create a DDS DataReader for
the Reply Topic associated with the methods of the ServiceInterface (see
[SWS_CM_11102]) upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Subscriber created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<reqgSvcInId>") to
create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215)

[SWS_CM_11105]{DRAFT} Creating a DataReader to handle method requests
on the server side | The DDS binding shall create a DDS DataReader
for the Request Topic associated with the methods of the ServiceInter-
face (see [SWS_CM_11101]) as part of the OfferService () operation (see
[SWS_CM_11001]).

The binding shall use the DDS Subscriber created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the gosProfile that shall be used.

e Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the ser-
viceSkeleton class:

— For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11110], and statusMask shall
be setto DATA_AVAILABLE_STATUS.

— For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

AUTOSAR

[SWS_CM_11106]{DRAFT} Creating a DataWriter to handle method responses
on the server side | The DDS binding shall create a DDS DataWriter
for the Reply Topic associated with the methods of the ServicelInter-
face (see [SWS_CM_11102]) as part of the OfferService () operation (see
[SWS_CM_11101]).

The binding implementation shall use the DDS Publisher created in [SWS_CM_11002]
(whose partition name is "ara.com://services/<svcId>_<svcInId>") to cre-
ate the DataWriter.

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11107]{DRAFT} Calling a service method from the client side | When
instructed to call a method from the client side, the DDS binding shall construct a new
sample of the Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11101])—as follows:

¢ To initialize the RequestHeader object,

— requestId shall be set by the underlying DDS implementation according
to the rules specified in [21].

— instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

e To initialize the <svcId>Method_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11101], the
hash of the method’s name is the union discriminator that selects the union case),
and then set accordingly the structure containing all the in and inout argu-
ments.

That sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11103] to handle method requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and publish
it over DDS. |(RS_CM_00204, RS _CM_00200, RS_CM_00212, RS_CM_00213)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11108]{DRAFT} Notifying the client of a response to a method call | To
notify the client application of a response as a result of a method call, the DDS binding
implementation shall invoke either the set_value () operation or the SetError ()
operation of the ara: :core: :Promise corresponding to the ara: :core: :Future
that is returned to the caller.

If the discriminator of the <svcId>Method_<methodName>_Result union holding
the response for the specific method call in the received DDS Reply Topic sample is
dds: :RETCODE_OX (i.e., 0 as defined in [18]), the binding implementation shall call the

AUTOSAR

ara::core: :Promise’s set_value () operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) using the members representing the out and inout argu-
ments in the corresponding <svcId>Method_<methodName>_Out result (see
[SWS_CM_11102)).

Else, for any other discriminator value, the binding implementation shall call the
ara::core::Promise’s SetError () operation (see [SWS_CORE_00347]) with
the corresponding ara: :core: :ErrorCode, Which is based on the corresponding
ApApplicationError (see [SWS_CM_11102]).

In either case, the associated set operation shall be performed upon the recep-
tion of a new Reply Topic sample by the corresponding DDS DataReader (see
[SWS_CM_11104]). The DDS binding shall use the DataReader’s take () to pro-
cess the sample. Moreover, to correlate a request with a response, the binding shall
compare the header.relatedRequestId of the received sample with the original
requestId that was set and sent in [SWS_CM_11107]°. If a received relate-
dRequestId does not correspond to a requestId that has been sent by the client,
the response shall be discarded. | (RS_CM_00204, RS_CM_00212, RS_CM_002013,
RS _CM _00215)

[SWS_CM_11109]{DRAFT} Processing a method call on the server side (event
driven) [In case a MethodCallProcessingMode Of either kEvent or kEventS-
ingleThread has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the binding implementation shall create a DataReaderLis-—
tener to process the requests asynchronously—as described in [SWS_CM_11110]—
and attach an instance of it to the DataReader processing the requests in accordance
with [SWS_CM_11105]. The listener is responsible for identifying the method that
shall process the request and dispatch it (see [SWS_CM_11110]). |(RS_CM_00204,
RS CM_00212, RS_CM_00213)

[SWS_CM_11110]{DRAFT} Creating a DataReaderListener to process asyn-
chronous requests on the server side | According to [SWS_CM_11105], a Met hod-
CallProcessingMode oOf either kEvent or kEventSingleThread requires the in-
stantiation of a DataReaderListener to process asynchronously requests on the server
side. The resulting listener shall derive from the standard DataReaderListener
class [18], specifying that the data type of the samples to be handled is the Request
Topic data type defined in [SWS_CM_11101].

The DataReaderListener shall implement the following methods according to the
specified instructions:

% The RPC over DDS specification [21] does not mandate a specific mechanism or context to in-
voke the take () operation on the DataReader that subscribes to method replies. Implementers of
this specification may therefore follow different approaches to address this issue. For instance, a proxy
could provide a ara::core: :Map<dds::SamplelIdentity,ara::core: :Promise<T> > to hold
the ara::core: :Promises assigned to every request (identified by their dds: : SampleIdentity
requestId), and install a DataReaderListener (on the DataReader created in [SWS_CM_11104])
with an on_data_available() method that could call the setter of the corresponding
ara::core: :Promise using the relatedRequestId of the received Reply Topic sample to address
it. Alternatively, a compliant solution could also call take () in the context of a std: :async using a
dds::core: :Waitset [18] to block until the reception of the expected sample.

AUTOSAR

e An on_data_available () method responsible for reading the received
requests from the DataReader's cache—using the take () operation—and
dispatching them to the appropriate methods for processing. To identify
the method of the ServiceSkeleton class that shall process each re-
quest, on_data_available () shall use the union discriminator of the <sv-
cId>Method_Call and provide the destination method with the specific Argu-—
mentDataPrototypes in the union case.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11111]{DRAFT} Processing a method call on the server side (polling)
[In case a MethodCallProcessingMode of kPoll has been passed to the
constructor of the sServiceSkeleton (see [SWS_CM_00130]), the Process-
NextMethodCall method is be responsible for calling take () on the DataReader
processing the Request Topic associated with the service (see [SWS_CM_11105]).
ProcessNextMethodCall, shall take only the first sample from the DataReader’s
cache and dispatch the call the appropriate service method (see [SWS_CM_00191])
of the serviceSkeleton class according to the value of the of the discriminator of
the <svcId>Method_Call union and provide the destination method with the specific
ArgumentDataPrototypes in the union case. |(RS_CM_00204, RS_CM_00212,
RS _CM_00213)

[SWS_CM_11112]{DRAFT} Sending a method call response from the server side
[The binding implementation shall send a response upon the return (either as a re-
sult of a normal return or through one of the possible ApApplicationErrors ref-
erenced by the ClientServerOperation in the role possibleApError) of the
service method (see [SWS_CM_10306] and [SWS_CM_10307]).

To send the response, the DDS binding shall construct a new sample of the Reply Topic
—an instance of the Reply Topic data type defined in [SWS_CM_11102])—as follows:

e To initialize the ReplyHeader object,

— relatedRequestId shall be set to the value of the header.requestId
attrioute of the request that triggered the method call (see
[SWS_CM_11107]).

e To initialize the <svcId>Method_Return object, the binding implementation
shall:

— Select the appropriate union case (as specified in [SWS_CM_11102], the
hash of the method’s name is the union discriminator that selects the union
case).

— Set the <svcId>Method_<methodName>_Result union selecting its
union discriminator based on whether the operation generated the correct
result or raised an ApApplicationError:

AUTOSAR

« If operation generated the correct result, the binding shall se-
lect the union case for dds::RETCODE_OK and set the <sv-
cId>Method_<methodName>_Out structure with all the out and in-
out arguments.

x Otherwise, if the operation raised an ApApplicationError, the bind-
ing shall select the union case 0x01 and construct the corresponding
ara::core::ErrorCode (see [SWS_CM_11102]).

The sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11105] to handle method responses on the server
side, which shall serialize the sample according to the DDS serialization rules, and
publish it over DDS. |(RS_CM_00204, RS_CM_200, RS_CM_00212, RS_CM_00213)

The DDS serialization rules are defined in section 7.4.3.5.

7.4.3.4 Handling Fields

[SWS_CM_11130]{DRAFT} Mapping Fields with hasNotifier attribute to DDS Top-
ics [The DDS binding shall assign a DDS Topic to every Field defined inthe Servi-
ceInterfaceintherole field with hasNotifier = true to enable its notification
semantics over DDS. The equivalent DDS Topic shall be configured as follows:

e The Topic Name shall be derived from the Manifest, where the DdsEventDe-
ployment element defined in the DdsFieldDeployment intherole notifier
defines the topicName.

e The Topic Data Type shall be defined as specified in [SWS_CM_11131], and shall
be registered under the equivalent data type’s name.

|(RS_CM_00204, RS_CM_00201)

[SWS_CM_11131]{DRAFT} Field Notifier DDS Topic data type definition [The
data type of a DDS Topic representing a Field Notifier shall be constructed according
to the following IDL definition:
struct <fieldTypeName>FieldNotifierType {
@key uintl6 instance_id;

1
2
3 @external <fieldTypeName> data;
4 };

Where:

<fieldTypeName> is the Cpp Implementation Data Type symbol (See sec-
tion 8.1.2.5.2).

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

AUTOSAR

data is a reference (per language mapping of the @external annotation) to the ac-
tual value of the field, which shall be constructed and encoded according to
the DDS serialization rules.

|(RS_CM_00204, RS _CM_00201)
The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11132]{DRAFT} Mapping of Update method | When instructed to trans-
mit a field notification message, the DDS binding shall construct a new sample of the
equivalent DDS Topic data type (see [SWS_CM_11131]) as follows:

e The Instance Id field (instance_1id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-—
celd.

e The Data field (data) shall point to the data input parameter of the Update ()
method.

That sample shall be then passed as a parameter to the write () method of the DDS
DataWriter associated with the field, which shall serialize the sample according
to the DDS serialization rules specified, and publish it over DDS. |(RS_CM_00204,
RS _CM_00201)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11133]{DRAFT} Mapping of Subscribe method | When instructed to
subscribe to a field, the DDS binding shall create a DDS DataReader to handle the
subscription using the DDS Subscriber created for the proxy in [SWS_CM_11009]. The
rules to create the DataReader are specified in [SWS_CM_11134]. |(RS_CM_00204,
RS _CM_00103)

[SWS_CM_11134]{DRAFT} Creating a DDS DataReader for field subscription
[The DDS binding shall create a DDS DataReader for the Topic associated
with the field (see [SWS _CM 11130]). To ensure the proxy communicates
only with the service intsance it is bound to, the binding implementation shall
use the DDS Subscriber created in [SWS_CM_11009] (whose partition name is
"ara.com://services/<svcId>_<regSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used. To configure
the DataReader’s cache size according to the field subscription semantics, the
maxSampleCount specified in the Subscribe () method call, the value of the
DataReader’s HISTORY QoS specified in gosProfile shall be overridden as
follows:

— history.kind = KEEP_LAST_ _HISTORY_QOS

— history.depth = <maxSampleCount>

AUTOSAR

Moreover, to ensure that the proxy received the current value of the field as soon
as it creates the subscription, the DataReaders’s DURABILITY QoS shall be over-
ridden as follows:

— durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS
Likewise, the RELIABILITY QoS shall be overridden as follows:
— reliability.kind = RELIABLE_RELIABILITY_QOS

e Listener shall be aninstance of the DataReaderListener class specified in
[SWS_CM_11135].

e StatusMask shall be setto STATUS_MASK_NONE.
|(RS_CM_00204, RS _CM_00103)

[SWS_CM_11135]{DRAFT} Creating a DDS DataReaderListener for field sub-
scription [The DDS implementation shall define a DataReaderListener class to
handle field notifications when a new sample is received and/or the matched status of
the subscription changes following the instructions specified in [SWS_CM_11020].

The DataReaderListener class shall specify that the samples to be handled are of
the Topic data type specified in [SWS_CM_11131]. |(RS_CM_00204, RS_CM_00103)

[SWS_CM_11136]{DRAFT} Mapping of Unsubscribe method | When instructed to
unsubscribe from a field event, the DDS binding shall delete the DataReader associ-
ated with the £ield notifier. |(RS_CM_00204, RS_CM_00104)

[SWS_CM_11137]{DRAFT} Mapping of GetSubscriptionState method | The Get-
SubscriptionState method shall be mapped as specified in [SWS_CM_11022] using
the DataReader created in [SWS_CM_11134]. |(RS_CM_00204, RS _CM_00106)

[SWS_CM_11138]{DRAFT} Mapping of GetNewSamples method | The Get-
NewSamples method shall be mapped as specified in [SWS_CM_11023] using the
DataReader created in [SWS_CM_11134]. |(RS_CM_00204, RS_CM_00202)

[SWS_CM_11139]{DRAFT} Mapping of GetFreeSampleCount method | The Get-
FreeSampleCount method shall be mapped as specified in [SWS_CM_11024] using
the DataReader created in [SWS_CM_11134]. | (RS_CM_00204, RS_CM_00202)

[SWS_CM_11140]{DRAFT} Mapping of SetReceiveHandler method | The SetRe-
ceiveHandler method shall be mapped as specified in [SWS_CM_11025] using the
DataReader created in [SWS_CM_11134]. | (RS_CM_00204, RS_CM_00203)

[SWS_CM_11141]{DRAFT} Mapping of UnsetReceiveHandler method | The Un-
setReceiveHandler method shall be mapped as specified in [SWS_CM_11026] using
the DataReader created in [SWS_CM_11134]. | (RS_CM_00204, RS_CM_00203)

[SWS_CM_11142]{DRAFT} Mapping of SetSubscriptionStateHandler method
[The SetSubscriptionStateHandler method shall be mapped as specified in
[SWS_CM_11027] using the DataReader created in [SWS_CM_11134]. |
(RS_CM_00204, RS CM_00106)

AUTOSAR

[SWS_CM_11143]{DRAFT} Mapping of UnsetSubscriptionStateHandler method
[The UnsetSubscriptionStateHandler method shall be mapped as specified
in [SWS_CM_11028] using the DataReader created in [SWS_CM_11134]. |
(RS_CM_00204, RS_CM_00106)

[SWS_CM_11144]{DRAFT} Mapping of Field Get/Set methods to DDS Service
Methods and Topics | Every ServiceInterface containing one or more Fields
defined in the role field with hasGetter or hasSetter attributes set to t rue shall
have an associated DDS Service to enable ara::com Service Instances to offer those
operations, and to enable client applications to invoke them. The equivalent DDS Ser-
vice shall provide the getter and setter methods for all the £ie1ds in the corresponding
Servicelnterface.

In compliance with [SWS_CM_11100], these DDS Services shall be constructed ac-
cording to the Basic Service Mapping Profile of the RPC over DDS specification [21].
Thus, every ServiceInterface containing one or more fields with the hasGet -
ter or hasSetter attributes enabled shall trigger the creation of a pair of DDS Topics:
a Request Topic and a Reply Topic.

The equivalent DDS Request Topic shall be configured as follows:

e The Request Topic Name shall be derived from the Manifest, where the DdsR-
pcServiceDeployment elementin the role ddsRpcService of the field’s get
and set methods defines the requestTopicName.

e The Request Topic Data Type shall be defined as specified in [SWS_CM_11145].
The equivalent DDS Reply Topic shall be configured as follows:

e The Reply Topic Name shall be derived from the Manifest, where the bdsRpc-
ServiceDeployment element in the role ddsRpcService of the field’s get
and set methods defines the replyTopicName.

e The Reply Topic Data Type shall be defined as specified in [SWS_CM_11146].
|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11145]{DRAFT} DDS Service Request Topic data type definition for
Field getter and setter operations | As specified in section 7.5.1.1.6 of [21], the
Request Topic data type is a structure composed of a Request Header with metadata
and a Call Structure with data. The IDL definition of the Request Topic data type for
the DDS Service handling field getters and setters is the following:

struct <svcId>Field_Request {

1
2 dds: :rpc: :RequestHeader header;
3 <svcId>Field_Call data;
4

bi

Where:

<svcId> is the corresponding serviceInterfaceId.

AUTOSAR

dds: : rpc: :RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [21].

<svcId>Field_ Call is the union that holds the value of the input parameters of the
corresponding methods, according to the rules specified in section 7.5.1.1.6 of
[21].

dds: :rpc: :RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [21]. On top of that, the binding implementation shall set the instanceName (a
member of the RequestHeader structure that specifies the DDS service instance
name) to a string representation of the serviceInstanceId of the service instance
that provides the fields (which have getters or setters).

<svcId>Field_cCall shall be constructed as specified in section 7.5.1.1.6 of [21].
e The name of the union shall be <svcId>Field_cCall.
e The union discriminator shall be a 32-bit signed integer.

e The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

e The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role
field, where:

— The integer value of the case label shall be a 32-bit hash of
the field getter or setter name. That is, "Get<fieldName>" and
"Set<fieldName>"; where <fieldName> is the shortName of the
Field. The binding implementation shall compute the hash as spec-
ified in section 7.5.1.1.2 of [21]. Representations of the service in-
terface in OMG IDL [23] shall define 32-bit signed integer constants
(i.e., const int32 <svcId>Field_Get<fieldName>_Hash Or const
int32 <svcId>Field_Set<fieldName>_Hash) to simplify the repre-
sentation of the union cases (see below).

— The member name for the case label shall be get <FieldName> for getter
methods and set<FieldName> for setter methods.

— The type for each case level shall be <sv-—
cId>Field_Get<fieldName>_In for getter methods, and <sv-
cId>Field_Set<fieldName>_1In for setter methods, which shall be
constructed as specified in section 7.5.1.1.4 of [21] (see below).

The IDL definition of the <svcId>Field_Call union is the following:

union <svcId>Field_Call switch(int32) {

default:
dds: :rpc::UnknownOperation unknownOp;

case <svclId>Field _Get<FieldOName>_Hash:
<svcId>Field_Get<FieldOName>_In get<FieldOName>;

case <svcld>Field_Set<FieldOName>_Hash:
<svcId>Field_Set<FieldOName>_In set<FieldOName>;

N o o AW N =

AUTOSAR

8 case <svcld>Field_Get<FieldlName>_Hash:

9 <svcId>Field_Get<FieldlName>_In get<FieldlName>;
10 case <svcId>Field_Set<FieldlName>_Hash:

11 <svcId>Field_Set<FieldlName>_In set<FieldlName>;
2 // ...

13 case <svcld>Field_Get<FieldNName>_Hash:

14 <svcId>Field_Get<FieldNName>_In get<FieldNName>;
15 case <svcId>Field_Set<FieldNName>_Hash:

16 <svcId>Field_Set<FieldNName>_In set<FieldNName>;
17}

According to 7.5.1.1.4 of [21], <svcId>Field_Set<FieldName>_In struc-
tures shall contain as member, the corresponding StdCppImplementation-
DataType representing the value of Field to be set. Conversely, <sv-
cId>Field_Get<FieldName>_1In shall contain a single member named dummy of
type dds: :rpc: :UnusedMember (see section 7.5.1.1.1 of [21]) to indicate that the
method has no input parameters.

The resulting Request Topic data type shall be encoded according to the DDS se-
rialization rules. Unions, such as the <svcId>Field_Call union, shall be se-
rialized as specified in section 7.4.3.5 of [20]. |(RS_CM_00204, RS_CM_00212,
RS CM _00213))

[SWS_CM_11146]{DRAFT} DDS Service Reply Topic data type definition for Field
getter and setter operations | As specified in section 7.5.1.1.7 of [21], the Reply
Topic data type is a structure composed of a Reply Header with metadata and a Return
Structure with data. The IDL definition of the Reply Topic data type for the DDS Service
handling field getters and setters is the following:

1 struct <svcId>Field_Reply {

2 dds: :rpc::ReplyHeader header;
3 <svcId>Field_Return data;

4 };

Where:
<sveId> is the corresponding serviceInterfacelId.

dds: : rpc: :ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [21].

<svecId>Field_Return is the union that holds the return values of the correspond-
ing response, according to the rules specified in section 7.5.1.1.7 of [21].

dds: :rpc::ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[21].

<svcId>Field_Return shall be constructed as specified in section 7.5.1.1.7 of [21]:
e The name of the union shall be <svcId>Field_Return.

e The union discriminator shall be a 32-bit signed integer.

AUTOSAR

e The union shall have a default case of type dds: : rpc: :UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

e The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role
field, where:

— The integer value of the case label shall be a 32-bit hash of

the field getter or setter name. That is, "Get<FieldName>" and
"Set<FieldName>"; where <FieldName> is the shortName of the
Field. The binding implementation shall compute the hash as spec-
ified in section 7.5.1.1.2 of [21]. Representations of the service in-
terface in OMG IDL [23] shall define 32-bit signed integer constants
(i.e., const int32 <svcId>Field_Get<FieldName>_Hash Or const
int32 <svcId>Field_Set<FieldName>_Hash) to simplify the repre-
sentation of the union cases (see below).

The member name of the case label shall be get <FieldName> for getter
methods and set<FieldName> for setter methods.

The type for each case label shall be <sv-
cId>Field_Get<FieldName>_Result for getter methods and <sv-
cId>Field_Set<FieldName>_Result for setter methods, which shall

be constructed as specified in section 7.5.1.1.4 of [21] (see below).

The IDL definition of <svcId>Field_Return is the following:

© 0 N o o H~ 0w Nno=

union <svcId>Field_Return switch (int32) {
default:
dds: :rpc: :UnknownOperation unknownOp;
case <svcld>Field_Get<FieldOName>_Hash:
<svcId>Field_Get<FieldOName>_Result get<FieldOName>;
case <svcld>Field_Set<FieldOName>_Hash:
<svcId>Field_Set<FieldOName>_Result set<FieldOName>;
case <svclId>Field_Get<FieldlName>_Hash:
<svcId>Field Get<FieldlName>_Result get<FieldlName>;
case <svcId>Field_Set<FieldlName>_Hash:
<svcId>Field_Set<FieldlName>_ Result set<FieldlName>;
//
case <svcId>Field_Get<FieldNName>_Hash:
<svcId>Field Get<FieldNName>_Result get<FieldNName>;
case <svcId>Field_Set<FieldNName>_Hash:
<svcId>Field_ Set<FieldNName>_Result set<FieldNName>;
}i

According with [SWS_CM_00112] and [SWS_CM_00113], both getters and set-
ters have the same output parameter. Therefore, in accordance with section
7.5.1.1.5 of [21], both the <svcId>Field _Get<FieldName>_Result and <sv-
cId>Field_Set<FieldName>_Result unions shall be constructed as follows:

e The union discriminator shall be a 32-bit signed integer.

AUTOSAR

e The union shall have a case with label dds: : RETCODE_OK to represent a suc-
cessful return:

— The value of RETCODE_OK shall be 0, as specified in section 2.3.3 of [18].

— The successful case shall have a single member named result_ of type
<svcId>Field_Get<FieldName>_Out to hold the value to be returned
to the getter, or type <svcId>Field_Set<FieldName>_Out to hold the
value to be returned to the setter (see below).

The IDL representation of <svcId>Field _Get<FieldName>_Result is the follow-
ing:

union <svclId>Field_Get<FieldName>_Result switch (int32) {

case dds::RETCODE_OK:

1
2
3 <svcId>Field_Get<FieldName>_Out result_;
4 };

Likewise, the IDL representation of <svcId>Field_Set<FieldName>_Result is
the following:

union <svcId>Field_Set<FieldName>_ Result switch (int32) {

case dds::RETCODE_OK:

1
2
3 <svcId>Field_Set<FieldName>_Out result_;
4 };

Both types <svcId>Field_Get<FieldName>_Out and its counterpart <sv-
cId>Field_Set<FieldName>_Out shall map to a structure with a single member
named return_ of the stdCppImplementationDataType representing the value
of the corresponding Field.

The resulting Reply Topic data type shall be encoded according to the DDS seri-
alization rules. Unions, such as the <svcId>Field_Return union, shall be se-
rialized as specified in section 7.4.3.5 of [20]. |(RS_CM_00204, RS_CM_00212,
RS CM _00213))

[SWS_CM_11147]{DRAFT} Creating a DataWriter to handle get/set requests on
the client side | The DDS binding shall create a DDS DataWriter for the Request Topic
associated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11145]) upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Publisher created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<regSvcInId>") to
create the DataWriter.

