
Specification of Communication Management
AUTOSAR AP Release 19-03

Document Title Specification of Communication
Management

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 717

Document Status Final

Part of AUTOSAR Standard Adaptive Platform

Part of Standard Release 19-03

Document Change History
Date Release Changed by Description

2019-03-29 19-03
AUTOSAR
Release
Management

• Predictable Resource Allocation for
Samples
• Usage of Future::Get/Wait with an

unreliable transport
• Removed exceptions on reception of

malformed messages
• Changes to Identity and Access

Management to incorporate Grant
design
• Minor changes and bugfixes

2018-10-31 18-10
AUTOSAR
Release
Management

• Introduced Adaptive Core types
• Introduced exception-less API
• Refined DDS network binding
• Minor changes and bugfixes

2018-03-29 18-03
AUTOSAR
Release
Management

• DDS Network Binding
• Datatype Namespaces changed
• E2E Protected Methods
• Automatic Reconnection of Proxies
• Minor changes and bugfixes

2017-10-27 17-10
AUTOSAR
Release
Management

• Introduction of Fields
• Introduction of E2E protected

communication
• Introduction of TLV
• Improved specification of SOME/IP

functional behavior
• Minor changes and bugfixes

1 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

2017-03-31 17-03
AUTOSAR
Release
Management

• Initial release

2 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Disclaimer

This work (specification and/or software implementation) and the material contained in
it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the work.

The material contained in this work is protected by copyright and other types of intel-
lectual property rights. The commercial exploitation of the material contained in this
work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the work
may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

3 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Table of Contents

1 Introduction and functional overview 7

2 Acronyms and Abbreviations 8

3 Related documentation 9

3.1 Input documents & related standards and norms 9
3.2 Related specification . 10

4 Constraints and assumptions 11

4.1 Limitations . 11
4.2 Applicability to car domains . 12

5 Dependencies to other functional clusters 13

5.1 Platform dependencies . 13

6 Requirements Tracing 14

7 Functional specification 30

7.1 General description . 30
7.1.1 Architectural concepts . 30
7.1.2 Design decisions . 32
7.1.3 Communication paradigms 33

7.2 End-to-end communication protection for Events 34
7.2.1 Publisher . 35
7.2.2 Subscriber - GetNewSamples 36

7.2.2.1 Case 1 - there are one or more serialized samples . 38
7.2.2.2 Case 2 - there are no serialized samples 38

7.2.3 Subscriber - Callback f . 39
7.2.4 Subscriber - Access to E2E information 39

7.3 End-to-end communication protection for Methods 39
7.4 Network binding . 39

7.4.1 SOME/IP Network binding 41
7.4.1.1 Service Discovery 41
7.4.1.2 Accumulation of SOME/IP messages 48
7.4.1.3 Execution context of message reception actions . . . 50
7.4.1.4 Handling Events . 50
7.4.1.5 Handling Method Calls 53
7.4.1.6 Handling Fields . 62
7.4.1.7 Serialization of Payload 70

7.4.2 Signal-Based Network binding 93
7.4.3 DDS Network binding . 94

7.4.3.1 Service Discovery 94
7.4.3.2 Handling Events . 102
7.4.3.3 Handling Method Calls 108
7.4.3.4 Handling Fields . 118

4 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7.4.3.5 Serialization of Payload 130
7.5 Security . 132

7.5.1 Access Control . 132
7.5.2 Secure Communication . 134

7.5.2.1 SOME/IP Network binding 134
7.5.2.2 DDS . 140

7.6 Communication API . 143
7.6.1 Offer service . 143
7.6.2 Service skeleton creation . 143
7.6.3 Processing of service methods 144
7.6.4 Registering get handlers for fields 144
7.6.5 Registering set handlers for fields 144
7.6.6 Find service . 145
7.6.7 Receive events . 145

7.6.7.1 Receive event by polling 146
7.6.7.2 Receive event by getting triggered 146

7.6.8 Call a service method . 146
7.6.9 Update notification events for fields 147
7.6.10 Instance Specifier Translation 147

8 Communication API specification 148

8.1 C++ language binding . 148
8.1.1 API Header files . 148

8.1.1.1 Service header files 148
8.1.1.2 Common header file 151
8.1.1.3 Types header file . 152
8.1.1.4 Implementation Types header files 153

8.1.2 API Data Types . 155
8.1.2.1 Service Identifier Data Types 155
8.1.2.2 Event Related Data Types 159
8.1.2.3 Method Related Data Types 162
8.1.2.4 Generic Data Types 162
8.1.2.5 Communication Payload Data Types 173
8.1.2.6 Error Types . 196
8.1.2.7 E2E Related Data Types 197