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

AUTOSAR

[SWS_CM_11148]{DRAFT} Creating a DataReader to handle get/set responses
on the client side | The DDS binding shall create a DDS DataReader for the Reply
Topic associated with the getters and setters of the fields of the ServiceInter-
face (see [SWS_CM_11146]) upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Subscriber created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<regSvcInId>") to
create the DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215)

[SWS_CM_11149]{DRAFT} Creating a DataReader to handle get/set requests on
the server side [The DDS binding shall create a DDS DataReader for the Request
Topic associated with the getters and setters of the fields of the ServiceInter-
face (see [SWS_CM_11145]).

The binding shall use the DDS Subscriber created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

e DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

e Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the Ser-
viceSkeleton class:

- For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11154], and StatusMask shall
be set to DATA_AVAILABLE_STATUS.

— For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11150]{DRAFT} Creating a DataWriter to handle get/set responses on
the server side | The DDS binding shall create a DDS DataWriter for the Reply Topic
associated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11146]).

AUTOSAR

The binding implementation shall use the DDS Publisher created in [SWS_CM_11002]
(whose partition name is "ara.com://services/<svcId>_<svcInId>") to cre-
ate the DataWriter.

The DataWriter shall be configured as follows:

e DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the gosProfile that shall be used.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11151]{DRAFT} Calling get/set method associated with a field from
the client side [When instructed to call the Get () or Set () method associated with
a Field from the client side, the DDS binding shall construct a new sample of the
corresponding Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11145]—as follows:

¢ To initialize the RequestHeader object,

— requestId shall be set by the underlying DDS implementation according
to the rules specified in [21].

— instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

e To initialize the <svcId>Field_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11145], the
hash of the field getter/setter’s name is the union discriminator that selects the
union case). Then,

— If the call corresponds to a getter, the binding shall leave the dummy member
of the <svcId>Field_Get<FieldName>_In structure unset.

— Else, if the call corresponds to a setter, the binding shall set accordingly the
only member of the <svcId>Field_Set<FieldName>_TIn structure with
the new value for the field.

That sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11147] to handle get/set requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and pub-
lish it over DDS. |(RS_CM_00204, RS_CM_00200, RS _CM_00212, RS_CM_00213,
RS CM_00217, RS _CM _00218)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11152]{DRAFT} Notifying the client of the response to the get/set
method call | To notify the client application of a response as a result of call
to a Get () or set () method associated with a Field, the DDS binding imple-
mentation shall invoke the set_value () operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) with the value of the corresponding result_ member of ei-
ther the <svcId>Field_Get<FieldName>_Result structure, for get operations; or
<svcId>Field_Set<FieldName>_Out, for set operations.

AUTOSAR

The associated set operation shall be performed upon the reception of a new Re-
ply Topic sample by the corresponding DDS DataReader (see [SWS_CM_11148]).
The DDS binding shall use the DataReader’s take () method to process the sam-
ple. Moreover, to correlate a request with a response, the binding shall compare the
header.relatedRequestsId of the received sample with the original requestId
that was sentin [SWS_CM_11151]'°. If the relatedRequest Id does not correspond
to a request1d that has been sent by the client, the response shall be discarded. |
(RS_CM_00204, RS CM 00212, RS_CM _00213, RS CM 00217, RS _CM_00218)

[SWS_CM_11153]{DRAFT} Processing a get/set method call associated with a
field on the server side (event driven) | In case a MethodCallProcessingMode
of either kEvent or kEventSingleThread has been passed to the constructor of the
ServiceSkeleton (see [SWS_CM_00130]), the binding implementation shall create
a DataReaderListener to process the requests asynchronously—as described in
[SWS_CM_11154]—and attach an instance of it to the DataReader processing the re-
quests for the getters and setters of the ServiceInterface’s fields in accordance
with [SWS_CM_11149]. The listener is responsible for identifying the method that
shall process the request and dispatch it (see [SWS_CM_11154]). |(RS_CM_00204,
RS CM 00212, RS CM 00213, RS CM_00220, RS CM 00221)

[SWS_CM_11154]{DRAFT} Creating a DataReaderListener to process asyn-
chronous requests for field getters and setters on the server side | According to
[SWS_CM_11149], a MethodCallProcessingMode Of either kEvent or kEventS—
ingleThread requires the instantiation of a DataReaderListener to process asyn-
chronously requests on the server side. The resulting listener shall derive from the
standard DataReaderListener class [18], specifying that the type of the samples to
be handled is the Request Topic data type defined in [SWS_CM_11145].

The DataReaderListener shall implement the following method according to the
specified instructions:

e An on_data_available () method responsible for reading the received re-
quests from the DataReader’s cache—using the take () operation—and dis-
patching it to the corresponding registered SetHandler or—if it applies—
GetHandler (see [SWS_CM _00114] and [SWS_CM 00116]). To identify
the field of the ServiceSkeleton class, the operation (i.e., Set () or
Get ()), and therefore the corresponding handler; on_data_available ()
shall use the union discriminator of the <svcId>Field_Call union (see
[SWS_CM_11145]). In the case of a set () operation, the method shall pro-
vide the corresponding Set Handler with the only member of the received <sv-
cId>Field_<FieldName>_1In structure, which contains the new value to be
set. In the case of a Get () operation, the binding shall dispatch to the corre-
sponding GetHandler—if it was registered—or to an internal lookup operation
for the current value of the field if it was not.

|(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS _CM_00221)

10See footnote 9.

AUTOSAR

[SWS_CM_11155]{DRAFT} Processing a get/set method call associated with
a field on the server side (polling) [In case a MethodCallProcessingMode
of kPoll has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the ProcessNextMethodCall method is responsible for call-
ing take () on the DataReader processing the Request Topic associated with the
service (see [SWS_CM_11145]). ProcessNextMethodCall shall take only the
first sample from the DataReader’s cache and dispatch it to the corresponding reg-
istered SetHandler or—if it applies—GetHandler (see [SWS_CM_00114] and
[SWS_CM_001186]).

To identify the field of the ServiceSkeleton class, the operation (i.e., Set ()
or Get()), and therefore the corresponding handler, the binding implementa-
tion shall use the union discriminator of the <svcId>Field_Call union (see
[SWS_CM_11145]). In the case of a Set () operation, the binding shall pro-
vide the corresponding SetHandler with the only member of the received <sv-
cId>Field_<FieldName>_1In structure, which contains the new value to be set.
In the case of a Get () operation, the binding shall call the corresponding GetH-
andler—if it was registered—or dispatch to an internal lookup operation for the cur-
rent value of the field if it was not. | (RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS _CM_00220, RS _CM _00221)

[SWS_CM_11156]{DRAFT} Sending a response for a get/set method call asso-
ciated with a field from the server side | The binding implementation shall send a
response upon the return of (1) a SetHandler in the case of a Set () operation; (2) a
GetHandler in the case of a Get () operation where a GetHandler has previously
been registered; or (3) a lookup operation'" as a result of a Get () operation where no
GetHandler was previously registered.

To send the response, the DDS binding shall construct a new sample of the Reply
Topic—an instance of the Reply Topic data type defined in [SWS_CM_11146]—as
follows:

e To initialize the ReplyHeader object,

— relatedRequestId shall be set to the value of the header.requestId
attribute of the request that triggered the method call (see
[SWS_CM_11151]).

e To initialize the <svcId>Field Return object, the binding implementation
shall:

— Select the appropriate union case (as specified in [SWS_CM_11146]), the
hash of the field’s getter/setter method is the union discriminator that selects
the union case).

— Set the appropriate <svcId>Field_Get<FieldName>_Result—for
Get () operations—or <svcId>Field_Set<FieldName>_Result—for
Set () operations. In both cases, the binding shall select the union case

" An internal lookup operation to retrieve the current value of a field.

AUTOSAR

for dds: :RETCODE_OK and set the corresponding structure with the value
retrieved upon the return of (1), (2), or (3).

The sample shall then be passed as a parameter to the write () method of the DDS
DataWriter created in [SWS_CM_11150] to handle method responses on the server
side, which shall serialize the sample according to the DDS serialization rules, an pub-
lish it over DDS. |(RS_CM_00204, RS _CM_00212, RS_CM_00213, RS_CM_00220,
RS CM 00221)

The DDS serialization rules are defined in section 7.4.3.5.

7.4.3.5 Serialization of Payload

[SWS_CM_11040]{DRAFT} DDS standard serialization rules | The serialization of
the payload shall be done according to the DDS standard serialization rules defined in
section 7.4.3.5 of [20]. |(RS_CM_00204, RS_CM_00201)

7.4.3.5.1 Basic Data Types

[SWS_CM_11041]{DRAFT} DDS serialization of StdCppImplementation-
DataType Of category VALUE | StdCppImplementationDataType Of category
VALUE shall be serialized according to the standard serialization rules for the equiva-
lent DDS PRIMITIVE_TYPE defined in section 7.4.3.5 of [20]. Table 7.5 provides
the equivalent DDS PRIMITIVE_TYPES for the primitive stdCppImplementation-
DataTypes With category VALUE defined in [13]. |(RS_CM_00204, RS_CM_00200,
RS_CM_00102)

Type DDS Type Remark

boolean Boolean

uint8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).
uint16_t Uint16

uint32_t Uint32

uinté4_t Uint64

int8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).
int16_t Int16

int32_t Int32

inté4_t Int64

float Float32

double Float64

Table 7.5: stdCppImplementationDataTypes With categoy VALUE supported for seri-
alization

AUTOSAR

7.4.3.5.2 Enumeration Data Types

[SWS_CM_11042]{DRAFT} DDS serialization of enumeration data types | Enu-
meration data types shall be serialized according to the standard serialization rules for
DDS ENUM_TYPE defined in section 7.4.3.5 of [20].

The bit bound of the ENUM_TYPE shall be set to the size of the enumeration’s underlying
basic data type (i.e., the Primitive Cpp Implementation Data Type accord-
ing to [SWS_CM_00424)) in bits. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS _CM_00211)

7.4.3.5.3 Structured Data Types (structs)

[SWS_CM_11043]{DRAFT} DDS serialization of StdCppImplementation-
DataType Of category STRUCTURE | StdCppImplementationDataType Of cat-
egory STRUCTURE shall be serialized according to the standard serialization rules for
DDS sTRUCT_TYPE defined in section 7.4.3.5 of [20].

Optional members of the structure shall be marked as optional as specified in
section 7.2.2.4.45 of [20]. |(RS_CM_00204, RS_CM_00201, RS_CM_ 00202,
RS CM 00211)

7.4.3.5.4 Strings

[SWS_CM_11044]{DRAFT} DDS serialization of StdCppImplementation-
DataType Of category STRING With string shortName [An StdCppImplemen-
tationDataType of category STRING shall be serialized according to the stan-
dard serialization rules for DDS STRING_TYPE defined in section 7.4.3.5 of [20]. |
(RS_CM_00204, RS _CM_00201, RS_CM_00202, RS _CM_00211)

[SWS_CM_11046]{DRAFT} Encoding Format and Endianness of Strings in DDS
[Section 7.4.1.1.2 of [20] specifies the standard character encoding format for
STRING_TYPE: UTF-8. The serialized version shall not include a Byte Order Mark
(BOM), as byte order information is already available in the RTPS Encapsulation
Identifier and the XCDR serialization format [20]. |(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS _CM_00211)

7.4.3.5.5 Vectors and Arrays

[SWS_CM_11047]{DRAFT} DDS serialization of CopImplementationDataType
of category VECTOR | A CppImplementationDataType Of category VEC-
TOR shall be serialized according to the standard serialization rules for DDS SE-
QUENCE_TYPE defined in section 7.4.3.5 of [20].

AUTOSAR

Binding implementations shall serialize VECTOR CppImplementationDataType$
with more than one dimension, as nested DDS sequences. |(RS_CM_00204,
RS CM_00201, RS CM 00202, RS CM_00211)

[SWS_CM_11048]{DRAFT} DDS serialization of CopImplementationDataType
of category ARRAY [A CppImplementationDataType Of category ARRAY shall
be serialized according to the standard serialization rules for DDS ARRAY_TYPE de-
fined in section 7.4.3.5 of [20]. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS CM _00211)

7.4.3.5.6 Associative Maps

[SWS_CM_11049]{DRAFT} DDS serialization of CopImplementationDataType
of category ASSOCIATIVE MAP | CpplImplementationDataType Of category
ASSOCIATIVE_MAP shall be serialized according to the standard serialization rules for
DDS mMap_TYPE defined in section 7.4.3.5 of [20]. |(RS_CM_00204, RS_CM_00201,
RS _CM_00202, RS CM _00211)

7.4.3.5.7 Variant

[SWS_CM_11050]{DRAFT} DDS serialization of CopImplementationDataType
of category VARIANT | CppImplementationDataType Of category VARIANT
shall be serialized according to the standard serialization rules for DDS UNION_TYPE
defined in section 7.4.3.5 of [20]. |(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.5 Security

In the following chapter the behavior according to the meta model of access control
and secure communication shall be described.

7.5.1 Access Control

The following assumptions have to be held true to realize access control:

1. Communication between two applications must be realized by using ara::com
interfaces Communication Management to enable access control.

2. Process separation as defined in [SWS_CM_90004]

[SWS_CM_90004]{DRAFT} Process separation of network and language bind-
ing for access control | The application with the language binding part of proxies

AUTOSAR

and the network binding part of proxies shall be located in different processes. |
(RS_SEC_03003, RS_SEC_03005, RS_SEC_05019)

[SWS_CM_90001]{DRAFT} Restrictions on executing methods | The invocation of
a method by an application shall be executed depending the existence of ComMethod-
Grant, ComFieldGrant with the role attribute setto FieldAccessEnum.getter or
FieldAccessEnum.setter. From a temporal perspective the enforcement of the ca-
pability shall take place between the invocation of one of the following methods and
invocation of the continuation registered with then () (see [SWS_CORE_00331]) or
the access to result of the Future (viathe get () method (see [SWS_CORE_00326]))
returned by these methods:

e the function call operator (operator ()) of the respective Method class (see
[SWS_CM_00196])

e the set () method of the respective Field class (see [SWS_CM_00113])
e the Get () method of the respective Field class (see [SWS_CM_00112])

A failure of the capability enforcement (i.e., an invocation without appropriate capability
modeling) shall be handled according to [SWS_CORE_00001]. |(RS_SEC 03002,
RS _SEC 03008, RS SEC 03010)

[SWS_CM_90002]{DRAFT} Restrictions on sending events | Sending an event by
an application shall be enabled depending on the existence of ComEventGrant or
ComFieldGrant with the role attribute set to FieldAccessEnum.setter. From a
temporal perspective the enforcement of the capability shall take place after the invo-
cation of the following method:

e the Send () method of the respective Event class (see [SWS_CM_00162])
e the Update () method of the respective Field class (see [SWS_CM_00119])

A failure of the capability enforcement (i.e., the triggering of an event without ap-
propriate capability modeling) shall cause the event to be dropped silently. |
(RS_SEC 03002, RS _SEC 03008, RS_SEC 03010)

[SWS_CM_90003]{DRAFT} Restrictions on receiving events | Subscribing to event
notifications shall be enabled depending on the existence of ComEventGrant or Com—
FieldGrant with the role attribute set to FieldAccessEnum.getter. From a tem-
poral perspective the enforcement of the capability shall take place after the invocation
of the following method:

e the Subscribe() method of the respective Event class (see
[SWS_CM_00141])

A failure of the capability enforcement (i.e., the subscription to an event without ap-
propriate capability modeling) shall cause the subscription to the event to be dropped
silently. | (RS_SEC_03002, RS_SEC_03008, RS_SEC _03010)

[SWS_CM_90005]{DRAFT} Restrictions on offering services | Offering a service
instance shall be enabled depending on the presence of a ComOfferServiceGrant.

AUTOSAR

From a temporal perspective the enforcement of the capability shall take place after
the invocation of the following method:

e the constructor of the respective ServiceSkeleton class (see
[SWS_CM_00130])

A failure of the capability enforcement (i.e., an invocation without appropriate mod-
eling) shall be handled according to [SWS_CORE_00001]. |(RS_SEC 03002,
RS_SEC 03008, RS _SEC 03010)

[SWS_CM_90006]{DRAFT} Restrictions on using services | Using a service in-
stance shall be enabled depending on the presence of a ComFindServiceGrant.
From a temporal perspective the enforcement of the capability shall take place after
the invocation of the following method:

e the constructor of the respective SserviceProxy class (see [SWS_CM_00131])

A failure of the capability enforcement (i.e., an invocation without appropriate mod-
eling) shall be handled according to [SWS_CORE_00001]. |(RS_SEC 03002,
RS _SEC 03008, RS _SEC 03010)

Note:
In case of [SWS_CM_90002] and [SWS_CM_90003] dropping data, the application
will not be notified.

A logging facility for security events is currently not defined in the AUTOSAR Adaptive
Platform. Logging violations of access restrictions according to [SWS_CM_90001],
[SWS_CM_90002], [SWS_CM_90003], [SWS_CM_90005] and [SWS_CM_90006] is
up to the implementation or specific ECU projects.

7.5.2 Secure Communication
7.5.2.1 SOME/IP Network binding

SOME/IP communication can be transported via TCP and UDP. Therefore different
security mechanism have to be available to secure the SOME/IP communication. The
following security protocols are currently supported:

e TLS

e DTLS
e SecOC
e |IPSec

SOME/IP supports one-to-many (unicast) and many-to-many (multicast) communica-
tion paradigms. These paradigms may switch at runtime for events (see multicast—
Threshold).

It is therefore important to be aware of the limitations of the secure channel approach:

AUTOSAR

e Confidentiality of events
If events are transported using UDP and may be sent using multicast, they cannot
be guaranteed confidential due to the fact that only SecOC can be used to secure
multicast communication and SecOC does not offer confidentiality.

[SWS_CM_90101]{DRAFT} Secure UDP and TCP channel creation for TLS, DTLS
and SecOC | The Communication Management software shall create secure UDP
channels according to the input for all SsecureComProps referenced by ServiceIn-
stanceToMachineMapping in the role secureComPropsForUdp. The Communi-
cation Management software shall create secure TCP channels according to the in-
put for all SecureComProps referenced by ServiceInstanceToMachineMapping
in the role secureComPropsForTcp. Secure channels may be shared by multiple
AdaptivePlatformServiceInstances by multiplexing the communication, i.e. by
referencing the same secureComProps in the same role. |(RS_SEC_04001)

[SWS_CM_90102]{DRAFT} Using secure TLS, DTLS and SecOC channels | All
communication triggered by a Skeleton or Proxy shall be sent via the respective se-
cure channel according to the input. The appropriate secure channel is identified by ex-
amining the references to SecureComProps of ServiceInstanceToMachineMap-
ping for the AdaptivePlatformServiceInstance that is mapped to an Eth-
ernetCommunicationConnector of aMachine by this ServiceInstanceToMa-
chineMapping.

In addition it is possible to define which elements of the ServiceInterface of the
particular AdaptivePlat formServiceInstance needs to go via the secured chan-
nel. The selection of ServiceInterface elements is done by the ServiceInter—
faceElementSecureComConfigthat is aggregated by AdaptivePlatformSer-
viceInstance.

The following configuration in the ServiceInterfaceElementSecureComConfig
is applicable:

e Methods
The roles methodCall and methodReturn identify the method (s) that shall
be sent using the referenced secure channel.

e Events
The role event identifies the event (s) that shall be sent using the referenced
secure channel.

e Fields
The roles fieldNotifier, getterCall, getterReturn, setterCall and
setterReturn identify the event and method (s) that shall be sent using the
referenced secure channel.

|(RS_SEC_04001, RS_SEC_04003)

The actual secure channel to be created is determined by the concrete sub-class of
the secureComProps base-class.

A (D)TLS secure channel may provide authenticity, integrity and confidentiality.

AUTOSAR

[SWS_CM_90103]{DRAFT} TLS secure channel for methods using reliable trans-
port [A TLS secure channel shall be created and used if

e a TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “tcp” by t ransportProtocol
in the associated someipMethodDeployment.

|(RS_SEC 04001)

[SWS_CM_90104]{DRAFT} DTLS secure channel for methods using unreliable
transport [A DTLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the SserviceInterfaceElementSecureComConfig and
this method is configured for transmission over “udp” by t ransportProtocol
in the associated SomeipMethodDeployment.

|(RS_SEC_04001)

[SWS_CM_90105]{DRAFT} TLS secure channel for events using reliable trans-
port | A TLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-—
ForTcp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServicelInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “tcp” by t ransportProtocol in
the associated SomeipEventDeployment.

|(RS_SEC_04001)

[SWS_CM_90106]{DRAFT} DTLS secure channel for events using unreliable
transport | A DTLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “udp” by t ransportProtocol in
the associated SomeipEventDeployment.

|(RS_SEC 04001)

[SWS_CM_90107]{DRAFT} TLS secure channel for fields | The requirements
[SWS_CM_90103], [SWS_CM _90104], [SWS_CM_90105] and [SWS_CM_90106] ap-
ply to fields in the same manner, since fields are a composition of methods and
events. |(RS_SEC_04001)

AUTOSAR

[SWS_CM_90120]{DRAFT} TLS client role of a Proxy | The TLS secure channel
shall be associated with the respective Proxy and the implementation shall act as a
TLS client, if the AdaptivePlat formServiceInstance referenced in

e [SWS_CM_90103]
e [SWS_CM_90104]
e [SWS_CM_90105]
e [SWS_CM_90106]
e [SWS_CM_90107]
iSa RequiredApServicelInstance. |(RS_SEC 04001)

[SWS_CM_90121]{DRAFT} TLS server role of a Skeleton | The TLS secure chan-
nel shall be associated with the respective skeleton and the implementation shall act
as a TLS server, if the AdaptivePlat formServiceInstance referenced in

e [SWS_CM_90103]

e [SWS_CM_90104]

e [SWS_CM_90105]

e [SWS_CM_90106]

e [SWS_CM_90107]
isaProvidedApServicelInstance. |(RS_SEC _04001)

According to the constraints [constr_3485] and [constr_3486] a Proxy and Skeleton
cannot be bound to the identical local endpoint (IP address and port). Hence, a local
endpoint can either act as a TLS client or as a TLS server exclusively. However, if mul-
tiple Proxys are bound to the same endpoint, their common channel shall be shared
in the middleware. Likewise, if multiple Skeletons are bound to the same endpoint,
their common channel shall be shared in the middleware.

[SWS_CM_90119]{DRAFT} Behavior of a creating ServiceProxy over TLS or
DTLS | The instantiation according to [SWS_CM_00131] shall trigger the asyn-
chronous handshake. |(RS_SEC _04004)

[SWS_CM_90111]{DRAFT} Behavior of a ServiceProxy over TLS before success-
ful completion of the handshake | The communication channel is ready as soon as
the TLS handshake is completed.

Therefore, the future returned by the following methods shall only be satisfied after the
handshake has finished and once the communication was successful:

e the function call operator (operator ()) of the respective Method class (see
[SWS_CM_00196])

e the set () method of the respective Field class (see [SWS_CM_00113])

AUTOSAR

e the Get () method of the respective Field class (see [SWS_CM_00112])

If the handshake fails, error handling according to [SWS_CORE_00001] shall be done
as if the peer was unreachable. |(RS_SEC_04004)

[SWS_CM_90112]{DRAFT} Behavior of a ServiceProxy over DTLS before suc-
cessful completion of the handshake | The communication channel is ready as
soon as the DTLS handshake is completed. Before completion the middleware shall
drop all requests as if the remote peer is unreachable. | (RS_SEC_04004)

The rationale for choosing different behavior in [SWS_CM_90111] and
[SWS_CM_90112] is to reflect the nature of the underlying transport. E.g. plain
UDP would also silently discard packets that cannot be sent, where TCP would report
an error.

[SWS_CM_90113]{DRAFT} Behavior of a ServiceSkeleton over TLS before suc-
cessful completion of the handshake | The communication channel is ready
as soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

e the Send () method of the respective Event class (see [SWS_CM_00162])
e the Update () method of the respective Field class (see [SWS_CM_00119])
|(RS_SEC _04004)

[SWS_CM_90114]{DRAFT} Behavior of a ServiceSkeleton over DTLS before
successful completion of the handshake [The communication channel is ready
as soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

e the send () method of the respective Event class (see [SWS_CM_00162])

e the Update () method of the respective Field class (see [SWS_CM_00119])
|(RS_SEC _04004)
A SecOC secure channel may provide authenticity and integrity.

[SWS_CM_90108]{DRAFT} SecOC secure channel for methods using reliable
transport [A SecOC secure channel shall be created and used if:

e A SecOcSecureComProps instance is referenced in the role secureComPro-
psForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the

AUTOSAR

secured channel by the ServiceInterfaceElementSecureComConfig and
this method of the AdaptivePlatformServiceInstance is configured for
transmission over “tcp” by transportProtocol in the associated Someip-
MethodDeployment.

|(RS_SEC 04001)

[SWS_CM_90115]{DRAFT} SecOC secure channel for methods using unreliable
transport [A SecOC secure channel shall be created and used if:

e A SecOcSecureComProps instance is referenced in the role secureComPro-
psForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method of the AdaptivePlatformServiceInstance is configured for
transmission over “tcp” by transportProtocol in the associated Someip-
MethodDeployment.

|(RS_SEC_04001)

[SWS_CM_90109]{DRAFT} SecOC secure channel for events using reliable
transport | A SecOC secure channel shall be created and used if:

e A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForTcp by a ServiceInstanceToMachineMapping and an event
of the AdaptivePlatformServiceInstance is selected for transmission
over the secured channel by the ServiceInterfaceElementSecureCom-
Config and this event of the AdaptivePlatformServiceInstance iS con-
figured for transmission over “icp” by transportProtocol in the associated
SomeipEventDeployment.

|(RS_SEC_04001)

[SWS_CM_90116]{DRAFT} SecOC secure channel for events using unreliable
transport [A SecOC secure channel shall be created and used if:

e A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForUdp by a ServiceInstanceToMachineMapping and an event
of the AdaptivePlatformServiceInstance IS selected for transmission
over the secured channel by the ServiceInterfaceElementSecureCom—
Config and this event of the AdaptivePlatformServicelInstance is con-
figured for transmission over “udp” by transportProtocol in the associated
SomeipEventDeployment.

|(RS_SEC 04001)

[SWS_CM_90110]{DRAFT} SecOC secure channel for fields | The requirements
[SWS_CM_90108], [SWS_CM_90109], [SWS_CM_90115], [SWS_CM_90116] apply
to fields in the same manner, since fields are a composition of methods and events.
|(RS_SEC_04001)

AUTOSAR

IPsec provides cryptographic protection for IP datagrams in IPv4 and IPv6 network
packets.

[SWS_CM_90117]{DRAFT} IPsec secure channel between communication nodes
[An IPsec secure channel shall be created and used if an AdaptivePlatform-
ServiceInstance is mapped by ServiceInstanceToMachineMapping to an
EthernetCommunicationConnector that points with the unicastNetworkEnd-
point to a NetworkEndpoint that aggregates an TPSecConfig.

The I1PsecRulesinthe IPSecConfig define security associations between the Net -
workEndpoint that aggregates this IPSecConfig and remote nodes that are de-
fined by the referenced remoteIpaAddress. |(RS_SEC _04001)

[SWS_CM_90118]{DRAFT} Transport of Service communication over an IPsec
security association | If a communication connection is established between a Ser-
vice Provider and Service Requester and the configured transport layer connection
matches the defined security association then the IP packets exchanged between the
Service Provider and Service Requester will be protected by IPsec.

In other words it means that if the IPsec security association defined by

e the local Address (IP Address defined by the networkEndpointAddress, Port
and Protocol defined by udpLocalPort or tcpLocalPort) and

e the remote Address (IP Address defined by the remoteIpAddress, Port and
Protocol defined by udpRemotePort Or tcpRemotePort)

equals the settings defined by

e the ServiceInstanceToMachineMapping forthe ProvidedApServicelIn-
stance and

e the ServiceInstanceToMachineMapping forthe RequiredApServiceIn-
stance and

e this network connection is established

then the IP packets between the two nodes will be protected according to the configu-
ration that is also defined in the IPSecRule. |(RS_SEC_04001)

7.5.2.2 DDS

DDS is built upon the Real-Time Publish-Subscribe (RTPS) wire protocol, which allows
different implementations of the standard to interoperate at the wire level. The DDS-
RTPS specification [19] defines the wire protocol using a Model Driven Architecture;
l.e., in terms of a Platform-Independent Model (PIM), which can be mapped to Platform
Specific Models (PSM) targeting different transport protocols. In particular, [19] defines

AUTOSAR

a UDP PSM, and different DDS vendors have implemented TCP PSMs'2, and Shared
Memory PSMs for Inter-Process Communication (IPC).

For consistency with the secure channel modeling and secure communication mech-
anisms specified in 7.5.2.1, this section defines support for communication over the
following security protocols:

e DTLS, for secure communication over UDP.
e TLS, for secure communication over TCP.
e |PSec, for secure communication over IP.

Implementers of the DDS Network Binding who may want to provide transport-
independent secure communication and fine-grained access control at the DDS
Domain- and Topic-level may use the mechanisms defined in the DDS Security speci-
fication [24] in accordance with [SWS_CM_90210].

[SWS_CM_90201]{DRAFT} Secure channel creation [Secure channels shall be
created as specified in [SWS_CM_90101]. |(RS_SEC _04001)

[SWS_CM_90202]{DRAFT} Using secure channels | Secure channels shall be used
as specified in [SWS_CM_90102]. | (RS_SEC_04001, RS_SEC_04003)

[SWS_CM_90203]{DRAFT} TLS secure channel for methods using reliable trans-
port | A TLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-—
ForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServicelInstance is selected for transmission over the
secure channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “tcp” by transportProtocol
in the associated DdsMethodDeployment.

The DataReaders and DataWriters associated with the method shall be configured to
operate over TLS. | (RS_SEC _04001)

[SWS_CM_90204]{DRAFT} DTLS secure channel for methods using unreliable
transport [A DTLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “udp” by transportProtocol
in the associated bdsMethodDeployment.

The DataReaders and DataWriters associated with the method shall be configured to
operate over DTLS. |(RS_SEC_04001)

12A standard TCP PSM for DDS-RTPS is under development, the RFP document is publicly avail-
able at the Object Management Group website: https://www.omg.org/cgi-bin/doc.cgi?mars/
2017-9-24.

https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24
https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24

AUTOSAR

[SWS_CM_90205]{DRAFT} TLS secure channel for events using reliable trans-
port [A TLS secure channel shall be created and used if:

e A TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “tcp” by t ransportProtocol in
the associated bdsEventDeployment.

The DataReaders and DataWriters associated with the event shall be configured to
operate over TLS. |(RS_SEC _04001)

[SWS_CM_90206]{DRAFT} DTLS secure channel for events using unreliable
transport [A DTLS secure channel shall be created and used if:

e a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “udp” by t ransportProtocol in
the associated DdsEventDeployment.

The DataReaders and DataWriters associated with the event shall be configured to
operate over DTLS. |(RS_SEC_04001)

[SWS_CM_90207]{DRAFT} TLS secure channel for fields [The requirements
[SWS_CM_90203], [SWS_CM_90204], [SWS_CM_90205] and [SWS_CM_90206] ap-
ply to fields in the same manner, since fields are a composition of methods and
events. |(RS_SEC _04001)

[SWS_CM_90209]{DRAFT} IPsec secure channel between communication nodes
and Transport of Service communication over an IPsec security association | An
IPsec secure channel shall be created and used according to the requirements and
constraints specified in [SWS_CM_90117] and [SWS_CM_90118]. | (RS_SEC_04001)

[SWS_CM_90210]{DRAFT} Using the DDS Security standard plug-ins in the
Adaptive Platform | Implementers of the DDS binding may use the standard DDS
Security plug-ins specified in [24] instead of the security mechanisms defined in this
document. The DDS Security plug-ins enable transport-independent secure commu-
nication and fine-grained access control on the DDS Domains and Topics that are cre-
ated as a result of the DDS network binding. These mechanisms shall be configured
using the standard Governance and Permission files specified in [24].

When using DDS Security instead of the mechanisms specified in this docu-
ment, DdsProvidedServiceInstances and DdsRequiredServiceInstances
shall contain no secureComConfig properties to ensure that the secure communi-
cation relies solely on DDS Security mechanisms. |(RS_SEC _04001)

AUTOSAR

7.6 Communication API

In the following chapter the functional API specification shall be described.

7.6.1 Offer service

For the service offering C++ API reference, see chapter 8.1.3.2.

[SWS_CM_00102]{DRAFT} Uniqueness of offered service | The Communication
Management shall check the offered service for uniqueness. If the implementation
detects a duplication (i.e., a service with the same ServiceIdentifier and In-
stanceIdentifier is already registered), it shall perform error handling according
to [SWS_CORE_00001]. |(RS_CM_00200, RS_CM_00101)

[SWS_CM_00103]{DRAFT} Protocol where a service is offered | When a new ser-
vice is offered by the application, the Communication Management shall check over
which protocols this service shall be offered. This information is configured in the class
of ServiceInterfaceDeployment referencing the offered ServiceInterfacein
the role serviceInterface. According of the type of the ServiceInterfaceDe-
ployment the Communication Management shall trigger the service offering over re-
spective protocol. |(RS_CM_00101)

7.6.2 Service skeleton creation

For the service skeleton creation C++ API reference, see chapter 8.1.3.3.

[SWS_CM_10410]{DRAFT} InstanceIdentifier check during the creation of
service skeleton [The Communication Management shall check the value of the In-
stanceIdentifier argument: the identifier shall be unique, using the same instance
identifier for the creation of more than one skeleton instance of the same service shall
cause error handling according to [SWS_CORE_00001]. |(RS_CM_00101)

[SWS_CM_10450]{DRAFT} InstanceSpecifier check during the creation of
service skeleton [The Communication Management shall check the value of the In-
stanceSpecifier argument: the specifier shall be unique, using the same instance
specifier for the creation of more than one skeleton instance of the same service shall
be handled according to [SWS_CORE_00001]. |(RS_CM_00101)

[SWS_CM_10451]{DRAFT} InstanceIdentifierContainer check during the
creation of service skeleton | The Communication Management shall check the
value of the InstanceIdentifierContainer argument: the container size shall
be bigger than zero and the identifiers of the container shall be unique, having co-
tainer size of zero and using the same instance specifier for the creation of more
than one skeleton instance of the same service shall be handled according to
[SWS_CORE_00001]. |(RS_CM_00101)

AUTOSAR

7.6.3 Processing of service methods

For the processing of service methods C++ API reference, see chapter 8.1.3.6.

[SWS_CM_10411]{DRAFT} Service method processing modes | The following ser-
vice method processing modes shall be supported:

¢ Polling: Instead of calling a provided service method, the Communication Man-
agement software collects incoming service method invocations. The processing
of each invocation is explicitly triggered by the implementation providing the ser-
vice method using the mechanism defined in [SWS_CM_00199].

e Event-driven, concurrent: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed and will be processed concurrently on provider side by using
different threads.

This is the default mode.

e Event-driven, sequential: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed, but will not be processed concurrently on provider side, by
instead executing them one after the other to avoid the need of synchronization
mechanisms in the implementation providing the service method.

|(RS_CM 00211)

7.6.4 Registering get handlers for fields

For the registering get handlers for fields C++ API reference, see chapter 8.1.3.7.

[SWS_CM_10412]{DRAFT} Invoking GetHandlers | The registered GetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a Get. |(RS_CM_00218)

7.6.5 Registering set handlers for fields

For the registering set handlers for fields C++ API reference, see chapter 8.1.3.8.

[SWS_CM_10413]{DRAFT} Invoking SetHandlers | The registered SetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a set. |(RS_CM_00218)

Note: Upon a call to the setHandler, the Service Provider has to validate the received
field value (it can accept, modify or reject it). After that, it sets the new value in the
future object (see [SWS_CM_00116]).

[SWS_CM_10415]{DRAFT} Notify the Field value after a call to the SetHandler
function [The Communication Management implementation shall take the effective

AUTOSAR

field value returned by the setHandler function, and send it back to the requester
as return value of the set function (see [SWS_CM_00113]), and to all the other sub-
scribed entities via notification (see [SWS_CM_00119]). |(RS_CM_00218)

[SWS_CM_00128]{DRAFT} Ensuring the existence of valid Field values | To en-
sure the existence of a valid field values upon a call to the Subscribe () method (see
[SWS_CM_00141]) or to the Get () method (see [SWS_CM_00112]) the ara::com
implementation shall do the following: If a service containing a Field is offered
via a call to OfferService () (see [SWS_CM_00101]), error handling according to
[SWS_CORE_00001] shall be performed, if Update () has not been called yet and
one or more of the following applies:

e hasNotifier = true

e hasGetter = true and a GetHandler (eee [SWS_CM 00114]) has not yet
been registered.

|(RS_CM_00218)

[SWS_CM_00129]{DRAFT} Ensuring the existence of SetHandler | Upon a call
to OfferService () in a skeleton implementation for a given service, error handling
according to [SWS_CORE_00001] shall be performed, if for at least one contained
FieldhavinghasSetter =trueno SetHandler (see [SWS_CM_00116]) has been
registered yet. |(RS_CM_00218)

7.6.6 Find service

For the find service C++ API reference, see chapter 8.1.3.9.

[SWS_CM_00124]{DRAFT} Find service handler behavior | After calling the
StartFindService method, the FindServiceHandler shall be called by the
Communication Management software to receive the found services. By the first call,
the FindServiceHandler shall receive the initially known matches, if there are any.
In following, the FindServiceHandler shall be called every time a new matching
service instance is found. |(RS_CM_00102)

[SWS_CM_10382]{DRAFT} Calling stop find service for already stopped finds
[Calls to the stopFindService method using a FindServiceHandle obtained
from a startFindService that already has been stopped shall be silently ignored. |
(RS_CM_00102)

7.6.7 Receive events

For the event data access C++ API reference, see chapter 8.1.3.13.

AUTOSAR

[SWS_CM_00709]{DRAFT} FIFO semantics | The Communication Management
shall provide buffering with FIFO semantics between sender and receiver of events.
|(RS_CM_00203)

[SWS_CM_00710]{DRAFT} No implicit context switches | The sending of an
event on sender side shall not lead to an implicit context switch to the receiver pro-
cess, unless the receiver explicitly enabled it by following [SWS_CM_00182] and
[SWS_CM_00711]. |(RS_CM_00203)

7.6.7.1 Receive event by polling

For the polling access no additional APIs on top of 8.1.3.13 are needed.

7.6.7.2 Receive event by getting triggered

For the receive event by getting triggered C++ API reference, see chapter 8.1.3.14.

[SWS_CM_00182]{DRAFT} Event Receive Handler call serialization [The Com-
munication Management shall serialize calls to the registered EventReceiveHan—
dler function as it is not guaranteed that the callback function is re-entrant. |
(RS_CM_00203)

[SWS_CM_00711]{DRAFT} | After the Communication Management has called
the registered EventReceiveHandler function for a specific Event class in-
stance, the next call to GetNewSamples on the same instance shall provide at
least one data sample as long as GetFreeSampleCount is not already returning
max_samples_exceeded at the point in time of the call. |(RS_CM_00203)

7.6.8 Call a service method

For the call a service method C++ API reference, see chapter 8.1.3.15.

[SWS_CM_10414]{DRAFT} Initiate a method call [At the point of time when the
caller calls the method (see [SWS_CM_00196]), the Communication Management
software does not know yet if the result shall be returned with synchronous or asyn-
chronous behavior. Therefore the Communication Management software shall instan-
tiate the ara::core: :Future object to be returned to the caller, but shall not per-
form actions which lead to uncontrolled context switches from the caller point of view,
e.g. an asynchronous event-style mechanism for a wait-on-event. |(RS_CM_00212,
RS _CM_00213)

[SWS_CM_10371]{DRAFT} Context of return checked errors | If during process-
ing of a method call one of the checked errors (see subsubsection 8.1.2.6) oc-
curs, the corresponding ara: :core: :ErrorCode shall be returned in the context

AUTOSAR

of the ara::core::Future::GetResult ()/ara::core: :Future: :get () call.

|(RS_CM_00211, RS_CM_00212, RS_CM_00213, RS_CM_00214)

[SWS_CM_90436]{DRAFT} No checked errors for Fire and Forget method
calls | There shall be no checked errors returned for Fire and Forget method
calls. | (RS_CM_00225)

7.6.9 Update notification events for fields

[SWS_CM_00120]{DRAFT} Provision of an update notification event for a Field |
If hasNotifier is true, update notification events for the Field shall be provided as
of the following requirements:

e [SWS_CM_00141] Method to subscribe to a service event. This subscribe leads
immediately to a service event that contains the initial field value send from
provider side to the consumer.

e [SWS _CM _00151] Method to unsubscribe from a service event.

e [SWS_CM_00316] Method to query the subscription state.

e [SWS_CM_00701] Method to receive a service event using polling.

e [SWS_CM_00181] Method to enable service event trigger.

e [SWS_CM_00182] Event Receive Handler call serialization.

e [SWS_CM_00183] Method to disable service event trigger.

e [SWS_CM_00333] Method to set a subscription state change handler.

e [SWS_CM_00334] Method to unset a subscription state change handler.

Except that the corresponding methods reside in the Field class instead of the Event
class. |(RS_CM_00218)

7.6.10 Instance Specifier Translation

For the instance specifier translation C++ API reference, see chapter 8.1.3.18.

[SWS_CM_10452]{DRAFT} InstanceSpecifier translation to Instanceldentifiers |
The Communication Management shall translate an InstancSpecifierto Instan-
celdentifiers. Based on the match there shall be zero, 1 or multiple InstanceI-
dentifiers. |(RS_CM_00207)

AUTOSAR

8 Communication API specification

The adaptive platform supports multiple language bindings. At the current state only
the C++ language binding is implemented.

8.1 C++ language binding

8.1.1 API Header files

This chapter describes the header files of the ara::com API.

The so-called input for the header files are the AUTOSAR metamodel classes within
the serviceInterface description, as defined in the AUTOSAR Adaptive Method-
ology Specification [25].

The following requirements are applicable for all header files; requirements which are
specific for a header file are described in own sub-chapters.

The required folder structure for the ARA public header files is defined by
[SWS_AP_00001] in AUTOSAR SWS General [26]. This applies to the Types header
file, but the folder structure for the Service header files, Common header files, and the
Implementation Types header files is derived from the namespace hierarchy.

[SWS_CM_01020]{DRAFT} Folder structure | The Service header files defined
by [SWS_CM_01002], the Common header files defined by [SWS_CM_01012], and
the Implementation Types header files defined by [SWS_CM_10373] shall be located
within the folder:

<namespace[0]>/<namespace[l]>/.../<namespace[n]>/
where:
<namespace[0]> ... <namespace[n]> are the namespace names as defined

in [SWS_CM_01005] and [SWS_CM_10375]. |(RS_CM_00001)

8.1.1.1 Service header files

The Service header files are the central definition of the ara::com APl and any associ-
ated data structures that are required by the AdaptiveApplication software components
to use the communication management.

[SWS_CM_01002]{DRAFT} Service header files existence | The communication
management shall provide one Proxy header file and one Skeleton header file for each
ServiceInterface defined inthe input by using the file name <name>_proxy.h for
the Proxy header file and <name>_skeleton.h for the Skeleton header file, where

<name> is the ServiceInterface.shortName converted to lower-case letters. |
(RS_CM_00001)

AUTOSAR

[SWS_CM_01004]{DRAFT} Inclusion of common header file [The Proxy and
Skeleton header file shall include the Common header file:

1 #include "<namespace[0]>/<namespace[l]>/.../<namespace[n]>/<name>
_common.h"

where:

<namespace[0]> ... <namespace[n]> are the namespace names as defined
in [SWS_CM_01005] and [SWS_CM_10375]. <name> is the the ServiceInter-
face.shortName converted to lower-case letters. |(RS_CM_00001)

Namespaces are used to separate the definition of services from each other to prevent
name conflicts and they allow to use reasonably short names.

[SWS_CM_01005]{DRAFT} Namespace of Service header files | Based on the
symbol attributes of the ordered SymbolProps aggregated by PortInterface in
role namespace, the C++ namespace of the Service header file shall be:

namespace <Servicelnterface.namespace[0].symbol> {
namespace <Servicelnterface.namespace[l].symbol> {
namespace <...> {

namespace <ServicelInterface.namespace[n].symbol> {

// namespace <Servicelnterface.namespace[n].symbol>
// namespace <...>

// namespace <Servicelnterface.namespace[l].symbol>
// namespace <Servicelnterface.namespace[0].symbol>

© © N o o &~ W Nno=

[R

with all namespace names converted to lower-case letters. | (RS_CM_00002)

Starting from the innermost namespace as defined by [SWS_CM_01005], there are
additional C++ namespaces for the proxy or the skeleton and for the events and meth-
ods. These namespaces are used for the declarations and definitions as described in
chapter 8.1.3.

[SWS_CM_01006]{DRAFT} Service skeleton namespace [The C++ namespace
for a specific service skeleton class shall be:

1 namespace skeleton {
2

3 } // namespace skeleton

|(RS_CM_00002)
[SWS_CM_01007]{DRAFT} Service proxy hamespace | The C++ namespace for a
specific service proxy class shall be:

1 namespace proxy {
2 ...
3 } // namespace proxy

|(RS_CM_00002)

AUTOSAR

[SWS_CM_01009]{DRAFT} Service events namespace | The Proxy and Skeleton
header file shall provide a C++ namespace for the definition of events within the name-
space defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace events {
2 ...
3 } // namespace events

|(RS_CM_00002)

[SWS_CM_01015]{DRAFT} Service methods namespace | The Proxy and Skeleton
header file shall provide a C++ namespace for the definition of methods within the
namespace defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace methods {
2 ...
3 } // namespace methods

|(RS_CM_00002)

[SWS_CM_01031]{DRAFT} Service fields namespace | The Proxy and Skeleton
header file shall provide a C++ namespace for the definition of fields within the name-
space defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace fields {
2 ...
3 } // namespace fields

|(RS_CM_00002, RS_CM_00216)

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01006], and [SWS_CM_01009], the namespace hierarchy in the Skeleton
header file looks like:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServicelInterface.namespace[l].symbol> {
3 namespace <...> {

4 namespace <Servicelnterface.namespace[n].symbol> {
5 namespace skeleton {

6

7 namespace events {

8 ...

9 } // namespace events

11 namespace methods {

13} // namespace methods

15 namespace fields ({

17} // namespace fields

20 } // namespace skeleton

21} // namespace <ServicelInterface.namespace[n].symbol>
22 } // namespace <...>

AUTOSAR

23 } // namespace <Servicelnterface.namespace[l].symbol>
24 } // namespace <ServicelInterface.namespace[0].symbol>

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01007],
hierarchy in the Proxy header file looks like:

© 0o N o O~ 0N =

namespace
namespace
namespace <...
namespace
namespace

[SWS_CM_01009], and [SWS_CM_01015], the namespace

<Servicelnterface.namespace[0].symbol> {
<Servicelnterface.namespace[l].symbol> {

> A

<Servicelnterface.namespace[n].symbol> {
proxy {

namespace events {

} // namespace events

11 namespace methods {

13} // namespace methods

15 namespace fields {

17 Y //

//
//
//
//
//

n
n
L e N)

namespace

namespace
namespace
namespace
namespace
namespace

fields
pProxy
<Servicelnterface.namespace[n].symbol>
<. 00>
<ServicelInterface.namespace[l].symbol>

<ServicelInterface.namespace[0].symbol>

8.1.1.2 Common header file

The Common header file includes the ara::com specific type declarations derived from
the ApApplicationErrors composed by a particular ServiceInterface as well
Service Identifier type declarations related to a particular ServicelInterface.