8.1.3 API Reference . 200
8.1.3.1 Object Creation via Construction Token 201
8.1.3.2 Offer service . 202
8.1.3.3 Service skeleton creation 202
8.1.3.4 Send event . 205
8.1.3.5 Provide a service method 206
8.1.3.6 Processing of service methods 207
8.1.3.7 Registering get handlers for fields 208
8.1.3.8 Registering set handlers for fields 209
8.1.3.9 Find service . 209
8.1.3.10 Service proxy creation 212

5 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8.1.3.11 Service proxy destruction 213
8.1.3.12 Service event subscription 213
8.1.3.13 Receive event . 215
8.1.3.14 Receive event by getting triggered 218
8.1.3.15 Call a service method 218
8.1.3.16 Get method for fields 221
8.1.3.17 Set method for fields 222
8.1.3.18 Instance Specifier Translation 222

A Mentioned Class Tables 223

B History of Specification Items 281

B.1 Constraint and Specification Item History of this document according
to AUTOSAR Release 17-10 . 281

B.1.1 Added Traceables in 17-10 281
B.1.2 Changed Traceables in 17-10 286
B.1.3 Deleted Traceables in 17-10 287

B.2 Constraint and Specification Item History of this document according
to AUTOSAR Release 18-03 . 288

B.2.1 Added Traceables in 18-03 288
B.2.2 Changed Traceables in 18-03 291
B.2.3 Deleted Traceables in 18-03 298

B.3 Constraint and Specification Item History of this document according
to AUTOSAR Release 18-10 . 298

B.3.1 Added Traceables in 18-10 298
B.3.2 Changed Traceables in 18-10 303
B.3.3 Deleted Traceables in 18-10 308

B.4 Constraint and Specification Item History of this document according
to AUTOSAR Release 19-03 . 310

B.4.1 Added Traceables in 19-03 310
B.4.2 Changed Traceables in 19-03 310
B.4.3 Deleted Traceables in 19-03 310

6 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

1 Introduction and functional overview

This document contains the requirements on the functionality, API and the configura-
tion of the AUTOSAR Adaptive Communication Management as part of the Adaptive
AUTOSAR platform foundation.

The Communication Management realizes Service Oriented Communication between
Adaptive AUTOSAR Applications for all levels of communication, e.g. IntraProcess, In-
terProcess, InterMachine. It consists of potentially generated Service Provider Skele-
tons and Service Requester Proxies and optionally the generic Communication Man-
ager software for central brokering and configuration.

The Communication Management provides a build-in safety mechanism (E2E protec-
tion), which can be used for all levels of communication for events that are received
using polling.

The documentation of the Communication Management consists of two documents:

• the ARAComAPI explanatory document [1], providing explanations of the design
and behavior descriptions of the ara::com API,

• this document, providing the requirements on the ara::com API.

Therefore it is recommended to read the ARAComAPI explanatory document first to
get an overview and understanding, and to read this document afterward.

7 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the Communica-
tion Management that are not included in the AUTOSAR glossary [2].

Abbreviation / Acronym: Description:
CM Communication Management
IP Internet Protocol
SOME/IP Scalable service-Oriented MiddlewarE over IP
TCP Transmission Control Protocol
UDP User Datagram Protocol
E2E End-to-end communication protection
SoC Service-Oriented Communication
SecOC Secure Onboard Communication
DTLS Datagram Transport Layer Security
DDS Data Distribution Service
RTPS Real Time Publish Subscribe Protocol
TTL Time To Live
TLV Tag-Length-Value
RPC Remote Procedure Call
QoS Quality of Service
BOM Byte Order Mark

Term: Description:
Callable In the context of C++ a Callable is defined as: A Callable type is a

type for which the INVOKE operation (used by, e.g., std::function,
std::bind, and std::thread::thread) is applicable. This operation
may be performed explicitly using the library function std::invoke.
(since C++17)

serializedSample A serializedSample is the serialization of a C++ object to an array
and consists of the header that is part of e2e protection and the
serialized data.

Service Binding Act of connecting a Service Requester to a concrete Service In-
stance of a Service Provider.

Multi-Binding Multi-Binding describes setups having multiple connections im-
plemented by different technical transport layers and protocol be-
tween different instances of a single proxy or skeleton class, e.g.:

• A proxy class uses different transport/IPC to communicate
with different skeleton instances.

• Different proxy instances for the same skeleton instance
uses different transport/IPC to communicate with this in-
stance: The skeleton instance supports multiple transport
mechanisms to get contacted.