[SWS_CM_01012]{DRAFT} Common header file existence | The communication
management shall provide a Common header file for each serviceInterface de-
fined in the input by using the file name <name>_common.h, where <name> is the
ServicelInterface.shortName converted to lower-case letters. |(RS_CM_00001)

As a minimal requirement, the Types header file and the Implementation Types header
files need to be included.

[SWS_CM_01001]{DRAFT} Inclusion of Types header file [The Common header
file shall include the Types header file:

1 #include "ara/com/types.h"

|(RS_CM_00001)

AUTOSAR

[SWS_CM_10372]{DRAFT} Inclusion of Implementation Types header files [The
Common header file shall include the Implementation Types header files of those Cp-
pImplementationDataTypes that are actually used by the particular ServiceIn-
terface:

1 #include "<namespace[0]>/<namespace[l]>/.../<namespace[n]>/impl_type_<
symbol>.h"

where <namespace[0..n]> is the namespace hierarchy defined in
[SWS_CM 10375], and <symbol> is the Cpp Implementation Data Type
symbol according to section 8.1.2.5.2 converted to lower-case letters. |
(RS_CM_00001)

It is not mandatory that all declarations and definitions are located directly in the Com-
mon header file. A Communication Management implementation might also distribute
the declarations and definitions into different header files, but at least all those header
files need to be included into the Common header file.

[SWS_CM_10370]{DRAFT} Common header file for Application Errors | The
Common header file shall include the class definitions for all ApApplicationError—
Domain$ for the ApApplicationErrors of a ServiceInterface according to
[SWS_CM_11266]. | (RS_CM_00001)

[SWS_CM_01017]{DRAFT} Service Identifier Type definitions in Common header
file | The Common header file shall include the information to identify the service type
according to the requirement [SWS_CM_01010]. | (RS_CM_00001)

[SWS_CM_01008]{DRAFT} Namespace for Service Identifier Type definitions |
The declarations and definitions according to [SWS_CM_01017] shall be located in
the C++ namespace as defined by [SWS_CM_01005] to match to the namespace of
the related skeleton and proxy header file. |(RS_CM_00002)

8.1.1.3 Types header file

The Types header file includes the data type definitions which are specific for the
ara::com API. Such data type definitions are used in the standardized proxy and skele-
ton interfaces defined in chapter 8.1.3.

[SWS_CM_01013]{DRAFT} Types header file existence | The communication man-
agement shall provide a Types header file by using the file name types.h. |
(RS_CM _00001)

[SWS_CM_01018]{DRAFT} Types header file namespace | The C++ namespace
for the data type definitions included by the Types header file shall be:

namespace ara {
namespace com {

} // namespace com

1
2
3
4
5 } // namespace ara

AUTOSAR

|(RS_CM_00002)

It is not mandatory that all data type definitions are located directly in the Types header
file. A Communication Management implementation might also distribute the defini-
tions into different header files, but at least all those header files need to be included
into the Types header file.

[SWS_CM_01019]{DRAFT} Data Type declarations in Types header file
[The Types header file shall include the data type definitions according to
[SWS_CM_00301], [SWS_CM_00302], [SWS_CM_00303], [SWS_CM_00304],
[SWS_CM_00383], [SWS_CM_00306], [SWS_CM_00308], [SWS_CM_00309],
[SWS_CM_00310], and [SWS_CM_00311]. |(RS_CM_00001)

8.1.1.4 Implementation Types header files

The Implementation Types header files include the ara::com specific type declara-
tions derived from the CppImplementationDataTypes created from the definitions
of AUTOSAR meta model classes within the ServiceInterface description. Such
data type declarations are described in detail in chapter 8.1.2.5.

[SWS_CM_10373]{DRAFT} Implementation Types header files existence | The
communication management shall provide an Implementation Types header file for
each CppImplementationDataType defined in the input by using the file name
impl_type_<symbol>.h, where <symbol> is the Cpp Implementation Data
Type symbol according to section 8.1.2.5.2 converted to lower-case letters. |
(RS_CM_00001)

The Implementation Types header files might need to include other header files, e.g.
forara::core::Stringorara::core::Vector.

[SWS_CM_10374]{DRAFT} Data Type definitions for AUTOSAR Data Types in
Implementation Types header files | The Implementation Types header files shall
include the type definitions and structure and class definitions for all the AUTOSAR
Data Types according to [SWS_CM_00402], [SWS_CM_00403], [SWS_CM_00404],
[SWS_CM_00405], [SWS_CM_00406], [SWS_CM_00407], [SWS_CM_00408],
[SWS_CM_00409], [SWS_CM_00410] and [SWS_CM_00424]. | (RS_CM_00001)

[SWS_CM_10375]{DRAFT} Implementation Types header file namespace | The
C++ namespace of the Implementation Types header file for a given CppImplemen—
tationDataType is defined via the aggregated namespace. Based on the sym-
bol attributes of the ordered symbolProps aggregated by CppImplementation-
DataType in role namespace, the C++ namespace of the Implementation Types
header file shall be:

namespace <CpplImplementationDataType.namespace[0].symbol> {
namespace <CpplImplementationDataType.namespace[l].symbol> {
namespace <...> {

namespace <CpplImplementationDataType.namespace[n].symbol> {

a H~ 0 N =

AUTO SAR

// namespace <CpplImplementationDataType.namespace[n].symbol>
// namespace <...>

// namespace <CppImplementationDataType.namespace[l].symbol>
// namespace <CppImplementationDataType.namespace[0].symbol>

e e

© o N O

with all namespace names converted to lower-case letters. | (RS_CM_00002)

AUTOSAR

8.1.2 API Data Types

This chapter describes the data types used by the ara::com API, both the specific ones
which are part of the standardized proxy and skeleton interfaces, and the ones derived
from the description based on the AUTOSAR Metamodel.

8.1.2.1 Service ldentifier Data Types

The data types described in this chapter are derived from the ara::com API design and
as a part of the API, they are used to identify a specific service or service instance.

A service can be identified at least by a fully qualified name and a version. The Servi-
celdentifier is not visible in the ara::com API, as the specific service skeleton and
proxy class itself represent the service type, but the ServiceIdentifier is needed
for the implementation of the Communication Management software. It is defined here
to guarantee a minimum amount of information.

[SWS_CM_01010]{DRAFT} Service Identifier and Service Version Classes | The
Communication Management shall provide a C++ class named ServicelInter-
face.shortName. The class contains at least a fully qualified name identifier
(ServiceIdentifier) and a service version (ServiceVersion). The exact types
of Serviceldentifier and ServiceVersion are specific to the Communication
Management software provider. Their concrete realization is implementation defined.
To allow for logging and for storing and managing in C++ container classes by the using
application, however, the types of both classes shall satisfy the EqualityCompara-
ble requirements according to table 17, the LessThanComparable requirements ac-
cording to table 18, and the CopyAssignable requirements according to table 23 of
section 17.6.3.1 of [27]. These requirements are fulfilled if the operators operator==,
operator<, and operator=as well as a tostring () method is provided.

class <ServicelInterface.shortName> {

public:
static constexpr ServiceldentifierType Serviceldentifier;

static constexpr ServiceVersionType ServiceVersion;

}i

class ServiceldentifierType {
bool operator==(const ServiceldentifierType& other) const;
bool operator<(const ServiceldentifierType& other) const;
ServiceldentifierType& operator=(const ServiceldentifierType& other);
ara::core::string_view toString() const;

bi

class ServiceVersionType {
bool operator==(const ServiceVersionType& other) const;
bool operator<(const ServiceVersionType& other) const;
ServiceVersionType& operator=(const ServiceVersionType& other);
ara::core::string_view toString() const;

bi

© o N o o A~ W N o=

o

AUTOSAR

|(RS_CM_00200)

There might exist different instances of exactly the same service in the system. To han-
dle this, an InstanceIdentifier or an InstanceSpecifier are used to identify
a specific instance of a service. These are a necessary parameter of the API defined
for both the skeleton and proxy side:

e On service skeleton side, it types the parameter needed to
identify the service instance when creating an instance by
[SWS_CM_00130],[SWS_CM_00152],[SWS_CM_00153].

e ONn service proxy side, it types the parameter needed to identify the ser-
vice instance when searching for a specific instance by [SWS_CM_00122] or
[SWS_CM_00123].

[SWS_CM_00350]{DRAFT} Instance Specifier Class [The InstanceSpecifier
class is specified in [16]. | (RS_CM_00101)

[SWS_CM_00302]{DRAFT} Instance Identifier Class | The Communication Man-
agement shall provide a class InstanceIdentifier. It only contains instance infor-
mation, but does not contain a fully qualified name, which would also have service type
information.

The definition of the InstanceIdentifier can be extended by the Communica-
tion Management software provider, but at least the given class constructor, the class
method signatures, and the static member Any must be preserved. InstanceI-
dentifier shall further satisfy the EqualityComparable requirements according
to table 17, the LessThanComparable requirements according to table 18, and the
CopyAssignable requirements according to table 23 of section 17.6.3.1 of [27] to
allow for logging of InstanceIdentifiers as well as storing and managing In-
stanceIdentifiers in C++ container classes by the using application. These re-
quirements are fulfilled if the operators operator==, operator<, and operator=
as well as a toString () method is provided.

class Instanceldentifier {

public:
static const InstancelIdentifier Any;

explicit Instanceldentifier (ara::core::string_view value);

ara::core::string_view toString() const;

bool operator==(const Instanceldentifier& other) const;

bool operator<(const Instanceldentifier& other) const;

Instanceldentifier& operator=(const Instanceldentifier& other);
}i

|(RS_CM_00101, RS_CM_00102)

[SWS_CM_00319]{DRAFT} Instance Identifier Container Class [The Communica-
tion Management shall provide the definition of a InstanceIdentifierContainer.
The container holds a list of InstanceIdentifier. The assigned data type is al-
lowed to be changed by the Communication Management software provider, but must
adhere to the general container requirements according to table 96 of section 23.2.1

© o N o g A~ W N o=

o

AUTOSAR

and the sequence container requirements according to table 100 of section 23.2.3 of
[27]. A ara: :core: :Vector for example fulfills these requirements.

using InstanceldentifierContainer = ara::core::Vector<Instanceldentifier>;

|(RS_CM_00101, RS_CM_00102)

The following data types are used for the handling of services on the service consumer
side, therefore they are part of the API defined for the proxy side.

To identify a triggered request to find a service, the startFindService method of
[SWS_CM_00123] returns a FindServiceHandle which is used as parameter to
cancel this request with stopFindservice as described in [SWS_CM_00125].

[SWS_CM_00303]{DRAFT} Find Service Handle | The Communication Manage-
ment shall provide the definition of an opaque FindServiceHandle with exactly this
name. FindServiceHandle shall satisfy the EqualityComparable requirements
according to table 17, the LessThanComparable requirements according to table 18,
and the CopyAssignable requirements according to table 23 of section 17.6.3.1 of
[27] to allow storing and managing FindServiceHandles in C++ container classes
by the using application. These requirements are fulfilled if the following operators
are provided: operator==, operator<, and operator=. The exact definition
of FindServiceHandle is communication management implementation specific. |
(RS_CM_00102)

For example, a definition of FindServiceHandle could look like this:

struct FindServiceHandle {
internal::Serviceld service_id;
internal::InstanceId instance_id;
std::uint32_t uid;

bool operator==(const FindServiceHandle& other) const;
bool operator<(const FindServiceHandle& other) const;
FindServiceHandle& operator=(const FindServiceHandle& other);

bi

The usage of the API to find service instances, as defined in [SWS_CM_00122] and
[SWS_CM_00123], provides a handle container holding a list of handles. Each handle
represents an existing service instance and by passing the handle as parameter to the
proxy constructor [SWS_CM_00131], it allows the ara::com API user to create a proxy
instance to access this service instance.

[SWS_CM_00312]{DRAFT} Handle Type Class | The Communication Management
shall provide the definition of HandleType. It types the handle for a specific service
instance and shall contain the information that is needed to create a ServiceProxy.
The definition of the HandleType can be extended by the Communication Manage-
ment software provider, but at least the given class and class method signatures must
be preserved.

o o A~ W N =

1

AUTOSAR

HandleType shall satisfy the EqualityComparable requirements according to ta-
ble 17 and the LessThanComparable requirements according to table 18 of sec-
tion 17.6.3.1 of [27]. These requirements are fulfilled if the following operators are
provided: operator== and operator<. This, together with [SWS_CM_00317]
and [SWS_CM_00318], allows storing and managing HandleTypes in C++ container
classes by the using application.

The definition of the HandleType class shall be located inside the ServiceProxy
class defined by [SWS_CM_00004]. This allows the Communication Management
software to provide handles with different implementation dependent on the binding
to the represented service.

class HandleType {

public:

bool operator==(const HandleType& other) const;

bool operator<(const HandleType& other) const;

const ara::com::Instanceldentifier& GetInstanceId() const;

}i

|(RS_CM_00102)

Since the Communication Management software is responsible for creation of handles
and the application just uses instances of it, the constructor signature is not part of the
HandleType specification.

[SWS_CM_00317]{DRAFT} Copy semantics of handle Type Class [The Commu-
nication Management shall provide the possibility to copy construct and copy assign a
HandleType instance from another instance.

HandleType (const HandleType&) ;
HandleType& operator=(const HandleType&);

|(RS_CM_00102)

[SWS_CM_00318]{DRAFT} Move semantics of handle Type Class [The Commu-
nication Management shall provide the possibility to move construct and move assign
a HandleType instance from another instance.

HandleType (HandleType &&);
HandleType& operator=(HandleType &&);

|(RS_CM_00102)

[SWS_CM_00304]{DRAFT} Service Handle Container | The Communication Man-
agement shall provide the definition of a ServiceHandleContainer. The container
holds a list of service handles and is used as a return value of the FindService
methods. The assigned data type is allowed to be changed by the Communication
Management software provider, but must adhere to the general container requirements
according to table 96 of section 23.2.1 and the sequence container requirements ac-
cording to table 100 of section 23.2.3 of [27]. A ara::core::Vector for example
fulfills these requirements.

template <typename T>

2 using ServiceHandleContainer = ara::core::Vector<T>;

AUTOSAR

|(RS_CM_00102)

The possibility to continuously find services by registering a handler function as defined
in [SWS_CM_00123] requires a definition of such a handler function. The function
implementation itself must be provided by the proxy user.

[SWS_CM_00383]{DRAFT} Find Service Handler | The Communication Manage-
ment shall provide the definition of FindServiceHandler as a function wrapper for
the handler function that gets called by the Communication Management software in
case the service availability changes. It takes as input parameter a handle container
containing handles for all matching service instances and a FindServiceHandle
which can be used to invoke StopFindService (see [SWS_CM_00125]) from within
the FindServiceHandler.

template <typename T>

using FindServiceHandler =
std::function<void(ServiceHandleContainer<T>, FindServiceHandle) >;

|(RS_CM_00102)
See [SWS_CM_00304] for the type definition of ServiceHandleContainer.

8.1.2.2 Event Related Data Types

Event handling on receiver side is based on queued communication with config-
urable cache sizes. The cache size for a specific event of a proxy instance is de-
termined by the Communication Management, when subscribing to a specific event by
[SWS_CM_00141].

After the receiver subscribed to an event, the method GetNewSamples as defined in
[SWS_CM _00701] is used to retrieve the data samples of that event. In the context
of GetNewSamples application provided callback functions are called by the Commu-
nication Management, where Sample Pointers to the data samples retrieved from un-
derlying queues are passed in. A Sample Pointer is an alias for an event data type
pointer.

SamplePtr behaves similarto std: :unique_ptr but it may be implemented with a
subset of features. It also contains an additional method GetProfileCheckStatus
to access the E2E results provided by ProfileCheckStatus of the referred sample.

[SWS_CM_00306]{DRAFT} Sample Pointer [The Communication Management
shall provide a samplePtr template which provides a pointer to a managed data
object. The implementation shall at least contain the following constructors, assign
operators and methods:

template< typename T >
class SamplePtr {

// Default constructor
constexpr SamplePtr () noexcept;

AUTOSAR

// semantically equivalent to Default constructor
constexpr SamplePtr (nullptr_t) noexcept;

// Copy constructor is deleted
SamplePtr (const SamplePtr&) = delete;

// Move constructor
SamplePtr (SamplePtr&&) noexcept;

// Default copy assignment operator is deleted
SamplePtr& operator=(const SamplePtr&) = delete;
// Assignment of nullptr_t

SamplePtr& operator=(nullptr_t) noexcept;

// Move assignment operator

SamplePtr& operator=(SamplePtré&&) noexcept;

// Dereferences the stored pointer
T& operator* () const noexcept;
T+ operator->() const noexcept;

//Checks 1f the stored pointer is null
explicit operator bool () const noexept;

// Swaps the managed object

void Swap (SamplePtré&) noexcept;
//Replaces the managed object
void Reset (nullptr_t) ;

//Returns the stored object
T+ Get () const noexcept;

// Returns the end 2 end protection check result
ProfileCheckStatus GetProfileCheckStatus () const noexcept;
bi
|(RS_CM_00202, RS_CM_00203)

[SWS_CM_90420]{DRAFT} E2E ProfileCheckStatus of a sample | The Sam-
plePtr shall provide the access to the ProfileCheckStatus of each sample by
means of the method GetProfileCheckStatus:

1 ara::com: :e2e::ProfileCheckStatus GetProfileCheckStatus () const noexcept;
2

|(RS_E2E 08534)

On the event provider side, it is possible to let the Communication Management
allocate the memory for the storage of the data before sending it as defined in

1
2

3
4
5

AUTOSAR

[SWS_CM_90438]. A Sample Allocatee Pointer is an alias for an event data type
pointer used both for allocation and data sending.

[SWS_CM_00308]{DRAFT} Sample Allocatee Pointer | The Communication Man-
agement shall provide the definition of SampleAllocateePtr as a pointer to a data
sample allocated by the Communication Management implementation. The implemen-
tation is allowed to be changed by the Communication Management software provider.

template <typename T>
using SampleAllocateePtr = std::unique_ptr<T>;

|(RS_CM_00201)

The event receiver can register an Event Receive Handler as a callback to get no-
tified if new event data has arrived. The callback function itself is defined in the
event consumer implementation; the Event Receive Handler type is just an general
purpose function alias for the use in the method setrReceiveHandler as defined by
[SWS_CM_00181].

[SWS_CM_00309]{DRAFT} Event Receive Handler [The Communication Manage-
ment shall provide the definition of EventReceiveHandler as a function wrapper
without parameters for the handler function that gets called by the Communication
Management software in case new event data arrives for an event. The event receiver
must provide the function implementation which is not required to be re-entrant.

The symbolic name is set; for the alias it is recommended to use the C++ general-
purpose polymorphic function wrapper std: : function, but this is not mandatory and
is allowed to be changed by the Communication Management software provider.

using EventReceiveHandler = std::function<void() >;

|(RS_CM_00203)

The event receiver can monitor the state of a service event subscription by request-
ing or getting a notification of the Subscription State (see [SWS_CM_00316] and
[SWS_CM _00311]), as the real process of subscription might happen at a later point
in time than the return of the call to subscribe. The Subscription State related
ara::com APl methods require the definitions of a Subscription State enumeration
([SWS_CM_00310]) and a Subscription State Changed Handler function wrapper.

[SWS_CM_00310]{DRAFT} Subscription State | The Communication Management
shall provide an enumeration SubscriptionState which defines the subscription
state of an event.
enum class SubscriptionState : uint8_t {

kSubscribed,

kNotSubscribed,

kSubscriptionPending
}i

|(RS_CM_00103, RS_CM_00104, RS_CM_00106)

a A W N =

AUTOSAR

[SWS_CM_00311]{DRAFT} Subscription State Changed Handler [The Communi-
cation Management shall provide the definition of SubscriptionStateChangeHan-
dler as a function wrapper for the handler function that gets called by the Communi-
cation Management software in case the subscription state of an event has changed.

using SubscriptionStateChangeHandler =
std::function<void (SubscriptionState)>;

|(RS_CM_00103, RS_CM_00104, RS_CM_00106)

8.1.2.3 Method Related Data Types

Service method invocation on provider side can be executed in different processing
modes, where the Method Call Processing Mode is set as a parameter of the Ser—
viceSkeleton constructor defined by [SWS_CM_00130].

[SWS_CM_00301]{DRAFT} Method Call Processing Mode | The Communication
Management shall provide an enumeration MethodCallProcessingMode which de-
fines the processing modes for the service implementation side.

enum class MethodCallProcessingMode : uint8_t {
kPoll,
kEvent,
kEventSingleThread

}i

|(RS_CM_00211)
The expected behavior of each processing mode is described in [SWS _CM_00198].

8.1.2.4 Generic Data Types
8.1.2.4.1 Future and Promise

The Future and Promise class templates are described in [16].

8.1.2.4.2 Optional Data Types

The Optional class template ara: :core: :Optional used in ara::com to provide
access to optional record elements of a Structure Cpp Implementation Data
Type is described in [16].

AUTOSAR

8.1.2.4.3 Variant Data Types

The class template ara: :core: :Variant is used to provide a type-save union rep-
resentation is described in [16]. Whenever there is a mention of the standard C++17
ltem std: :variant, the implied source material is [28].

The class template std::variant at a given time either holds a value of one of its alter-
native types, or in the case of an error, no value.

[SWS_CM_01050]{DRAFT} variant Class Template | The Communication Man-
agement shall at least provide an variant class template which provides a type-save
union representation.

template< class... Types >
class Variant {

// Default constructor

Variant () noexcept;
// Move constructor
Variant (Varianté&&) noexcept;

// Copy constructor
Variant (const Varianté&);

// Converting constructor
template< class T >

Variant (T&&) noexcept;

// Explicit converting constructors

template< class T, class... Args >

explicit Variant (std::in_place_type_t<T> , Arg&&...);

template< class T, class U, class... Args >

explicit Variant (std::in_place_type_t<T> , std::initializer 1list<U> ,
Arg&&...);

template< std::size_t I, class... Args >

explicit Variant (std::in_place_index_t<I> , Argé&&...);

template< std::size_t I, class U, class... Args >

explicit Variant (std::in_place_index_t<I> , std::initializer_list<U> ,
Arg&&...);

// Destructor
~Variant ();

// Move assignment operator

Variant& operator=(Variant&&) noexcept;
// Default copy assignment operator
Variant& operator=(const Varianté&);

// Converting assignment operator
template < class T >
Variant& operator=(T&&) noexcept;

// Returns the zero-based index of the alternative

AUTOSAR

std::size_t index|();
// Checks if the Variant is an invalid state
bool valueless_by_exception () const noexcept;

// Modifiers

template < class T, class... Args >

void emplace(Argsé&&...);

template < class T, class U, class... Args >

void emplace(std::initializer_1list<U> , Argsé&&...);
template < std::size_t I, class... Args >

void emplace(Argsé&&...);

template <std::size_t I, class U, class... Args>
void emplace(initializer_ 1list<U> , Argsé&&...);

// Swap
void swap(Varianté&) noexcept;

}i
|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01051]{DRAFT} variant default constructor | The variant construc-
tor

1 Variant () ;

behaves as the std: :variant constructor

1 variant ();

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01052]{DRAFT} variant move constructor [The variant move con-
structor

1 Variant (Variant&&) noexcept;

behaves as the std: : variant move constructor

1 constexpr variant (variant&& other) noexcept;

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01053]{DRAFT} variant copy constructor [The variant copy con-
structor

1 Variant (const Varianté&);

behaves as the std: :variant copy constructor

1 constexpr variant (const varianté& other);

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01054]{DRAFT} variant converting constructor | The variant con-
verting constructor

AUTOSAR

1 template< class T >
2 Variant (T&&) noexcept;

behaves as the std: : variant converting constructor

1 template< class T >
2 constexpr variant (TT& t) noexcept;

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01055]{DRAFT} variant explicit converting constructor with speci-
fied alternative | The variant explicit converting constructor with specified alterna-
tive

1 template< class T, class... Args >

2 explicit Variant (std::in_place_type_t<T> , Arg&&...);

behaves as the std: :variant explicit converting constructor with specified alterna-
tive

1 template< class T, class... Args >
2 constexpr explicit variant (std::in_place_type_t<T> , Arg&&... args);

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01056]{DRAFT} variant explicit converting constructor with speci-
fied alternative and initializer list [The variant explicit converting constructor with
specified alternative and initializer list

1 template< class T, class U, class... Args >
2 explicit Variant (std::in_place_type_t<T> , std::initializer_ 1list<U> ,
Arg&&...);

behaves as the std: :variant explicit converting constructor with specified alterna-
tive and initializer list

1 template< class T, class U, class... Args >
2 constexpr explicit variant (std::in_place_type_t<T> , std::
initializer_1list<U> il, Arg&&... args);

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01057]{DRAFT} variant explicit converting constructor with alterna-
tive specified by index | The variant explicit converting constructor with alternative
specified by index

1 template< std::size_t I, class... Args >
2 explicit Variant (std::in_place_index_t<I> , Arg&&...);

behaves as the std: : variant with alternative specified by index

1 template< std::size_t I, class... Args >
2 constexpr explicit wvariant (std::in_place_index_t<I> , Arg&&... args)

4

AUTOSAR

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01058]{DRAFT} variant explicit converting constructor with alter-
native specified by index and initializer list | The variant explicit converting con-
structor with alternative specified by index and initializer list

1 template< std::size_t I, class U, class... Args >
2 explicit Variant (std::in_place_index_t<I> , std::initializer_ list<U>
, Arg&&...);

behaves as the std: : variant with alternative specified by index and initializer list

1 template< std::size_t I, class U, class... Args >
2 constexpr explicit variant (std::in_place_index_ t<I> , std::
initializer_1list<U> il, Argé&&... args);

|(RS_CM_00205, RS_SOMEIP_00050)
[SWS_CM_01059]{DRAFT} variant destructor [The variant destructor

1 ~Variant ();

behaves as the std: :variant destructor

1 ~variant ();

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01060]{DRAFT} variant move assighment operator [The Variant
move assignment operator

1 Varianté& operator=(Varianté&&) noexcept;

behaves as the std: : variant move assignment operator

1 constexpr variant (variant&& rhs) noexcept

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01061]{DRAFT} variant default copy assignment operator | The
Variant default copy assignment operator

1 Variant& operator=(const Varianté);

behaves as the std: :variant default copy assignment operator

1 varianté& operator=(const variant& rhs);

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01062]{DRAFT} variant converting assignment operator | The
Variant converting assignment operator

1 template < class T >
2 Variant& operator=(T&&) noexcept;

behaves as the std: : variant converting assignment operator

AUTOSAR

1 template < class T >
2 variant& operator=(T&& t) noexcept;

|(RS_CM_00205, RS _SOMEIP_00050)
[SWS_CM_01063]{DRAFT} variant function to return the zero-based index of
the alternative [The variant function returns the zero-based index of the alternative

1 std::size_t index();

behaves as the std: :variant function to return the zero-based index of the alterna-
tive

1 constexpr std::size_t index();

|(RS_CM_00205, RS_SOMEIP_00050)
[SWS_CM_01064]{DRAFT} variant function to check if the Variant is in invalid
state | The variant function checks if the Variant is in invalid state

1 bool valueless_by_exception() const noexcept;

behaves as the std: :variant function to return false if the variant holds a value,
else true

1 constexpr bool valueless_by_exception () const noexcept;

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01066]{DRAFT} variant function to create a new value in-place, in
an existing Variant object | The variant creates a new value in-place, in an existing
Variant object

1 template < class T, class... Args >
2 void emplace(Argsé&&...);

behaves as the std: : variant emplace function to create a new value in-place, in an
existing Variant object

1 template < class T, class... Args >
2 void emplace(Argsé&&... args);

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01067]{DRAFT} variant function to create a new value in-place, in
an existing Variant object using an initializer list | The variant creates a new
value in-place, in an existing Variant object using initializer list

1 template < class T, class U, class... Args >
2 void emplace(std::initializer 1list<U> , Argsé&&...);

behaves as the std: : variant emplace function to create a new value in-place, in an
existing Variant object using an initializer list

1 template < class T, class U, class... Args >
2 void emplace(std::initializer_list<U> il , Args&&... args);

AUTOSAR

|(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01068]{DRAFT} variant function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value | The
Variant creates a new value in-place, in an existing Variant object by destoying and
initializing the contained value

1 template < std::size_t I, class... Args >
2 void emplace(Argsé&&...);

behaves as the std: : variant emplace function to create a new value in-place, in an
existing Variant object by destoying and initializing the contained value

1 template < std::size_t I, class... Args >
2 void emplace(Argsé&&... args);

The behavior is undefined if | is not less than sizeof...(Types) |(RS_CM_00205,
RS _SOMEIP_00050)

[SWS_CM_01069]{DRAFT} variant function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value using
an initializer list [The variant creates a new value in-place, in an existing Variant
object by destoying and initializing the contained value using an initializer list

1 template <size_t I, class U, class... Args>
2 void emplace(initializer_ list<U> , Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value using an
initializer list

1 template <size_t I, class U, class... Args>

2 void emplace(initializer_1list<U> il , Argsé&&... args);

The behavior is undefined if | is not less than sizeof...(Types) |(RS_CM_00205,
RS _SOMEIP_00050)

[SWS_CM_01065]{DRAFT} variant function to swap two Variants | The vari-
ant function swaps two Variants

1 void swap(Variant&) noexcept;

behaves as the std: :variant function to swap two Variants

1 void swap(Variant& rhs) noexcept;

|(RS_CM_00205, RS_SOMEIP_00050)

8.1.2.4.4 Scale Linear And Texttable Data Types

The following section describes the ScalelLinearAndTexttable class template
used in ara::com. The objects of this class at a given time either hold the value of

AUTOSAR

an enumerator of a specific enum class or other values of the underlying type of this.
The used enum class is specified through a template argument.

[SWS_CM_10392]{DRAFT} ScalelLinearAndTexttable Class Template [The
Communication Management shall at least provide an ScaleLinearAndTexttable
class template that as described below:

template <typename T>

class ScalelinearAndTexttable

{

public:
// Declaration of the underlying_type
static_assert (std::is_enum<T>::value, "Type T has to be an enum");
using underlying_ type = typename std::underlying_type<T>::type;

// Default constructor

explicit ScalelLinearAndTexttable();

// Copy constructor

explicit ScalelinearAndTexttable (const ScalelLinearAndTexttable &v);
// Constructing an object from an enum

explicit ScalelinearAndTexttable (const T &v);

// Constructing an object from the underlying type of an enum
explicit ScalelinearAndTexttable (const underlying_ type &v);

// Copy assignment operator

ScalelLinearAndTexttable& operator=(const ScalelLinearAndTexttable &v);
// Assignment operator from an enum

ScalelLinearAndTexttable& operator=(const T &v);

// Assignment operator from the underlying type of an enum
ScalelLinearAndTexttable& operator=(const underlying_ type &v);

// Casting operator to the underlying_type

explicit operator underlying type() const;

// Equal to operator to another ScalelLinearAndTexttable<T>
friend bool operator==(const ScalelinearAndTexttable<T> &lhs,
const ScalelinearAndTexttable<T> &rhs);
// Equal to operator to the underlying_type
friend bool operator==(const ScalelinearAndTexttable<T> &lhs,
const underlying_type &rhs);
// Equal to operator to the underlying_type
friend bool operator==(const underlying_type &lhs,
const ScalelinearAndTexttable<T> &rhs);
// Egqual to operator to the enum
friend bool operator==(const ScalelinearAndTexttable<T> &lhs,
const T &rhs);
// Equal to operator to the enum
friend bool operator==(const T &lhs,
const ScalelinearAndTexttable<T> &rhs);

// Not—-equal to operator to another ScalelLinearAndTexttable<T>

AUTOSAR

friend bool operator!=(const ScalelinearAndTexttable<T> &lhs,
const ScalelinearAndTexttable<T> &rhs);

// Not—equal to operator to the underlying_type

friend bool operator!=(const ScalelinearAndTexttable<T> &lhs,
const underlying_type &rhs);

// Not-equal to operator to the underlying_type

friend bool operator!=(const underlying_type &lhs,
const ScalelinearAndTexttable<T> &rhs);

// Not—-equal to operator to the enum

friend bool operator!=(const ScalelinearAndTexttable<T> &lhs,
const T &rhs);

// Not—-equal to operator to the enum

friend bool operator!=(const T &lhs,
const ScalelinearAndTexttable<T> &rhs);

bi
|(RS_CM_00003)
[SWS_CM_10393]{DRAFT} ScaleLinearAndTexttable static assertion | The

ScalelLinearAndTexttable shall check whether the T template argument is an
enum type.

1 static_assert (std::is_enum<T>::value, "Type T _has_to_be_an_enum");

Rationale: The std: :underlying_type<T>in[SWS CM_10394] has an undefined
behavior for non-enum inputs. | (RS_CM_00003)

[SWS_CM_10394]{DRAFT} ScaleLinearAndTexttable underlying type deduc-
tion [The ScalelLinearAndTexttable shall deduct and store the underlying type
of the enum it was defined with.

1 using underlying_type = typename std::underlying type<T>::type;

Rationale: The ScalelLinearAndTexttable is designed to hold values of this type.
|(RS_CM_00003)

[SWS_CM_10395]{DRAFT} ScalelLinearAndTexttable default constructor |
The scaleLinearAndTexttable shall have a default constructor with the following
declaration:

1 explicit ScalelinearAndTexttable();

|(RS_CM_00003)

[SWS_CM_10396]{DRAFT} ScaleLinearAndTexttable copy constructor | The
ScalelLinearAndTexttable shall have a copy constructor with the following decla-
ration:

1 explicit ScalelinearAndTexttable (const ScalelinearAndTexttable &v);

|(RS_CM_00003)

[SWS_CM_10397]{DRAFT} ScaleLinearAndTexttable constructor with enum
class argument | The ScalelLinearAndTexttable shall have a constructor with

AUTOSAR

the same argument as the enum class that was given as the T template parameter
with the following declaration:

1 explicit ScalelinearAndTexttable (const T &v);

|(RS_CM_00003)

[SWS_CM_10398]{DRAFT} ScaleLinearAndTexttable constructor with un-
derlying type argument | The ScalelinearAndTexttable shall have a construc-
tor with the same argument that was deducted from the T template parameter with the
following declaration:

1 explicit ScalelinearAndTexttable (const underlying type &v);

|(RS_CM_00003)

[SWS_CM_10399]{DRAFT} ScaleLinearAndTexttable copy assignment oper-
ator [The scaleLinearAndTexttable shall have a copy assignment operator with
the following declaration:

1 ScalelinearAndTexttable& operator=(const ScalelinearAndTexttable &v);

|(RS_CM_00003)

[SWS_CM_10400]{DRAFT} ScaleLinearAndTexttable assignment operator
with enum class argurment | The ScalelLinearAndTexttable shall have an as-
sigment operator with the same argument as the enum class that was given as the T
template parameter with the following declaration:

1 ScalelinearAndTexttable& operator=(const T &v);

|(RS_CM_00003)

[SWS_CM_10401]{DRAFT} ScaleLinearAndTexttable assignment operator
with underlying type argument | The ScalelLinearAndTexttable shall have an
assignment operator with the same argument that was deducted from the T template
parameter with the following declaration:

1 ScalelinearAndTexttable& operator=(const underlying_ type &v);

|(RS_CM_00003)

[SWS_CM_10402]{DRAFT} ScaleLinearAndTexttable cast operator to the un-
derlying type | The ScalelinearAndTexttable shall have a cast operator to the
underlying type that was deducted from the T template parameter with the following
declaration:

1 explicit operator underlying_type () const;

|(RS_CM_00003)

[SWS_CM_10403]{DRAFT} Equal to operator between two ScaleLinearAnd-
Texttable objects [The ScalelLinearAndTexttable shall have an equal to op-
erator to compare two ScaleLinearAndTexttable objects with the following decla-
ration:

AUTOSAR

1 friend bool operator==(const ScalelinearAndTexttable<T> &lhs,
2 const ScalelLinearAndTexttable<T> &rhs);

|(RS_CM_00003)

[SWS_CM_10404]{DRAFT} Equal to operators between ScaleLinearAndText-
table and an underlying type | The ScalelLinearAndTexttable shall have equal
to operators to compare a ScalelLinearAndTexttable object to the the underlying
type that was deducted from the T template parameter with the following declarations:

1 friend bool operator==(const ScalelinearAndTexttable<T> &lhs,
2 const underlying_type &rhs);

3 friend bool operator==(const underlying_type &lhs,

4 const ScalelLinearAndTexttable<T> &rhs);

|(RS_CM_00003)

[SWS_CM_10405]{DRAFT} Equal to operators between ScaleLinearAndText-
tables and an enum class | The ScaleLinearAndTexttable shall have equal to
operators to compare a ScaleLinearAndTexttable object to the same enum class
that was given as the T template parameter with the following declarations:

1 friend bool operator==(const ScalelLinearAndTexttable<T> &lhs,
2 const T &rhs);

3 friend bool operator==(const T &lhs,

4 const ScalelLinearAndTexttable<T> &rhs);

|(RS_CM_00003)

[SWS_CM_10406]{DRAFT} Not equal to operator between two ScaleLin-
earAndTexttable objects [The ScalelinearAndTexttable shall have a not
equal to operator to compare two ScaleLinearAndTexttable objects with the fol-
lowing declaration:

1 friend bool operator!=(const ScalelinearAndTexttable<T> &lhs,
2 const ScalelLinearAndTexttable<T> &rhs);

|(RS_CM_00003)

[SWS_CM_10407]{DRAFT} Not equal to operators between ScaleLinearAnd-
Texttable and an underlying type | The ScalelLinearAndTexttable shall have
not equal to operators to compare an Scalel.inearAndTexttable object to the un-
derlying type that was deducted from the T template parameter with the following dec-
larations:
friend bool operator!=(const ScalelinearAndTexttable<T> &lhs,
const underlying_type &rhs);

1

2

3 friend bool operator!=(const underlying_ type &lhs,

4 const ScalelLinearAndTexttable<T> &rhs);

|(RS_CM_00003)

[SWS_CM_10408]{DRAFT} Not equal to operators between ScaleLinearAnd-
Texttables and an enum class | The ScalelinearAndTexttable shall have

AUTOSAR

not equal to operators to compare a ScalelLinearAndTexttable object to the same
enum class that was given as the T template parameter with the following declarations:
friend bool operator!=(const ScalelinearAndTexttable<T> ¢&lhs,
const T &rhs);

1
2

3 friend bool operator!=(const T &lhs,

4 const ScalelLinearAndTexttable<T> &rhs);

|(RS_CM_00003)

8.1.2.5 Communication Payload Data Types

The data types described in the previous chapters are derived from the ara::com API
design and as an integral part of the API, they explicitly need to exist to make use of
ara::com API.

In contrast to this, the types described in this chapter will exist only if there is a re-
lated AutosarDataType configured by the user, i.e. they are fully dependent to the
data type related input configuration. These data types are intended to be used for
the definition of the "payload" of events, operations, fields, and errors but also for the
implementation of the ara::com API and the functionality of the Adaptive Applications.

The parameters used in the event, method signatures, and errors of the ara::com API
are depending on the design of the service. So they are usually generated based on
the DataPrototypes of the ServiceInterface description. Their mapping to C++
data types is described in following.

The AUTOSAR Meta Model defines the AutosarDataPrototype which can be typed
by an ApplicationDataType Or an CppImplementationDataType, butthe Com-
munication Management maps only CppImplementationDataTypes to C++ data
types. Therefore it is required in the input configuration that every Application-
DataType used for the typing of a DataPrototype is mapped by a DataTypeMap
to an CppImplementationDataType.

The PortInterfaceToDataTypeMapping associates a particular ServiceIn-
terface with a DataTypeMappingSet and defines thus the applicable
DataTypeMaps.

[SWS_CM_00423]{DRAFT} Data Type Mapping | The ARA generator shall reject
input configurations containing a AutosarDataPrototype which is typed by an ap-
plicationDataType, but not mapped to an CppImplementationDataType. |
(RS _CM _ 00211, RS CM _00003)

The Implementation Types header files as defined in [SWS_CM_10373] includes
the type declarations derived from the CppImplementationDataTypeS of the
AUTOSAR Adaptive Platform meta-model classes, depending on the value of the
typeEmitter attribute (see [TPS_MANI _01176] and [TPS_MANI_01177] of the
AUTOSAR Manifest Specification [6]).

AUTOSAR

[SWS_CM_00421]{DRAFT} Provide data type definitions | The ARA generator
shall provide the corresponding data type definition according to the rules defined
in [TPS_MANI_01176] and [TPS_MANI_01177] of the AUTOSAR Manifest Specifica-
tion [6]. |(RS_CM_00211, RS_CM_00003)

The redeclaration of C++ types due to the multiple descriptions of equivalent CppIm-
plementationDataTypeS inthe ServiceInterface description shall be avoided.

[SWS_CM_00411]{DRAFT} Avoid Data Type redeclaration | If there are sev-
eral data types with equal Cpp Implementation Data Type symbols defined
which are referring to compatible CppImplementationDataTypes with identical Cpp
Implementation Data Type symbols, there shall exist only one correspond-
ing type declaration as described in the following sub chapters. |(RS_CM_00211,
RS _CM _00003)

The available meta-model classes are described in detail in the AUTOSAR Manifest
Specification [6].

8.1.2.5.1 Classification of Cpp Implementation Data Types

The type model CppImplementationDataType is able to express following kinds of
data types:

e Primitive Cpp Implementation Data Type

e Array Cpp Implementation Data Type

e Structure Cpp Implementation Data Type

e Variant Cpp Implementation Data Type

e String Cpp Implementation Data Type

e Vector Cpp Implementation Data Type

e Associative Map Cpp Implementation Data Type
e Redefinition Cpp Implementation Data Type

e Enumeration Data Type

e Scale Linear And Texttable Data Type

A Primitive Cpp Implementation Data Type is classified by the category
attribute set to VALUE. Please note that the usage of the category VALUE is restricted
to StdCppImplementationDataTypes according to [constr_1578] defined in [6].

An Array Cpp Implementation Data Type is classified by the category at-
tribute set to ARRAY. If the subclass stdCppImplementationDataType iS used
the array will be implemented as a ara: :core::Array. The StdCppImplemen—
tationDataType Of category ARRAY has one templateArgument that points
with the templateType reference to the data type of elements that are contained

AUTOSAR

in the array. The referenced CppImplementationDataType itself can be one of the
listed kinds again. The array size is specified with the arraySize. If the subclass
CustomCppImplementationDataType is used the array will be implemented as a
custom array that is declared in the headerFile of the CustomCppImplementa-
tionDataType.

A Structure Cpp Implementation Data Type is classified by the category
attribute of the stdCppImplementationDataType Sset to STRUCTURE that has ag-
gregated CppImplementationDataTypeElements in the role subElement.

A Variant Cpp Implementation Data Type is classified by the category at-
tribute of the CppImplementationDataType setto VARIANT. A type alternative that
is stored in a CppImplementationDataType Of category VARIANT is defined by an
aggregated templateArgument that points with the templateType reference to the
data type of the type alternative. If the subclass stdCppImplementationDataType
is used the variant will be implemented as ara::core::Variant. This template
class is specified in [16]. If the subclass CustomCppImplementationDataType IS
used the variant will be implemented as a custom variant that is declared in the head-
erFile of the CustomCppImplementationDataType.

A string Cpp Implementation Data Type is classified by the category at-
tribute of the CppImplementationDataType setto STRING. Please note that the us-
age of the category STRING is restricted t0 StdCppImplementationDataType$s
according to [constr_1578] defined in [6].

A Vector Cpp Implementation Data Type is classified by the category at-
tribute of the CppImplementationDataType set to VECTOR. If the subclass
StdCppImplementationDataType is used the vector will be implemented as a
ara:.core::Vector. The stdCppImplementationDataType Of category VECTOR IS
allowed to have one templateArgument that points with the templateType refer-
ence to the data type of elements that are contained in the vector. The referenced
CppImplementationDataTypeElement itself can be one of the listed kinds again.
Optionally the stdCppImplementationDataType Of category VECTOR may have
an additional templateArgument that defines the used Allocator withthe allo-
cator reference. If the subclass CustomCppImplementationDataType iS used
the vector will be implemented as a custom vector that is declared in the headerFile
of the CustomCppImplementationDataType.

An Associative Map Cpp Implementation Data Type is classified by the
category attribute of the CppImplementationDataType set t0 ASSOCIA-
TIVE_MAP. If the subclass stdCppImplementationDataType is used the map will
be implemented as a ara::core::Map. The stdCppImplementationDataType Of
category ASSOCIATIVE_MAP may have two or three templateArguments. The first
templateArguments defines the key with the templateType reference, the second
defines the value and the third defines the optional A1locator with the allocator
reference. If the subclass CustomCppImplementationDataType is used the map
will be implemented as a custom map that is declared in the headerFile of the Cus-
tomCppImplementationDataType.

AUTOSAR

A Redefinition Cpp Implementation Data Type is classified by the cat-
egory attribute of the referring StdCppImplementationDataType set to
TYPE_REFERENCE. The StdCppImplementationDataType With the category
TYPE_REFERENCE points to an another CppImplementationDataType with the
typeReference and defines a type alias in this way.

An Enumeration Data Type is classified by a Redefinition Cpp Imple-
mentation Data Type that boils down to a Primitive Cpp Implementation
Data Type having a SwDataDefProps referencing a CompuMethod, where the
CompuMethod has:

e the category attribute set to TEXTTABLE,

e and has a CompuScales container located in the compuInternalToPhys con-
tainer,

e and the CompuScales container has CompuScales in role compuScale with
point ranges only (i. e. lower and upper limit of a CompuScale are identical).

A Scale Linear And Texttable Data Type is classified by a Redefinition
Cpp Implementation Data Type thatboilsdowntoaPrimitive Cpp Imple-
mentation Data Type having a SwDataDefProps referencing a CompuMethod,
where the CompuMethod has:

e the category attribute setto SCALE_LINEAR_AND_TEXTTABLE,

e and has a CompuScales container located in the compuInternalToPhys con-
tainer,

e and the CompuScales container has CompuScales in role compuScale with
point ranges (i. e. lower and upper limit of a CompuScale are identical) and non-
point ranges where the CompuRationalCoeffs define a linear function

Please note that the usage of the different kinds of CopImplementationDataType$S
is described in more detail in the AUTOSAR Manifest Specification [6].

8.1.2.5.2 Naming of Implementation Data Types

The data type name is defined by the Cpp Implementation Data Type symbol,
which is the shortName of the CppImplementationDataType.

[SWS_CM_00400]{DRAFT} Naming of data types by short name | The Cpp Im-
plementation Data Type symbol shall be the shortName of the CppImple-
mentationDataType. |(RS_CM_00211, RS_CM_00003)

AUTOSAR

8.1.2.5.3 Primitive Implementation Data Type

The Communication Management declares C++ types for all Primitive Cpp Im-
plementation Data Types definedinthe ServiceInterface that are classified
by the category attribute set to VALUE. Please note that only stdCppImplementa-
tionDataType are allowed to have the category attribute set to VALUE.

[SWS_CM_00504]{DRAFT} Supported Primitive Cpp Implementation
Data TypesS | The sStdCppImplementationDataType Wwith the category
attribute set to VALUE is allowed to have one of the following shortNames:

e iNt8 t

e int16_t
e iNt32 t
e int64 t
e UiNt8_t
e uint16_t
e uint32 t
e Uint64_t
e bool

o float

e double

|(RS_CM_00211, RS_CM_00003)

Since only a defined set of stdCppImplementationDataTypesS With category
VALUE is supported the primitive C++ datatypes float, bool and double are sup-
ported in addition to chosen fixed width integer types defined in the standard library
header <cstint>.