8 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

3 Related documentation

3.1 Input documents & related standards and norms

[1] Explanation of ara::com API
AUTOSAR_EXP_ARAComAPI

[2] Glossary
AUTOSAR_TR_Glossary

[3] General Requirements specific to Adaptive Platform
AUTOSAR_RS_General

[4] E2E Protocol Specification
AUTOSAR_PRS_E2EProtocol

[5] SOME/IP Protocol Specification
AUTOSAR_PRS_SOMEIPProtocol

[6] Specification of Manifest
AUTOSAR_TPS_ManifestSpecification

[7] Requirements on E2E
AUTOSAR_RS_E2E

[8] Requirements on Communication Management
AUTOSAR_RS_CommunicationManagement

[9] Middleware for Real-time and Embedded Systems
http://doi.acm.org/10.1145/508448.508472

[10] Patterns, Frameworks, and Middleware: Their Synergistic Relationships
http://dl.acm.org/citation.cfm?id=776816.776917

[11] Reference Model for Service Oriented Architecture 1.0
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

[12] SOME/IP Service Discovery Protocol Specification
AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol

[13] Specification of Platform Types
AUTOSAR_SWS_PlatformTypes

[14] UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

[15] UTF-16, an encoding of ISO 10646
http://www.ietf.org/rfc/rfc2781.txt

[16] Specification of Core Types for Adaptive Platform
AUTOSAR_SWS_CoreTypes

[17] Specification of Socket Adaptor

9 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

http://doi.acm.org/10.1145/508448.508472
http://dl.acm.org/citation.cfm?id=776816.776917
https://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

Specification of Communication Management
AUTOSAR AP Release 19-03

AUTOSAR_SWS_SocketAdaptor

[18] Data Distribution Service (DDS), Version 1.4
http://www.omg.org/spec/DDS/1.4

[19] DDS Interoperability Wire Protocol, Version 2.2
http://www.omg.org/spec/DDSI-RTPS/2.2

[20] Extensible and Dynamic Topic Types for DDS, Version 1.2
https://www.omg.org/spec/DDS-XTypes/1.2

[21] RPC over DDS, Version 1.0
https://www.omg.org/spec/DDS-RPC/1.0

[22] ISO/IEC C++ 2003 Language DDS PSM, Version 1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0

[23] Interface Definition Language (IDL), Version 4.2
https://www.omg.org/spec/IDL/4.2

[24] DDS Security, Version 1.1
https://www.omg.org/spec/DDS-SECURITY/1.1

[25] Methodology for Adaptive Platform
AUTOSAR_TR_AdaptiveMethodology

[26] General Specification of Adaptive Platform
AUTOSAR_SWS_General

[27] ISO/IEC 14882:2011, Information technology – Programming languages – C++
http://www.iso.org

[28] N4659: Working Draft, Standard for ProgrammingLanguage C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

[29] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [3, RS Gen-
eral], which is also valid for the CM.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CM.

10 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

http://www.omg.org/spec/DDS/1.4
http://www.omg.org/spec/DDSI-RTPS/2.2
https://www.omg.org/spec/DDS-XTypes/1.2
https://www.omg.org/spec/DDS-RPC/1.0
https://www.omg.org/spec/DDS-PSM-Cxx/1.0
https://www.omg.org/spec/IDL/4.2
https://www.omg.org/spec/DDS-SECURITY/1.1
http://www.iso.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

Specification of Communication Management
AUTOSAR AP Release 19-03

4 Constraints and assumptions

4.1 Limitations

The current version of this document is missing some functionality which is not stan-
dardized and specified within the SWS Communication Management document but
described in Explanation of ara::com API [1] and implemented in the demonstrator
code:

• Local Buffer Overruns
Currently it is not specified what happens if local buffers are full because the
application accesses data slower than they are received over the network.

The Signal to Service mapping in this specification does not contain behavior specifi-
cation.

The E2E communication protection works only for events which are polled and which
are transmitted at least once per fault tolerant time interval. This means, it requires:

• Periodic invocation of the method GetNewSamples (see [SWS_CM_00701]) in a
polling mode

• Periodic or mixed-periodic invocation of the method Send (see [SWS_CM_00162]
and [SWS_CM_90437])

In case GetNewSamples or Send are not invoked periodically, then some communica-
tion failure modes are not detected (loss, delay and possibly also repetition). In this
case, if E2E is used, then additional measures need to be taken at application level to
address those non-detected failure modes.

The values of the following E2E parameters are defined by the standard and shall not
be changed. See [4].

• dataIdMode

• counterOffset

• crcOffset

• dataIdNibbleOffset

• offset

EndToEndTransformationComSpecProps are not supported.

The following limitations regarding optionality introduced with the Tag-Length-Value
serialization principle described in [5] and [6] apply:

• Optional method arguments
The Specification does not support the existence of optional method arguments.

11 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4.2 Applicability to car domains

No restrictions to applicability.