[SWS_CM_00402]{DRAFT} Primitive fixed width integer types | If a StdCppIm-
plementationDataType Wwith the category VALUE is defined in the ServicelIn-
terface the standard library header <cstdint> shall be included if the St dCppImple-
mentationDataType has one of the following Cpp Implementation Data Type
symbols:

e int8 t

int16_t
int32_t
int64_t
uint8_t

AUTOSAR

e uint16_t
e UINt32_t
e uint64 t
|(RS_CM_00211, RS_CM_00003)

8.1.2.5.4 Array Implementation Data Type

The Communication Management declares C++ types for all Array Cpp Implemen-
tation Data Types defined in the ServiceInterface. In AUTOSAR Adaptive
Platform, the C++ binding of an Array Cpp Implementation Data Type could
either be implemented as an ara: :core: :Array Or as a custom array.

An array definition is based on the following information:
e the array type,
e the number of dimensions,
e the number of elements for each dimension.

An Array Cpp Implementation Data Type can have one or multiple dimen-
sions.

In the context of the definitions given in this chapter, the term dimension is not related
to the real physical dimensions in the memory, but to the ostensible dimensions visible
directly at the declaration of the data type. This means, that e.g. even if an Array
Cpp Implementation Data Type holds elements of types different from Array
Cpp Implementation Data Type Which itself has array or vector elements, the
term one-dimensional applies for the definition of the data type.

A one-dimensional stdCppImplementationDataType Of category ARRAY ag-
gregates exactly one templateArgument that defines the type of elements that
are contained in the array with the templateType reference, e.g. in case of an
one-dimensional array of uint16 elements the templateType reference will point to
a Primitive Cpp Implementation Data Type that represents the uint16 ele-
ment. The array size is defined with the arraysSize attribute.

[SWS_CM_00403]{DRAFT} stdCppImplementationDataType of category AR-
RAY with one dimension | For each StdCppImplementationDataType Of cate-
gory ARRAY with one dimension, there shall exist the corresponding type declaration
as:

using <name> ara::core::Array<<element>, <size>>;
where:

<name> iS the Cpp Implementation Data Type symbol of the Array Cpp
Implementation Data Type,

AUTOSAR

<element> is the array element specification. It is defined by the templateArgu-
ment that refers to a CppImplementationDataType With the templateType
reference.

e Ifthe CppTemplateArgument is marked with inplace =false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the array.

e Ifthe CppTemplateArgument is marked with inplace =true an unnamed
CppImplementationDataType is defined as value type of the array and
the shortName of the referenced CppImplementationDataType is ig-
nored.

<size> isthe defined arraysSize.
|(RS_CM_00211, RS_CM_00003)

In case that a stdCppImplementationDataType With category ARRAY and the
shortName MyArray has a CppTemplateArgument that points with the template-
Type referenceto a stdCppImplementationDataType With category ARRAY and
the CppTemplateArgument is marked with inplace = true this will result in the fol-
lowing code:

using MyArray = ara::core::Array<ara::core::Array<uintlé_t, 10>, 5>>;

If the CppTemplateArgument is marked with inplace = false this will result in the
following code:

using MyInsideArray = ara::core::Array<uintl6_t, 10>;
using MyArray = ara::core::Array<MyInsideArray, 5>;

A multidimensional CppImplementationDataType Of category ARRAY contains
nested CppImplementationDataTypes Of category ARRAY. This means, that the
CppImplementationDataType of category ARRAY will referto a CppImplementa-
tionDataType Of category ARRAY via the aggregated templateArgument. Such a
definition describes a two-dimensional Array Cpp Implementation Data Type;
consequently a type with more dimensions is described by just nesting more Cp-
pImplementationDataTypes of category ARRAY. The innermost CppImplemen—
tationDataType of category ARRAY has the reference to the type of elements that
are contained in the array.

[SWS_CM_00404]{DRAFT} Array Data Type with more than one dimension | For
each Array Cpp Implementation Data Type having more than one dimension,
there shall exist the corresponding type declaration according to [SWS_CM_00403]
as base where <element> has a nested array for each additional dimension. The
total number of dimensions is equal to the number of nested CppImplementation-
DataTypeS With category ARRAY plus one forthe top level Array Cpp Implemen-
tation Data Type. The array element itself is specified by the innermost CopIm-
plementationDataType With category different from ARRAY. |(RS_CM_00211,
RS_CM_00003)

AUTOSAR

Please note that [SWS_CM _00404] and a stdCppImplementationDataType With
category ARRAY leads to an ara: : core: : Array type definition where the <size>
definitions for each dimension are ordered from the leaf to the root Implementation-
DataTypeElement, like e.g.:

using My2DimArray = <ara::core::Array<ara::core::Array<uintl6, 3>, 2>;

which is the same layout as the corresponding C-style array type definition where the
<size> definitions for each dimension are ordered from the root to the leaf, like:

typedef uintl6 My2DimArray[2] [3];

With the usage of CustomCppImplementationDataType it is possible to specify a
data type definition that is taken as the basis for a C++ language binding to a custom
implementation that is declared in the configured headerFile. In case of a Custom—
CppImplementationDataType the model defines the following:

e Class-Name of the custom implementation (CustomCppImplementation-
DataType.shortName)

e Namespace of the custom implementation (CustomCppImplementation-
DataType.namespace)

e Header File that contains the custom class declaration (CustomCppImplemen-
tationDataType.headerFile).

[SWS_CM_00502]{DRAFT} CustomCppImplementationDataType Of category
ARRAY | If a CustomCppImplementationDataType oOf category ARRAY is used
that contains a single templateArgument that refers to a CppImplementation-
DataType with the templateType reference and has the arraySize attribute set to
a value the following type declaration shall be available in the included headerFile:

<ClassName><<element>, <size>>;

where:

<ClassName> is the Cpp Implementation Data Type symbol of the Cus-
tomCppImplementationDataType Of category ARRAY. Please note that the
namespace that is defined with an ordered list of defined symbol is already
handled by [SWS_CM_10375],

<element> is the array element specification. It is defined by the templateArgu-
ment that refers to the array element with the templateType reference.

<size> isthe defined arraysSize.

10

Please note that multidimensional CustomCppImplementationDataTypes of cat-
egory ARRAY are handled in the same way as StdCppImplementationDataTypeS
of category ARRAY. [SWS_CM_00404] is also valid for CustomCppImplementa-—
tionDataTypes Of category ARRAY.

AUTOSAR

8.1.2.5.5 Structure Implementation Data Type

The Communication Management declares C++ types for all Structure Cpp Im-
plementation Data Types definedinthe ServiceInterface.

[SWS_CM_00405]{DRAFT} Structure Data Type | For each Structure Cpp Im-
plementation Data Type, there shall exist the corresponding type declaration as:

struct <name> {<elements>};
where:

<name> iS the Cpp Implementation Data Type symbol of the Structure
Cpp Implementation Data Type,

<elements> are record element specifications defined in Structure Cpp Im-
plementation Data Type by ordered CppImplementationDataType-
Elements. For each record element defined by one CppImplementation-
DataTypeElement one record element specification <elements> is defined.
The record element specifications shall be ordered according to the order of
the related CppImplementationDataTypeElements in the input configura-
tion. Sequent record elements are separated with a semicolon.

|(RS_CM_00211, RS_CM_00003)

[SWS_CM_00414]{DRAFT} Element specification typed by CppImplementa-
tionDataType | Record element specifications <elements> of [SWS_CM_00405]
shall exist as

<type> <name>;
where:
<type>

e is the Cpp Implementation Data Type symbol of the referred Cp-
pImplementationDataType if the typeReference is marked with in-
place = false. In this case the type declaration of the referenced CppIm-
plementationDataType is defined outside of the struct.

e is the type declaration of the referenced CppImplementationDataType if
the typeReference is marked with inplace = true. In this case the type
declaration is defined inside of the struct.

<name> is the shortName of the ImplementationDataTypeElement.
|(RS_CM_00211, RS_CM_00003)

If the CppImplementationDataTypeElement points with the typeReference to
a stdCppImplementationDataType With category ARRAY and the inplace flag
is set to false for the t ypeReference a using-declaration shall exist outside of the
structure according to the rules defined in chapter 8.1.2.5.4.

1 struct foo {

AUTO SAR

myArray element_X;
}i

using myArray = ara::core::Array<uint8_t, 5>;

If the CppImplementationDataTypeElement points with the typeReference to
a stdCppImplementationDataType With category ARRAY and the inplace flag
is set to true for the t ypeReference an unnamed array shall be defined as member
type of the struct and the shortName of the referenced StdCppImplementation—
DataType is ignored.

struct foo {

ara::core::Array<uint8_t, 5> element_X;
}i

Ifthe CopImplementationDataTypeElement points with the typeReferencetoa
StdCppImplementationDataType With category VECTOR and the inplace flag
is set to false for the typeReference a using-declaration shall exist outside of the
structure according to the rules defined in chapter 8.1.2.5.8.

Ifthe CopImplementationDataTypeElement points with the typeReferencetoa
StdCppImplementationDataType With category VECTOR and the inplace flag
is set to true for the t ypeReference an unnamed vector shall be defined as member
type of the struct and the shortName of the referenced StdCppImplementation—
DataType is ignored.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType With category VARIANT and the inplace
flag is set to false for the t ypeReference a using-declaration shall exist outside of
the structure according to the rules defined in chapter 8.1.2.5.6.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType With category VARIANT and the inplace
flag is set to true for the typeReference an unnamed variant shall be defined as
member type of the struct and the shortName of the referenced stdCppImplemen—
tationDataType is ignored.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType With category ASSOCIATIVE_MAP and the
inplace flag is set to false for the typeReference a using-declaration shall exist
outside of the structure according to the rules defined in chapter 8.1.2.5.9.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType With category ASSOCIATIVE_MAP and the
inplace flag is set to true for the t ypeRe ference an unnamed map shall be defined
as member type of the struct and the shortName of the referenced stdCppImple-
mentationDataType is ignored.

If the CopImplementationDataTypeElement points with the typeReferencetoa
StdCppImplementationDataType With category STRUCTURE and the inplace

N o o A~ oW N o=

a o~ W N =

AUTOSAR

flag is set to false for the typeReference a struct-declaration shall exist outside of
the structure according to the rule defined in [SWS_CM_00405].

struct foo {
bar element_X;

}i
struct bar {
}i

Ifthe CopImplementationDataTypeElement points with the typeReferencetoa
StdCppImplementationDataType With category STRUCTURE and the inplace
flag is set to true for the typeReference an unnamed struct shall be defined as
member type of the struct and the shortName of the referenced stdCppImplemen—
tationDataType is ignored.

struct foo {
struct {

} element_X;
}i

[SWS_CM_01032]{DRAFT} Accessing optional record elements inside a St ruc-
ture Cpp Implementation Data Type that are serialized with the Tag-
Length-Value principle. [For each record element inside a Structure
Cpp Implementation Data Type Wwhich is marked as optional according to
[TPS_MANI_01083], [TPS_MANI_01085] and [TPS_MANI_01084], there shall exist
the corresponding type declaration as:

struct <struct name>{
ara::core::0ptional<element datatype> <name>;

}
e.g.
struct my_struct {
ara::core: :0ptional<bool> my_bool;

}
where:

<name> is the shortName of the optional CppImplementationDataTypeEle-
ment,

<element datatype>

e is the shortName of the referred CppImplementationDataType if the
typeReference is marked with inplace = false. In this case the type
declaration of the referenced CppImplementationDataType is defined
outside of the struct.

e is the type declaration of the referenced CppImplementationDataType if
the typeReference is marked with inplace = true. In this case the type
declaration is defined inside of the struct.

AUTOSAR

|(RS_CM_00205, RS _SOMEIP_00050, RS CM_00003) The template class
ara::core: :Optional is specified in [16].

8.1.2.5.6 Variant Implementation Data Type

The Communication Management declares C++ types for all variant Cpp Imple-
mentation Data Types definedinthe SservicelInterface.

[SWS_CM_00449]{DRAFT} Variant Data Type | For each Variant Cpp Imple-
mentation Data Type, there shall exist the corresponding type declaration as:

using <name> = ara::core::Variant< <elements> >;
where:

<name> is the Cpp Implementation Data Type symbol of the variant Cpp
Implementation Data Type,

<elements> is the Variant element specification.

Each type alternative in a StdCppImplementationDataType Of category VARI-
ANT is defined with a CppTemplateArgument that points with the templateType
reference to the stdCppImplementationDataType that represents the alternative.
For each CppTemplateArgument one element specification <elements> is defined.
The Variant element specifications are ordered according the order of the related
CppTemplateArguments in the input configuration. Sequent Variants elements are
separated with a semicolon.

e If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the decla-
ration of the referenced CppImplementationDataType is defined outside of
the variant.

e Ifthe CppTemplateArgument is marked with inplace =true an unnamed Cp-
pImplementationDataType is defined as type that may be stored in this vari-
ant and the shortName of the referenced CppImplementationDataType is
ignored.

|(RS_CM_00211)

A Variant data type describes a kind of structural overlay. Defining only one element in
a VARIANT is therefore not reasonable and indicates an error.

This template class is specified in paragraph 8.1.2.4.3.

[SWS_CM_00508]{DRAFT} CustomCppImplementationDataType Of category
VARIANT | If a CustomCppImplementationDataType Of category VARIANT is
used the following type declaration shall be available in the included headerFile:

<ClassName><<elements>>;

where:

AUTOSAR

<ClassName> isthe Cpp Implementation Data Type symbol ofthe Custom-
CppImplementationDataType of category VARIANT. Please note that the
namespace that is defined with an ordered list of defined symbol is already
handled by [SWS_CM_10375],

<elements> is the variant element specification. Each type alternative in a Cus-
tomCppImplementationDataType Of category VARIANT is defined with a
CppTemplateArgument that points with the templateType reference to the
CustomCppImplementationDataType that represents the alternative. For
each CppTemplateArgument one element specification <elements> is de-
fined. The Variant element specifications are ordered according the order of the
related CppTemplateArguments in the input configuration. Sequent Variants
elements are separated with a semicolon.

10

8.1.2.5.7 String Implementation Data Type

The Communication Management declares C++ types for all String Cpp Imple-
mentation Data Types definedinthe ServiceInterface.

[SWS_CM_00406]{DRAFT} sStdCppImplementationDataType With the cate-
gory STRING | For each StdCppImplementationDataType Of category STRING
there shall exist the corresponding type declaration as:

using <name> = ara::core::String;
where:

<name> iS the Cpp Implementation Data Type symbol of the String Cpp
Implementation Data Type.

|(RS_CM_00211, RS_CM_00003)

Please note that for the moment the C++ binding of a String Cpp Implementa-
tion Data Type isrestrictedto ara::core: :String thatis defined in [16].

Please note that optionally a custom Allocator is allowed to be defined as tem-
plateArgument fora String Cpp Implementation Data Type.

[SWS_CM_00509]{DRAFT} sStdCppImplementationDataType With the cate-
gory STRING with a defined Allocator | If a StdCppImplementationDataType
with the category STRING contains a templateArgument that points with the allo-
cator reference to a custom Allocator the following type is declared:

using <name> = ara::core::String<<char>, char_traits<char>, <allocator>>
where:

<name> is the Cpp Implementation Data Type symbol of the String Cpp
Implementation Data Type.

AUTOSAR

<allocator> is the <allocator namespace>::<allocator shortname> of the defined
Allocator that is referenced by a CppTemplateArgument oOf String Cpp
Implementation Data Type Withthe allocator reference,

|(RS_CM_00211, RS_CM_00003)

8.1.2.5.8 Vector Implementation Data Type

The Communication Management declares C++ types for all vector Cpp Imple-
mentation Data Types defined in the serviceInterface. In AUTOSAR Adap-
tive Platform, the C++ binding of a Vector Cpp Implementation Data Type
could either be implemented as an ara: :core: :Vector or as a custom vector.

A vector definition is based on the following information:
¢ the data type the vector consists of,
e the number of dimensions,

e optionally an A1locator that is used to acquire/release memory and to con-
struct/destroy the elements in that memory.

A Vector Cpp Implementation Data Type can have one or multiple dimen-
sions.

In the context of the definitions given in this chapter, the term dimension is used with
the same sense as described in chapter 8.1.2.5.4.

A CppImplementationDataType Of category VECTOR aggregates one tem-
plateArgument that defines the type of elements that are contained in the vector
with the templateType reference, e.g. in case of an one-dimensional vector of uint16
elements the templateType reference will pointto a Primitive Cpp Implemen-
tation Data Type that represents the uint16 element.

Optionally the CppImplementationDataType Of category VECTOR may aggre-
gate a second templateArgument that defines the used A1locator with the al-
locator reference. The type of the Allocator is the same as the data type the
vector consists of.

If an Allocator is referenced then the attribute arraysize in the CppImplemen-
tationDataType of category VECTOR can be used to define the maximal size of
the vector.

[SWS_CM_00407]{DRAFT} stdCppImplementationDataType Of category
VECTOR with one dimension defined without an Allocator | For each std-
CppImplementationDataType of category VECTOR having only one dimension,
there shall exist the corresponding type declaration as:

using <name> = ara::core::Vector<<element>>;

where:

AUTOSAR

<name> is the Cpp Implementation Data Type symbol of the Vector Cpp
Implementation Data Type.

<element> is the vector element specification. It is defined by the templateArgu-
ment that refers to a CppImplementationDataType withthe templateType
reference. The referenced CppImplementationDataType itself can be one of
the data types allowed for the Adaptive Platform.

e Ifthe CppTemplateArgument is marked with inplace =false the short-
Name oOf the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the vector.

e Ifthe CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as value type of the vector and
the shortName of the referenced CppImplementationDataType IS ig-
nored.

|(RS_CM_00211, RS_CM_00003)

In case that a StdCppImplementationDataType With category VECTOR and
the shortName MyVector has a CppTemplateArgument that points with the tem-
plateType reference t0 a StdCppImplementationDataType With category
VECTOR and the CppTemplateArgument is marked with inplace = true this will
result in the following code:

using MyVector = ara::core::Vector<ara::core::Vector<uintl6_t>>;

If the CppTemplateArgument is marked with inplace = false this will result in the
following code:

using MyVector = ara::core::Vector<MyInsideVector>;
using MyInsideVector = ara::core::Vector<uintlé6_t>;

[SWS_CM_00503]{DRAFT} stdCppImplementationDataType Of category
VECTOR with one dimension defined with an Allocator [For each vector Cpp
Implementation Data Type having only one dimension and a defined A1loca-
tor without a defined arraySi ze, there shall exist the corresponding type declaration
as:

using <name> = ara::core::Vector<<element>,<allocator<element>>>.

If an arraysize is defined, the corresponding type declaration shall exist as:

using <name> = ara::core::Vector<<element>,<allocator<element>,<maxSize>>>;
where:

<name> iS the Cpp Implementation Data Type symbol of the Vector Cpp
Implementation Data Type,

<element> is the vector element specification. It is defined by the templateArgu-
ment that refers to a CppImplementationDataType Withthe templateType

AUTOSAR

reference. The referenced CppImplementationDataType itself can be one of
the data types allowed for the Adaptive Platform.

e Ifthe CppTemplateArgument is marked with inplace =false the short-
Name Of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the vector.

e Ifthe CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as value type of the vector and
the shortName of the referenced CppImplementationDataType is ig-
nored.

<allocator> is the <allocator namespace>::<allocator shorthname> of the defined
Allocator that is referenced by a CppTemplateArgument of Vector Cpp
Implementation Data Type withthe allocator reference,

<maxSize> is the defined arraySize of the stdCppImplementationDataType
of category VECTOR.

|(RS_CM_00211, RS_CM_00003)

A multidimensional CppImplementationDataType of category VECTOR contains
nested CppImplementationDataTypeS of category VECTOR. This means, that
the CppImplementationDataType of category VECTOR will refer to a CppIm-
plementationDataType of category VECTOR via the aggregated templateArgu-
ment. Such a definition describes a two-dimensional Vector Cpp Implementa-
tion Data Type; consequently a type with more dimensions is described by just
nesting more CppImplementationDataTypes of category VECTOR. The innermost
CppImplementationDataType of category VECTOR has the reference to the type of
elements that are contained in the vector.

[SWS_CM_00408]{DRAFT} Vector Data Type with more than one dimen-
sion [For each Vector Cpp Implementation Data Type having more than
one dimension, there shall exist the corresponding type declaration according to
[SWS_CM_00407] or [SWS_CM_00503] as base where <element> has a nested
vector for each additional dimension. The total number of dimensions is equal to
the number of nested CppImplementationDataTypes With category VECTOR plus
one for the top level vector Cpp Implementation Data Type. The vector ele-
ment itself is specified by the innermost CppImplementationDataType With cate-
gory different from VECTOR. |(RS_CM_00211, RS_CM_00003)

For a two-dimensional Vvector Implementation Data Type, as it is given as ex-
ample for the definition of a Rectangular Vector Data Type in [6], the corresponding
type declaration would look like this:

1 using DynamicDataArrayImplRectangular = ara::core::Vector<ara::core::Vector
<uintlé6_t>>;

AUTOSAR

[SWS_CM_00452]{DRAFT} Usage of attribute arraySize of an CppImplemen-
tationDataType Wwith category VECTOR | The size of an CppImplementa-
tionDataType Of category VECTOR that is specified in CppImplementation-
DataType.arraySize Will only be taken into account when the respective CppIm-
plementationDataType defines an Allocator as defined in [SWS_CM_00503]. |
(RS_CM_00211, RS _CM_00003)

[SWS_CM_00450]{ DRAFT} Define the maximum size of allocated vector memory
[The maximum size of usable memory for an CppImplementationDataType Of
category VECTOR can be limited using an Allocator as CppTemplateArgument
as defined in [SWS_CM_00503]. |(RS_CM_00211, RS_CM_00003)

For more details how to model Vector Cpp Implementation Data Type, See
the chapter Vector Data Type of AUTOSAR Manifest Specification document [6].

With the usage of CustomCppImplementationDataType it is possible to specify a
data type definition that is taken as the basis for a C++ language binding to a custom
implementation that is declared in the configured headerFile. In case of a Custom—
CppImplementationDataType the model defines the following:

e Class-Name of the custom implementation (CustomCppImplementation-
DataType.shortName)

e Namespace of the custom implementation (CustomCppImplementation-
DataType.namespace)

e Header File that contains the custom class declaration (CustomCppImplemen-—
tationDataType.headerFile).

[SWS_CM_00507]{DRAFT} CustomCppImplementationDataType of category
VECTOR | If a CustomCppImplementationDataType of category VECTOR is used
that contains a single templateArgument that refers to a CppImplementation-
DataType Wwith the templateType reference the following type declaration shall be
available in the included headerFile:

<ClassName><<element>>;

For each CustomCppImplementationDataType Of category VECTOR and a defined
Allocator without a defined arraysize, there shall exist the corresponding type
declaration as:

<ClassName><<element>, <allocator<element>>>

If an arraysize is defined, the corresponding type declaration shall exist as:
<ClassName><<element>, <allocator<element>,<maxSize>>>

where:

<ClassName> isthe Cpp Implementation Data Type symbol ofthe Custom-
CppImplementationDataType of category VECTOR. Please note that the
namespace that is defined with an ordered list of defined symbol is already
handled by [SWS_CM_10375],

AUTOSAR

<element> is the vector element specification. It is defined by the templateArgu-
ment that refers to the vector element with the templateType reference,

<allocator> is the <allocator namespace>::<allocator shorthame> of the defined
Allocator that is referenced by a CppTemplateArgument of Vector Cpp
Implementation Data Type withthe allocator reference,

<size> isthe defined arraysSize.

10

Please note that multidimensional Cust omCppImplementationDataTypes of cat-
egory VECTOR are handled in the same way as StdCppImplementation-
DataType$ of category VECTOR. [SWS_CM_00408] is also valid for CustomCp-
pImplementationDataTypeS of category VECTOR.

8.1.2.5.9 Associative Map Implementation Data Type

The Communication Management declares C++ types for all Associative Map Cpp
Implementation Data Types defined in the ServiceInterface. In AUTOSAR
Adaptive Platform, the C++ binding of an Associative Map Cpp Implementa-
tion Data Type could either be implemented as an ara: :core: :Map Or as a Cus-
tom map.

[SWS_CM_00409]{DRAFT} stdCppImplementationDataType With category
ASSOCIATIVE_MAP defined without an Allocator | For each StdCppImplemen-—
tationDataType With category ASSOCIATIVE_MAP , there shall exist the corre-
sponding type declaration as:

using <name> = ara::core::Map<<key>, <value>>;
where:

<name> is the Cpp Implementation Data Type symbol oOf the Associative
Map Cpp Implementation Data Type,

<key> is the map key type specification. It is defined by the first CopTemplateArgu-
ment which is aggregated by the Associative Map Cpp Implementation
Data Type and points t0 a CppImplementationDataType with the tem-
plateType reference. The referenced CppImplementationDataType itself
can be one of the data types allowed for the Adaptive Platform as long as the
requirements on the key data type imposed by the ara: : core: : Map implemen-
tation (namely the applicability of std: : less<key>) are met.

e Ifthe CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

AUTOSAR

e Ifthe CppTemplateArgument is marked with inplace =true an unnamed
CppImplementationDataType is defined as key type and the short-
Name oOf the referenced CppImplementationDataType is ignored.

<value> is the mapped value type specification. It is defined by the second CppTem-
plateArgument which is aggregated by the Associative Map Cpp Imple-
mentation Data Type and pointsto a CppImplementationDataType with
the templateType reference. The CppImplementationDataType itself can
be one of the data types allowed for the Adaptive Platform.

e Ifthe CppTemplateArgument is marked with inplace = false the short—
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

e Ifthe CppTemplateArgument is marked with inplace =true an unnamed
CppImplementationDataType is defined as value type and the short—
Name oOf the referenced CppImplementationDataType is ignored.

|(RS_CM_00211, RS_CM_00003)

Foran Associative Map Cpp Implementation Data Type asitis given as ex-
ample in chapter Associative Map Data Type of [6], the corresponding type declaration
would look like this:

using MyMap = ara::core::Map<uintl6_t, uint8_t>;

[SWS_CM_00505]{DRAFT} stdCppImplementationDataType With category
ASSOCIATIVE_MAP defined with an Allocator | For each stdCppImplemen-—
tationDataType With category ASSOCIATIVE_MAP with a defined Allocator,
there shall exist the corresponding type declaration as:

using <name> =
ara::core::Map<<key>, <value>, std::less<<key>>, <allocator>>;

where:

<name> is the Cpp Implementation Data Type symbol of the Associative
Map Cpp Implementation Data Type,

<key> is the map key type specification. It is defined by the first CopTemplateArgu-
ment which is aggregated by the Associative Map Cpp Implementation
Data Type and points to a CppImplementationDataType With the tem-
plateType reference. The referenced CppImplementationDataType itself
can be one of the data types allowed for the Adaptive Platform as long as the
requirements on the key data type imposed by the ara: : core: :Map implemen-
tation (namely the applicability of std: : less<key>) are met.

e Ifthe CppTemplateArgument is marked with inplace =false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

AUTOSAR

e Ifthe CppTemplateArgument is marked with inplace =true an unnamed
CppImplementationDataType is defined as key type and the short-
Name oOf the referenced CppImplementationDataType is ignored.

<value> is the mapped value type specification. It is defined by the second CppTem-
plateArgument which is aggregated by the Associative Map Cpp Imple-
mentation Data Type and pointsto a CppImplementationDataType with
the templateType reference. The CppImplementationDataType itself can
be one of the data types allowed for the Adaptive Platform.

e Ifthe CppTemplateArgument is marked with inplace = false the short—
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

e Ifthe CppTemplateArgument is marked with inplace =true an unnamed
CppImplementationDataType is defined as value type and the short—
Name oOf the referenced CppImplementationDataType is ignored.

<allocator> is the defined Allocator that is referenced by the third CppTem-
plateArgument Of Associative Map Cpp Implementation Data Type
with the allocator reference.

|(RS_CM_00211, RS_CM_00003)

With the usage of CustomCppImplementationDataType it is possible to specify a
data type definition that is taken as the basis for a C++ language binding to a custom
implementation that is declared in the configured headerFile. In case of a Custom—
CppImplementationDataType the model defines the following:

e Class-Name of the custom implementation (CustomCppImplementation-
DataType.shortName)

e Namespace of the custom implementation (CustomCppImplementation-
DataType.namespace)

e Header File that contains the custom class declaration (CustomCppImplemen-
tationDataType.headerFile).

[SWS_CM_00506]{DRAFT} CustomCppImplementationDataType of category
ASSOCIATIVE_MAP | If a CustomCppImplementationDataType of category As—
SOCIATIVE_MAP is used that contains two templateArguments that both refer to
a CppImplementationDataType With the templateType reference the following
type declaration shall be available in the included headerFile:

<ClassName><<key>, <value>>;

For each CustomCppImplementationDataType of category ASSOCIATIVE_MAP
and a defined A11ocator the following type declaration shall be available in the in-
cluded headerFile:

<ClassName><<key>, <value>, <compare>, <allocator>>

AUTOSAR

where:

<ClassName> isthe Cpp Implementation Data Type symbol ofthe Custom-
CppImplementationDataType of category ASSOCIATIVE_MAP. Please note
that the namespace that is defined with an ordered list of defined symbol is
already handled by [SWS_CM_10375],

<key> is the map key type specification. It is defined by the first CopTemplateArgu-
ment which is aggregated by the Associative Map Cpp Implementation
Data Type and points to a CppImplementationDataType With the tem-
plateType reference. The referenced CppImplementationDataType itself
can be one of the data types allowed for the Adaptive Platform,

<value> is the mapped value type specification. It is defined by the second CppTem-
plateArgument which is aggregated by the Associative Map Cpp Imple-
mentation Data Type and pointsto a CppImplementationDataType With
the templateType reference. The CppImplementationDataType itself can
be one of the data types allowed for the Adaptive Platform,

<compare> is the comparison function used to sort the keys.

<allocator> is the defined Allocator that is referenced by the third CppTem-
plateArgument of Associative Map Cpp Implementation Data Type
with the allocator reference.

10

For more details how to model Associative Map Cpp Implementation Data
Type, see the chapter Map Data Type of AUTOSAR Manifest Specification docu-
ment [6].

8.1.2.5.10 Redefinition of Implementation Data Type

[SWS_CM_00410]{DRAFT} Data Type redefinition | For each Redefinition Cpp
Implementation Data Type Wwhich is typed by an StdCppImplementation-—
DataType, there shall exist the corresponding type declaration as:

using <name> = <type>;
where:

<name> isthe Cpp Implementation Data Type symbol ofthe Redefinition
Cpp Implementation Data Type,

<type> isthe Cop Implementation Data Type symbol of the referred stdcCp-
pImplementationDataType.

|(RS_CM_00211, RS_CM_00003)

AUTOSAR

Please note that the usage of the category TYPE_REFERENCE is restricted to std-
CppImplementationDataTypes according to [constr_1578] defined in [6] for simpli-
fication reasons.

8.1.2.5.11 Enumeration Data Types

An Enumeration is not a plain primitive data type, but a structural description defined
with a set of custom identifiers known as enumerators representing the possible values.
In C++, an Enumeration is a first-class object and can take any of these enumerators
as a value.

It is recommended that the underlying type of the enumeration should be explicitly de-
fined to achieve both type safety and a fixed, well-defined size. Additionally, declaring
enumerations as scoped enumeration classes avoids the need of unique enumerator
names.

Therefore enumerations being both typed and scoped are used instead of classic C++
enumerations; the underlying type must be provided by the input configuration by defin-
ing an Enumeration Data Type.

[SWS_CM_00424]{DRAFT} Enumeration Data Type | For each Enumeration
Data Type referenced by the serviceInterface, there shall exist the correspond-
ing type declaration as:

enum class <name> : <type> ({
<enumerator-list>

}i
where:

<name> isthe Cpp Implementation Data Type symbol ofthe Redefinition
Cpp Implementation Data Type that boils down to a Primitive Cpp
Implementation Data Type.

<type> is the Primitive Cpp Implementation Data Type thatis referenced
by the Redefinition Cpp Implementation Data Type.

<enumerator-list> are the enumerators as defined by [SWS_CM_00425].
|(RS_CM_00211, RS_CM_00003)

The enumerator names base onthe CompuScale code symbolic name as defined
in [TPS_SWCT_01569] of the AUTOSAR Software Component Template [29].

[SWS_CM_00425]{DRAFT} Definition of enumerators | For each Compuscale with
point range (i.e., lowerLimit equals upperLimit and both lowerLimit.inter-
valType and upperLimit.intervalType are either missing or set to CLOSED)
in the Enumeration Data Type, there shall exist the corresponding enumeration
nested in the declaration defined by [SWS_CM_00425] as:

<enumeratorLiteral> = <initializer><suffix>,

AUTOSAR

where:

<enumeratorLiteral> is the name of the enumerator according to the following
rule (lower values indicate higher priority):

1. the C++ compliant identifier specified by the symbo1l attribute of Compus-
cale if this attribute is available and not empty,

2. the string specified by the value of vt element of the CompuConst of the
CompuScale if the value is a valid C++ identifier,

3. the string specified by the value of shortLabel attribute of CompuScale if
the attribute is available and not empty.

<initializer> isthe CompuScale’s point range used as enumerator initializer,

<suffix> shall be "U" if <type> of [SWS_CM_00424] is an unsigned data type
(i.e. if the Redefinition Cpp Implementation Data Type boils down
toaPrimitive Cpp Implementation Data Type wherethe Cpp Imple-
mentation Data Type symbol equals uint8_t, uint16_t, uint32_t or uint64_t.
<suffix> shall empty if it is a signed data type (i.e. if the Redefinition Cpp
Implementation Data Type boils downtoaPrimitive Cpp Implemen-—
tation Data Type wherethe Cpp Implementation Data Type symbol
equals int8_t, int16_t, int32_t or int64 _t.

|(RS_CM_00211, RS_CM_00003)

[SWS_CM_10376]{DRAFT} Skip CompuScales with non-point range | Any Com-
puScale with non-point range shall be simply skipped, i.e., no enumeration according
to [SWS_CM_00425] shall be generated for those CompuScales. |(RS_CM_00211,
RS _CM_00003)

[SWS_CM_00426]{DRAFT} Reject incomplete Enumeration Data Types | If the
input configuration contains an Enumeration Data Type and the name of an enu-
merator can not be determined according to [SWS_CM_00425], the ARA generator
shall reject this input as an invalid configuration. |(RS_CM_00211, RS_CM_00003)

8.1.2.5.12 Scale Linear And Texttable Data Types

A Scale Linear And Texttable Data Type iS not a plain primitive data type,
but a structural description defined with an Enumeration Data Type. The Scale
Linear And Texttable Data Type can hold the values of the enumerators and
also the values of the underlying type of the Enumeration Data Type it was defined
with.

AUTOSAR

The Communication Management declares C++ types for all Scale Linear And
Texttable Data Types defined inthe ServiceInterface. In AUTOSAR Adap-
tive Platform, the C++ binding of a Scale Linear And Texttable Data Type s
always implemented by an ara: :com: : ScalelLinearAndTexttable.

[SWS_CM_10409]{DRAFT} Scale Linear And Textable type definition | For each
Scale Linear And Texttable Data Type there shall exist the corresponding
type declaration as:

using <name> = ScalelLinearAndTexttable<enum_type>;
where:

<name> isthe Cpp Implementation Data Type symbol ofthe Scale Linear
And Texttable Data Type,

<enum_type> iS the generated Enumeration Data Type used to specify the
Scale Linear And Texttable Data Type.

|(RS_CM_00211, RS _CM _00003) For the specification of Enumeration Data
Type see section 8.1.2.5.11).

8.1.2.6 Error Types

[SWS_CM_11265]{DRAFT} Use of general ara::com errors [Any Checked Er-
ror of a service interface shall be reported via the return type as specified in [16]. |
(RS CM _00211)

In ara: : com, there are the following types of Checked Errors:

1. General ara::com errors: These errors can occur in a call of a service interface
method but are not specific to a certain service interface. They are defined in the
error domain ara: :com: :ComErrorDomain

2. Application Errors: These errors specific to a certain service interface call. They
are defined as ApApplicationError in the meta-model.

[SWS_CM_11264]{DRAFT} Definition general ara::com errors | General ara::com
errors shall be defined in the error domain ara: :com: :ComErrorDomain in accor-
dance with [16]. | (RS_CM_00102)

[SWS_CM_10432]{DRAFT} [

Kind: enumeration

Symbol: ara::com::ComErrc

Scope: namespace ara::com

Values: service_not_available= 1 | Service is not available.

V

AUTOSAR

A
max_samples_exceeded= 2 Application holds more SamplePtrs than commited
in Subscribe().
network_binding_failure= 3 Local failure has been detected by the network
binding.
Header file: #include "ara/com/com_error_domain.h"
Description: The {ComErrc} enumeration defines the error codes for the ComErrorDomain. .

|(RS_AP_00130)

[SWS_CM_11266]{DRAFT} Definition of Application Errors | Each ApApplica-
tionError references an ApApplicationErrorDomain. The error domain corre-
sponding ApApplicationErrorDomain shall be defined as specified in [16]. The
corresponding enumeration shall contain an entry for each ApApplicationError
referencing this ApApplicationErrorDomain using the shortName of the ApaAp-
plicationError as symbol and the errorCode of the ApApplicationError as
value:

1

2 enum class <ApApplicationErrorDomain.SN>Errc : ara::core::ErrorDomain::
CodeType

3

4 <ApApplicationError.SN> = <ApApplicationError.errorCode>,

5

6 }i

|(RS_CM 00211)

8.1.2.7 EZ2E Related Data Types

Some data types are used only in context of e2e-protected communication of events.

[SWS_CM_90421]{DRAFT} ara::com::e2e::ProfileCheckStatus [
The Communication Management shall provide an enumeration
ara::com::e2e::ProfileCheckStatus which represents the results of the
check of a single sample:

e Ok: OK:the checks of the samp1e in this cycle were successful (including counter
check).

e Repeated: sample has a repeated counter.

e WrongSequence: The checks of the sample in this cycle were successful, with
the exception of counter jump, which changed more than the allowed delta.

e Error: Error not related to counters occurred (e.g. wrong crc, wrong length,
wrong Data ID).

e NotAvailable: No value has been received yet (e.g. during initialization). This
is used as the initialization value for the buffer.

© © N o o B~ w o=

o

AUTOSAR

e NoNewData: No new data is available (assuming a sample has already been
received since the initialization).

e CheckDisabled: No E2E check status available (no E2E protection is config-
ured).

enum class ProfileCheckStatus : uint8_t

Ok,
Repeated,
WrongSequence,
Error,
NotAvailable,
NoNewData,
CheckDisabled
}i

|(RS_E2E_08534)

The E2E state machine sMsState is determined by checking a history of Pro-
fileCheckStatuses. The current value of sMState mirrors the current state of
the E2E supervision, but is not neccessarly applicable to all samples recieved during
the last update.

[SWS_CM_90422]{DRAFT} ara::com:E2E_state_machine::E2EState [The Com-
munication Management shall provide an enumeration ara: :com:e2e::SMState
which represents in what state is the E2E supervision after the most recent check
of the sample(s) of a received sample of the event. If SMState is Valid, and the
GetProfileCheckStatus did not result in Error then the last checked sample can
be used.

e Valid: Communication of the samples of this event functioning properly ac-
cording to E2E checks, sample(s) can be used.

e NoData: No data have been received from the publisher at all.

e Init: Not enough data where the E2E check yielded OK from the publisher is
available since the initialization, sample(s) cannot be used.

e Invalid: Too few data where the E2E check yielded OK or to many data where
the e2e check yielded ERROR were received within the E2E time window — com-
munication of the sample of this event not functioning properly, sample(s) can-
not be used.

e StateMDisabled: No E2E state machine available (no statemachine is config-
ured).

enum class SMState : uint8_t

Valid,

NoData,

Init,

Invalid,
StateMDisabled

AUTOSAR

8 };

|(RS_E2E_08534)
The Result is a class providing ProfileCheckStatus and SMState.

[SWS_CM_90423]{DRAFT} Result | The Communication Management shall
provide a C++ class named ara::com::e2e::Result which provides
ara::com::e2e::SMState and ara: :com: :e2e::ProfileCheckStatus.

class Result {

1

2 public:

3 ara::com: :e2e::ProfileCheckStatus GetCheckStatus () const noexcept;
4 ara::com: :e2e::SMState GetSMState () const noexcept;

5 };

|(RS_E2E_08534)

AUTOSAR

8.1.3 API Reference

The serviceInterface description is the input for the generation of the service API
header files content.

The proxy and skeleton header files contain different classes representing the Servi-
ceInterface itself and its elements event, method and field.

[SWS_CM_00002]{DRAFT} Service skeleton class | The Communication Manage-
ment shall provide the definition of a C++ class named <name>Skeleton in the ser-
vice skeleton header file within the namespace defined by [SWS_CM_01006], where
<name> iS the ServiceInterface.shortName.

1 class <Servicelnterface.shortName>Skeleton {
2

3 i

|(RS_CM 00101)

[SWS_CM_00003]{DRAFT} Service skeleton Event class | For each variable-
DataPrototype defined in the ServiceInterface in the role event the defini-
tion of a C++ class using the shortName of the VvariableDataPrototype shall
be provided in the service skeleton header file within the namespace defined by
[SWS_CM_01009].

1 class <VariableDataPrototype.shortName> {
2

3 };

|(RS_CM_00201)

[SWS_CM_00007]{DRAFT} Service skeleton Field class | For each Field defined
in the servicelInterface in the role field the definition of a C++ class using the
shortName of the Field shall be provided in the service skeleton header file within
the namespace defined by [SWS_CM_01031].

1 class <Field.shortName> {
2
3 };

|(RS_CM _00219)

[SWS_CM_00004]{DRAFT} Service proxy class | The Communication Management
shall provide the definition of a C++ class named <name>Proxy in the service proxy
header file within the namespace defined by [SWS_CM_01007], where <name> is the

ServiceInterface.shortName.

1 class <Servicelnterface.shortName>Proxy {
2

3)5

|(RS_CM_00102)

[SWS_CM_00005]{DRAFT} Service proxy Event class | For each VvariableDat-
aPrototype defined inthe serviceInterface inthe role event the definition of a

AUTOSAR

C++ class using the shortName of the VvariableDataPrototype shall be provided
in the service proxy header file within the namespace defined by [SWS_CM_01009].

1 class <VariableDataPrototype.shortName> {
2

3 };

|(RS_CM _00103)

[SWS_CM_00006]{DRAFT} Service proxy Method class | For each
ClientServerOperation defined in the ServiceInterface in the role method
the definition of a C++ class using the shortName of the ClientServerOperation
shall be provided in the service proxy header file within the namespace defined by
[SWS_CM_01015].

1 class <ClientServerOperation.shortName> {
2

3 };

|(RS_CM_00212, RS_CM_00213)

[SWS_CM_00008]{DRAFT} Service proxy Field class | For each Field defined in
the ServiceInterface in the role field the definition of a C++ class using the
shortName of the ServiceInterface shall be provided in the service proxy header
file within the namespace defined by [SWS_CM_01031].

1 class <Field.shortName> {
2

3 };

|(RS_CM 00216)

The following sub-chapters describe the content of the previously defined classes.

8.1.3.1 Object Creation via Construction Token

The construction token approach enables exception-less error reporting for object con-
struction. Since service skeletons and service proxies can be created using a Con-
tructionToken, this section describes the general requirements of this approach.
For the service skeleton and service proxy creation C++ API reference, see chapter
8.1.3.3 and 8.1.3.10, respectively.

[SWS_CM_10433]{DRAFT} Declaration of Construction Token | The construction
token shall be declared within the namespace of the class to be created ClassTo-
BeCreated: :ConstructionToken. The token must hold all members which are
necessary to instantiate a valid object of ClassToBeCreated. The Construction-
Token shall implement move-only semantics.

ConstructionToken (ConstructionToken &&);

ConstructionToken& operator=(ConstructionToken &&);
ConstructionToken (const ConstructionToken&) = delete;
ConstructionToken& operator=(const ConstructionToken&) = delete;

AUTOSAR

|(RS_CM_00101)

[SWS_CM_10434]{DRAFT} Creation of a Construction Token | The ClassToBe-
Created shall provide a static member function Preconstruct returning the con-
struction token embedded in an ara::core::Result. This function performs all
operations for constructing an object of ClassToBeCreated which may fail or result
in an error, e.qg. parameter checks and resource allocation. If an error occurs during
these operations, the error is returned as ara: :core: :ErrorCode. A non-throwing
constructor of ClassToBeCreated shall take the ConstructionToken as r-value
reference.

static ara::core::Result<ConstructionToken>
Preconstruct (/* construction arguments =*/);
ClassToBeCreated (ConstructionTokené&&) noexcept;

|(RS_CM 00101)

8.1.3.2 Offer service

For the functional description of the service offering API, see chapter 7.6.1.

[SWS_CM_00101]{DRAFT} Method to offer a service | The Communication Man-
agement shall provide an Of ferService method as part of the ServiceSkeleton
class to offer a service to applications.

void OfferService();
|(RS_CM_00101)

[SWS_CM_00111]{DRAFT} Method to stop offering a service | The Communica-
tion Management shall provide a stopOfferService method as part of the Ser-
viceSkeleton class to stop offering services to applications.

void StopOfferService();

|(RS_CM_00105)

8.1.3.3 Service skeleton creation

For the functional description of the service skeleton creation API, see chapter 7.6.2.

[SWS_CM_00130]{DRAFT} Creation of service skeleton using Instance ID |
The Communication Management shall provide a constructor for each specific Sser-
viceSkeleton class taking two arguments:

e InstancelIdentifier: Theidentifier of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

AUTOSAR

e MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM _00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton (
ara::com: :Instanceldentifier instancelD,
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent

)i
|(RS_CM_00101)

[SWS_CM_10435]{DRAFT} Exception-less creation of service skeleton using In-
stance ID | The Communication Management shall provide a non-throwing construc-
tor for each specific ServiceSkeleton class according to [SWS_CM_10433] and
[SWS_CM_10434]. A preconstruct function shall take two arguments:

e InstanceIdentifier: The identifier of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

e MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton: :ServiceSkeleton (ConstructionToken&&) noexcept;

static ara::core::Result<ConstructionToken>
ServiceSkeleton: :Preconstruct (
ara::com: :Instanceldentifier instancelD,
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent

)i
|(RS_CM_00101)

[SWS_CM_00152]{DRAFT} Creation of service skeleton using Instance Spec |
The Communication Management shall provide a constructor for each specific Ser-
viceSkeleton class taking two arguments:

e InstanceSpecifier: The specifiers of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

e MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM _00198] for more details on the behavior.

AUTOSAR

ServiceSkeleton (
ara::core::InstanceSpecifier instanceSpec,
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent

)i
|(RS_CM_00101)

[SWS_CM_10436]{DRAFT} Exception-less creation of service skeleton using
Instance Spec | The Communication Management shall provide a constructor
for each specific serviceSkeleton class according to [SWS_CM_10433] and
[SWS_CM_10434]. A preconstruct function shall take two arguments:

e InstanceSpecifier: The specifiers of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

e MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton (ConstructionToken&&) noexcept;
static ara::core::Result<ConstructionToken> Preconstruct (
ara::core::InstanceSpecifier instanceSpec,
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent

)i
|(RS_CM_00101)

[SWS_CM_00153]{DRAFT} Creation of service skeleton using Instance ID Con-
tainer | The Communication Management shall provide a constructor for each specific
ServiceSkeleton class taking two arguments:

e InstanceldentifierContainer: The container of instances of a service,
each instance element needed to distinguish different instances of exactly the
same service in the system. See [SWS_CM_00319] for the type definition.

e MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton (
ara::com::InstanceldentifierContainer instancelDs,
ara::com: :MethodCallProcessingMode mode =

ara::com: :MethodCallProcessingMode: :kEvent

)i
|(RS_CM_00101)

AUTOSAR

[SWS_CM_10437]{DRAFT} Exception-less creation of service skeleton using In-
stance ID Container | The Communication Management shall provide a construc-
tor for each specific ServiceSkeleton class according to [SWS_CM_10433] and
[SWS_CM_10434]. A preconstruct function shall take two arguments:

e InstanceldentifierContainer: The container of instances of a service,
each instance element needed to distinguish different instances of exactly the
same service in the system. See [SWS_CM_00319] for the type definition.

e MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton (ConstructionTokené&&) noexcept;
static ara::core::Result<ConstructionToken> Preconstruct (
ara::com: :InstanceldentifierContainer instancelDs,
ara::com: :MethodCallProcessingMode mode =
ara::com: :MethodCallProcessingMode: :kEvent

)i
|(RS_CM_00101)

[SWS_CM_00134]{DRAFT} Copy semantics of service skeleton class [The Com-
munication Management shall disable the generation of the copy constructor and the
copy assignment operator for each specific ServiceSkeleton class.

ServiceSkeleton (const ServiceSkeleton&) = delete;
ServiceSkeleton& operator=(const ServiceSkeleton&) = delete;

|(RS_CM 00101)

[SWS_CM_00135]{DRAFT} Move semantics of service skeleton class | The Com-
munication Management shall provide the possibility to move construct and move as-
sigh a ServicesSkeleton instance from another instance.

ServiceSkeleton (ServiceSkeleton &&);
ServiceSkeleton& operator=(ServiceSkeleton &&);

|(RS_CM_00101)

8.1.3.4 Send event

Inside the specific Event class belonging to the specific ServiceSkeleton class a
Send method shall be provided to initiate sending the corresponding event .To support
sending of events where the data is owned by the application and continuously updated
and the data is explicitly created for sending the send method shall be provided in two
ways: One where the application is owner of the data and the Ssend method makes a
copy for sending and one where Communication Management is responsible for the
data and the application is not allowed to do anything with the data after sending.

AUTOSAR

[SWS_CM_00162]{DRAFT} Send event where application is responsible for the
data [The send method of the specific Event class where the application is responsi-
ble for the data and the Communication Management creates a copy for sending takes
in the input parameter data, the data to send and sends it to all subscribed applica-
tions. This version of the send method shall be used whenever the application wants
to work further with the data.

void Event::Send(const SampleType &data);

|(RS_CM_00201)

[SWS_CM_90437]{DRAFT} Send event where Communication Management is re-
sponsible for the data | The send method of the specific Event class where the
Communication Management is responsible for the data and the application is not al-
lowed to access the data after sending takes in the input parameter data, the data to
send and sends it to all subscribed applications.

void Event::Send(ara::com::SampleAllocateePtr <SampleType> data);

Before sending the event the corresponding data has to be requested from the Com-
munication Management (see [SWS_CM_90438]) and filled with the respective data. |
(RS_CM_00201)

[SWS_CM_90438]{DRAFT} Allocating data for event transfer [Data shall be re-
quested by calling the A11ocate method of the specific Event class. By calling the
Send method with the data, it is ensured that the data will be freed by the Communi-
cation Management.

ara::com: :SampleAllocateePtr <SampleType> Event::Allocate();

This version of the send method shall be used whenever the data is created explicitly
for sending and no further processing is happening afterward by the application itself.
|(RS_CM_00201)

See [SWS_CM_00308] for the type definition of SampleAllocateePtr and ARA-
ComAPI explanatory document [1] for more details on the behavior.

8.1.3.5 Provide a service method

[SWS_CM_00191]{DRAFT} Provision of method | A pure virtual method shall be
defined inside the specific ServicesSkeleton class for each provided method of the
service.

The name of this method and its parameters are derived from the signature of the pro-
vided service method.

The service method input parameters shall become input parameters of the respective
method defined inside the ServiceSkeleton class.

An Output type combining the possible output parameters and optional return values
shall be provided inside the ServiceSkeleton class.

AUTOSAR

The method shall return an ara: :core: : Future object wrapping the output param-
eters and return values as result.

A corresponding subclass providing implementations for the methods shall be created
to implement the methods of a respective ServiceSkeleton.

struct MethodlOutput {
TypeOutputParameterl outputl;
TypeOutputParameter?2 output?2;

TypeResult result;
i

virtual ara::core::Future <MethodlOutput> Methodl (
TypelInputParameterl inputl,
TypeInputParameter2 input2,

) = 0;
|(RS_CM_00211)

[SWS_CM_90434]{DRAFT} Provision of a Fire and Forget method | A pure
virtual method shall be defined inside the specific ServiceSkeleton class for each
provided Fire and Forget method of the service.

The name of this method and its parameters are derived from the signature of the pro-
vided Fire and Forget method

The Fire and Forget method input parameters shall become input parameters of
the respective method defined inside the ServiceSkeleton class.

The Fire and Forget method shall have no return values.

A corresponding subclass providing implementations for the Fire and Forget
methods shall be created to implementthe Fire and Forget method of a respec-
tive ServiceSkeleton.

virtual void FF_Methodl (
TypelnputParameterl inputl,
TypelInputParameter2 input2,

) = 05
|(RS_CM_00225)

8.1.3.6 Processing of service methods

For the functional description of the processing of service methods API, see chapter
7.6.3.

[SWS_CM_00198]{DRAFT} Set service method processing mode
[With the instantiation of a specific ServiceSkeleton class, the
mode for processing service method invocations is set by providing an
ara::com: :MethodCallProcessingMode as a parameter of the constructor.

AUTOSAR

The mode allows the implementation providing the service method to select how the
incoming service method invocations are processed. The selection is valid for all the
methods of the specific Serviceskeleton instance. The data type representing the
processing modes is defined by [SWS_CM_00301].
The following processing modes shall be supported:

¢ Polling (enumeration element kPo11)

e Event-driven, concurrent (enumeration element kEvent)

e Event-driven, sequential (enumeration element kEventSingleThread)
|(RS_CM_00211)

[SWS_CM_00199]{DRAFT} Process Service method invocation | Inside the spe-
cific ServiceSkeleton class, a ProcessNextMethodCall method shall be pro-
vided. This method allows the implementation providing the service method to trigger
the execution of the next service consumer method call at a specific point of time if the
processing mode is setto Polling.

The method shall return an ara::core: :Future object wrapping a bool param-
eter as return value. A returned value true indicates that there is at least one
pending invocation, returning false indicates the opposite. Additionally, the returned
ara::core: :Future object allows to register a callback function which is invoked
when the next pending execution of a method request is finished.

ara: :core: :Future<bool> ProcessNextMethodCall () ;

|(RS_CM_00211)

[SWS_CM_10362]{DRAFT} Raising checked errors for application errors | When-
ever on the skeleton side of a service method an ApApplicationError — ac-
cording to the interface description in the Manifest — is detected, the corre-
sponding ara::core: :ErrorCode representing this ApApplicationError (see
[SWS_CM_11266]) shall be stored into the ara: : core: : Promi se object, from which
the ara: :core: :Future is returned to the caller. |(RS_CM_00211, RS_CM_00212,
RS _CM_00213, RS_CM_00214)

8.1.3.7 Registering get handlers for fields

For the functional description of the registering get handlers for fields API, see chapter
7.6.4.

[SWS_CM_00114]{DRAFT} Registering Getters | Inside the specific Field class
belonging to the specific ServiceSkeleton class a RegisterGetHandler method
shall be provided to give the possibility to register a GetHandler.

void RegisterGetHandler (
std::function<ara::core::Future<FieldType> (
) > getHandler) ;

AUTOSAR

|(RS_CM_00218)

[SWS_CM_00115]{DRAFT} Existence of RegisterGetHandler method | The exis-
tence of RegisterGetHandler as part of the Field class shall be controlled by
Field.hasGetter. |(RS_CM_00218)

8.1.3.8 Registering set handlers for fields

For the functional description of the registering set handlers for fields API, see chapter
7.6.5.

[SWS_CM_00116]{DRAFT} Registering Setters | Inside the specific Field class
belonging to the specific ServiceSkeleton class a RegisterSetHandler function
shall be provided to give the possibility to register a SetHandler.

void RegisterSetHandler (
std::function<ara::core::Future<FieldType> (
const FieldType& value)> setHandler);

|(RS_CM _00218)

[SWS_CM_00117]{DRAFT} Existence of the RegisterSetHandler method | The
existence of RegisterSetHandler as part of the Field class shall be controlled by
Field.hasSetter. |(RS_CM_00218)

[SWS_CM_00119]{DRAFT} Update Function [Inside the specific Field class be-
longing to the specific ServiceSkeleton class an Update function shall be pro-
vided to initiate the transmission of updated field data to the subscribers. See
[SWS_CM_00162] for the required behavior. The Update method shall look as follows:

void Field: :Update (const FieldType &value);

|(RS_CM_00218)

8.1.3.9 Find service

For the functional description of the find service API, see chapter 7.6.6.

The Communication Management shall provide FindsService methods as part of the
ServiceProxy class to enable applications to find services. To support event-based
and time-triggered systems the FindService methods shall be provided in a handler
registration and a immediately returned request style.

[SWS_CM_00122]{DRAFT} Find service with immediately returned request
using Instance ID | The FindService method of the ServiceProxy class with
immediately returned request takes an instance ID qualifying the wanted instance
of the service as optional input parameter. If no instance is specified, any instance
of the service matches.

As result a container containing handles for all matching service instances is returned.

AUTOSAR

There are two FindService methods, one for ANY and one using a specified
InstancelIdentifier.

static ara::com::ServiceHandleContainer<<ProxyClassName>::HandleType>
FindService () ;

static ara::com::ServiceHandleContainer<<ProxyClassName>::HandleType>
FindService (ara::com::Instanceldentifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. |(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:
e [SWS CM _00304] for ServiceHandleContainer,
e [SWS_CM_00312] for HandleType,
e [SWS CM _00302] for InstanceIdentifier.

[SWS_CM_00622]{ DRAFT} Find service with immediately returned request using
Instance Specifier [The FindService method of the ServiceProxy class with im-
mediately returned request takes an instance Specifier qualifying the wanted Abstract
Network Binding for the instance.

As result a container containing handles for all matching service instances is returned.

static ara::com::ServiceHandleContainer<<ProxyClassName>::HandleType>
FindService (ara::core::InstanceSpecifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. |(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:
e [SWS _CM _00304] for serviceHandleContainer,
e [SWS CM 00312] for HandleType,
e [SWS_CM_00350] for InstanceSpecifier.

[SWS_CM_00123]{DRAFT} Find service with handler registration using In-
stance ID | The StartFindService method of the ServiceProxy class with
handler registration takes as input parameters a FindServiceHandler, fitting
for the corresponding ServiceProxy class which gets called upon detection of a
matching service, and optionally an instance ID qualifying the wanted instance
of the service. If no instance is specified any instance of the service matches.
As result a FindServiceHandle for this search/find request is returned, which is
needed to stop the service availability monitoring and related firing of the given handler.

There are two SstartFindService methods one for ANY and one using a specified
Instanceldentifier.

AUTOSAR

static ara::com::FindServiceHandle StartFindService (
ara::com: :FindServiceHandler<<ProxyClassName>::HandleType> handler);

static ara::com::FindServiceHandle StartFindService (
ara::com: :FindServiceHandler<<ProxyClassName>: :HandleType> handler,
ara::com: :InstancelIdentifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. |(RS_CM _00102)

For the definition of the types used in the StartFindService signature, see:
e [SWS_CM_00303] for FindServiceHandle,
e [SWS_CM_00383] for FindServiceHandler,
e [SWS_CM_00312] for HandleType,
e [SWS CM 00302] for InstanceIdentifier.

[SWS_CM_00623]{DRAFT} Find service with handler registration using Instance
Specifier [The startFindService method of the ServiceProxy class with han-
dler registration takes as input parameters a FindServiceHandler, fitting for the
corresponding ServiceProxy class which gets called upon detection of a matching
service, and an instance Specifier qualifying the wanted Abstact Network Binding of
the instance of the service. As result a FindServiceHandle for this search/find
request is returned, which is needed to stop the service availability monitoring and
related firing of the given handler.

static ara::com::FindServiceHandle StartFindService (
ara::com: :FindServiceHandler<<ProxyClassName>: :HandleType> handler,
ara::core::InstanceSpecifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. |(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:
e [SWS_CM_00303] for FindServiceHandle,
e [SWS CM 00383] for FindServiceHandler,
e [SWS_CM_00312] for HandleType,
e [SWS _CM_00350] for InstanceSpecifier.

[SWS_CM_00125]{DRAFT} Stop find service | To stop receiving further notifications
the ServiceProxy class shall provide a StopFindService method. The FindSer—
viceHandle returned by the FindService method with handler registration has to
be provided as input parameter.

void StopFindService (ara::com: :FindServiceHandle handle)

|(RS_CM _00102)

AUTOSAR
See [SWS_CM_00303] for the type definition of FindServiceHandle.

8.1.3.10 Service proxy creation

[SWS_CM_00131]{DRAFT} Creation of service proxy | The Communication Man-
agement shall provide a constructor for each specific ServiceProxy class taking a
handle returned by any FindService method of the ServiceProxy class to get a
valid serviceProxy based on the handles returned by FindService.

explicit ServiceProxy::ServiceProxy (const HandleType &handle);

|(RS_CM 00102)

[SWS_CM_10438]{DRAFT} Exception-less creation of service proxy | The Com-
munication Management shall provide a non-throwing constructor for each specific
ServiceProxy class according to [SWS_CM_10433] and [SWS_CM _10434]. A
Preconstruct function shall take a handle returned by any FindService method
of the ServiceProxy class.

explicit ServiceProxy::ServiceProxy (ConstructionToken&&) noexcept;
static ara::core::Result<ConstructionToken>
ServiceProxy: :Preconstruct (
const HandleType &handle);

|(RS_CM _00102)

[SWS_CM_10383]{DRAFT} GetHandle function to return the proxy instance cre-
ation handle [The Communication Management shall provide a GetHandle method
for each specific ServiceProxy class to get the handle from which the Service-
Proxy instance has been created.

HandleType ServiceProxy::GetHandle () const;
|(RS_CM _00107)
See [SWS_CM_00312] for the type definition of HandleType.

[SWS_CM_00136]{DRAFT} Copy semantics of service proxy class [The Commu-
nication Management shall disable the generation of the copy constructor and the copy
assignment operator for each specific ServiceProxy class.

ServiceProxy (const ServiceProxyé&) = delete;
ServiceProxy& operator=(const ServiceProxyé&) = delete;

|(RS_CM_00102)

[SWS_CM_00137]{DRAFT} Move semantics of service proxy class [The Commu-
nication Management shall provide the possibility to move construct and move assign
a ServiceProxy instance from another instance.

ServiceProxy (ServiceProxy &&);
ServiceProxy& operator=(ServiceProxy &&);

AUTOSAR
|(RS_CM_00102)

8.1.3.11 Service proxy destruction

[SWS_CM_10446]{DRAFT} Destruction of service proxy | The destructor of each
specific ServiceProxy class shall destroy the Promise instances corresponding to
the Future instances returned by the function call operator (operator ()) of the re-
spective Method class (see [SWS_CM_00196]) or by the Get or set method of the
respective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) by explicitly
or implicitly invoking the destructor of the Promise (see [SWS_CORE_00349]). This
in turn will make the corresponding Future ready (if this is not already the case) with
an ara::core: :ErrorCode (see [SWS_CORE_00501]) where the error domain is
setto ara::core: :FutureErrorDomain (see [SWS_CORE_00421]) and the value
is set to broken_promise (see [SWS_CORE_00400]). | (RS_CM_00102)

8.1.3.12 Service event subscription

[SWS_CM_00141]{DRAFT} Method to subscribe to a service event | Inside the
specific Event class belonging to the specific ServiceProxy class a Subscribe
method shall be provided to start subscription of the corresponding event. As input
parameter the cachesize of the subscription needs to be specified.

void Event::Subscribe (
size_t maxSampleCount
)i

|(RS_CM _00103)

[SWS_CM_00700]{ DRAFT} Ensure memory allocation of maxSampleCount sam-
ples | The Communication Management shall ensure, that after returning from method
Subscribe sufficient memory resources are available, so that the number of samples
given in parameter maxSampleCount can be concurrently accessed by application
layer, otherwise error handling according to [SWS_CORE_00001] shall be performed.
|(RS_CM_00103)

[SWS_CM_00151]{DRAFT} Method to unsubscribe from a service event | Inside
the specific Event class belonging to the specific ServiceProxy class a Unsub-
scribe method shall be provided to allow for unsubscribing from previously sub-
scribed events.

volid Event::Unsubscribe () ;

|(RS_CM_00104)

AUTOSAR

[SWS_CM_00316]{DRAFT} Query Subscription State [The Communication Man-
agement shall provide an APl GetSubscriptionState which returns the subscrip-
tion state of an event. The conditions for the Subscription state being returned by Get -
SubscriptionState shall be the same as for the SubscriptionStateChange-
Handler described in [SWS_CM_00311], [SWS_CM_00313] and [SWS_CM_00314].

ara::com: :SubscriptionState GetSubscriptionState () const;

|(RS_CM_00106)

[SWS_CM_00333]{DRAFT} Set Subscription State change handler [The Commu-
nication Management shall provide an APl SetSubscriptionStateChangeHan—
dler to give the possibility to set a subscription state change handler. This handler
shall be called by the Communication Management implementation as soon as the
subscription state of this event has changed. Handler may be overwritten during run-
time.

void SetSubscriptionStateChangeHandler (ara::com::
SubscriptionStateChangeHandler handler);

|(RS_CM _00106)

[SWS_CM_00334]{DRAFT} Unset Subscription State change handler | The Com-
munication Management shall provide an APl UnsetSubscriptionStateChange-—
Handler to give the possibility to unset the subscription state change handler.

void UnsetSubscriptionStateChangeHandler () ;

|(RS_CM_00106)

[SWS_CM_00313]{DRAFT} Call SubscriptionStateChangeHandler with kSub-
scriptionPending [The Communication Management shall call the Subscription-
StateChangeHandler with the value kSubscriptionPending in the following
cases:

e the client subscribes to an event and the actual subscription does not happen
immediately (e.g. due to a bus protocol)

e the client is subscribed to an event and Communication Management has de-
tected that the server instance is currently not available (due to restart, network
problem or so)

|(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

Note: Method Calls may lead to a service_not_available error
[SWS_CM_11264] at that time.

[SWS_CM_00314]{DRAFT} Call SubscriptionStateChangeHandler with kSub-
scribed | The Communication Management shall call the SubscriptionState-
ChangeHandler with the value kSubscribed in the following cases:

¢ the client subscribes to an event and the actual subscription is established suc-
cessfully

AUTOSAR

e the client is subscribed to an event and the actual subscription is re-established
again after being temporarily unavailable (due to restart, network problem or so)

|(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

[SWS_CM_00315]{DRAFT} Re-establishing an active subscription [The Commu-
nication Management shall re-establish the actual subscription again after the server
service being temporarily unavailable (due to restart, network problem or so). This
shall work independently of whether a network binding is involved or not. The re-
establishment shall also provide a possible update of binding specific connection prop-
erties if needed. |(RS_CM_00103, RS _CM_00104, RS_CM_00106, RS_CM_00107)

8.1.3.13 Receive event

Inside the specific Event class belonging to the specific ServiceProxy class, a Get -
NewSamples and a GetFreeSampleCount method shall be provided to allow for ac-
cess of received events.

[SWS_CM_00701]{DRAFT} Method to update the event cache | The Communi-
cation Management shall provide an GetNewSamples method as part of the Event
class to update the event cache with the meanwhile received data samples. As input
parameters the GetNewSamples method expects a Callable £ and allows to spec-
ify a maxNumberOfSamples to restrict the number of received data samples being
processed in this call.

template <typename F>
ara::core: :Result<size_t> GetNewSamples (
F&s f,

size_t maxNumberOfSamples = std::numeric_limits<size_t>::max());

|(RS_CM_00202)

[SWS_CM_00702]{DRAFT} Signature of Callable f [The user provided callable
f has to comply with the following signature:

void(ara::com::SamplePtr<SampleType const>)
For the definition of the types used in the signature of £, see:

e [SWS_CM _00306] for samplePtr.
|(RS_CM_00202)

[SWS_CM_00703]{DRAFT} Sequence of actions in GetNewSamples | In the con-
text of the GetNewsamples call, the Communication Management shall do the follow-
ing steps repeatedly:

e get next received event data sample from underlying receive buffers.
e deserialize the data, if needed.

e place the deserialized data sample of type SsampleType in the local cache.

AUTOSAR

e call user provided £ with a samplePtr referencing the data sample located in
local cache.

until at least one of the following conditions is true:

e maxNumberOfSamples have already been fetched from the underlying receive
buffers within this GetNewSamples call.

e maxSampleCount exceeded. l.e. the application is currently holding more Sam-
plePtrs provided by this Event class instance, than it has commited in call to
Subscribe via maxSampleCount.

e no new data samples available from underlying receive buffers.
|(RS_CM_00202)

[SWS_CM_00704]{DRAFT} Return Value | The returned ara: :core: :Result ei-
ther contains a

e size_t indicating the number of data samples passed to f in the context of the
call.

ora

e ara::core: :ErrorCode with value max_samples_exceeded indicating, that
applications samplePtrs count has been exceeded.

|(RS_CM_00202)

[SWS_CM_00714]{DRAFT} Reentrancy | GetNewSamples shall be re-entrant for
different serviceProxy class instances. When called concurrently on the same Ser-
viceProxy class instance, the behavior is undefined. |(RS_CM_00202)

For the E2E-protected events, after updating the event cache via the GetNewSam-
ples method, and before accessing the SamplePtrs, the current Result needs to
be retrieved by calling the GetResult method.

[SWS_CM_90424]{DRAFT} Provide E2E Result | Inside the specific E2E-protected
Events belonging to the specific ServiceProxy class, the method GetResult shall
be provided.

const ara::com::e2e::Result GetResult () const;

For the definition of the type returned by GetResult signature, see:
e [SWS_CM_90423] for Result

|(RS_E2E_08534)

[SWS_CM_00705]{DRAFT} Query Free Sample Slots | The Communication Man-
agement shall provide a GetFreeSampleCount method as part of the Event class
to query the number of free/unused slots for event sample data.

ara::core::Result<size_t> GetFreeSampleCount () const noexcept;

AUTOSAR

|(RS_CM_00202)

[SWS_CM_00706]{DRAFT} Return Value of GetFreeSampleCount | The returned
ara::core: :Result either contains a

e size_t indicating the number of free/unused slots for event sample data in the
local cache.

ora

e ara::core: :ErrorCode With value max_samples_exceeded indicating, that
applications samplePtrs count has been exceeded.

|(RS_CM_00202)
[SWS_CM_00707]{DRAFT} Calculation of Free Sample Count |

e After call to Subscribe with parameter maxSampleCount set to N and before
any call to GetNewSamples on the same Event class instance, a call to Get-
FreeSampleCount shall return N.

e Each samplePtr created by the Communication Middleware in the context of
a call to GetNewSamples on the same Event class instance. shall lead to a
decrement of count of free samples.

e Each destruction or nullptr_t assignment (see [SWS_CM_00306]) of a Sam-
plePtr instance created from this Event class instance shall lead to a increment
of count of free samples.

|(RS_CM_00202)

[SWS_CM_00708]{DRAFT} Possibility of exceeding sample count by one | Ac-
cording to (see [SWS_CM_00703]) Communication Management shall allow fetching
newly arrived sample data from underlying buffers even in case all N samples (N ==
maxSampleCount in previous call to Subscribe) are already occupied. This leads to
a state, where N+1 data samples are occupied in the local cache. The Communication
Management has to support this by implicitly allocating memory resources for at least
maxSampleCount + 1 data samples. |(RS_CM_00202)

Note:

The exceeding of the sample count by one has been introduced to efficiently support
applications with a "LastN" access policy of events. If the application already holds its
maximum of N samples o