12 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

5 Dependencies to other functional clusters

5.1 Platform dependencies

The Communication Management is dependent on the E2E protection protocol defined
in [7] and [4]. The E2E interfaces are used to execute end-to-end communication
protection between Service Provider Skeletons and Service Requester Proxies.

13 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

6 Requirements Tracing

The following tables reference the requirements specified in the Requirements on Com-
munication Management document [8] and links to the fulfilment of these.

Please note that if a requirement contained in [8] is not mentioned in the below table, it
means that is not fulfilled by this document.

Requirement Description Satisfied by
[RS_AP_00130] AUTOSAR Adaptive Platform

shall represent a rich and
modern programming
environment.

[SWS_CM_10432]

[RS_CM_00001] The Communication
Management shall provide a
standardized header file
structure for each service.

[SWS_CM_01001] [SWS_CM_01002]
[SWS_CM_01004] [SWS_CM_01012]
[SWS_CM_01013] [SWS_CM_01017]
[SWS_CM_01019] [SWS_CM_01020]
[SWS_CM_10370] [SWS_CM_10372]
[SWS_CM_10373] [SWS_CM_10374]

[RS_CM_00002] The service header files shall
define the namespace for the
respective service.

[SWS_CM_01005] [SWS_CM_01006]
[SWS_CM_01007] [SWS_CM_01008]
[SWS_CM_01009] [SWS_CM_01015]
[SWS_CM_01018] [SWS_CM_01031]
[SWS_CM_10375]

[RS_CM_00003] The Communication
Management shall define how
language specific data types are
derived from modeled data
types.

[SWS_CM_00400] [SWS_CM_00402]
[SWS_CM_00403] [SWS_CM_00404]
[SWS_CM_00405] [SWS_CM_00406]
[SWS_CM_00407] [SWS_CM_00408]
[SWS_CM_00409] [SWS_CM_00410]
[SWS_CM_00411] [SWS_CM_00414]
[SWS_CM_00421] [SWS_CM_00423]
[SWS_CM_00424] [SWS_CM_00425]
[SWS_CM_00426] [SWS_CM_00450]
[SWS_CM_00452] [SWS_CM_00503]
[SWS_CM_00504] [SWS_CM_00505]
[SWS_CM_00509] [SWS_CM_01032]
[SWS_CM_10376] [SWS_CM_10392]
[SWS_CM_10393] [SWS_CM_10394]
[SWS_CM_10395] [SWS_CM_10396]
[SWS_CM_10397] [SWS_CM_10398]
[SWS_CM_10399] [SWS_CM_10400]
[SWS_CM_10401] [SWS_CM_10402]
[SWS_CM_10403] [SWS_CM_10404]
[SWS_CM_10405] [SWS_CM_10406]
[SWS_CM_10407] [SWS_CM_10408]
[SWS_CM_10409]

14 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00101] Communication Management

shall provide an interface to offer
services

[SWS_CM_00002] [SWS_CM_00101]
[SWS_CM_00102] [SWS_CM_00103]
[SWS_CM_00130] [SWS_CM_00134]
[SWS_CM_00135] [SWS_CM_00152]
[SWS_CM_00153] [SWS_CM_00201]
[SWS_CM_00203] [SWS_CM_00302]
[SWS_CM_00319] [SWS_CM_00350]
[SWS_CM_10410] [SWS_CM_10433]
[SWS_CM_10434] [SWS_CM_10435]
[SWS_CM_10436] [SWS_CM_10437]
[SWS_CM_10450] [SWS_CM_10451]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11004]
[SWS_CM_11029] [SWS_CM_11030]
[SWS_CM_11031]

[RS_CM_00102] Communication Management
shall provide an interface to find
services

[SWS_CM_00004] [SWS_CM_00122]
[SWS_CM_00123] [SWS_CM_00124]
[SWS_CM_00125] [SWS_CM_00131]
[SWS_CM_00136] [SWS_CM_00137]
[SWS_CM_00202] [SWS_CM_00209]
[SWS_CM_00302] [SWS_CM_00303]
[SWS_CM_00304] [SWS_CM_00312]
[SWS_CM_00317] [SWS_CM_00318]
[SWS_CM_00319] [SWS_CM_00383]
[SWS_CM_00622] [SWS_CM_00623]
[SWS_CM_10382] [SWS_CM_10438]
[SWS_CM_10446] [SWS_CM_11006]
[SWS_CM_11007] [SWS_CM_11008]
[SWS_CM_11009] [SWS_CM_11010]
[SWS_CM_11011] [SWS_CM_11012]
[SWS_CM_11041] [SWS_CM_11264]

[RS_CM_00103] Communication Management
shall provide an interface to
subscribe to a specific event
provided by an instance of a
certain service

[SWS_CM_00005] [SWS_CM_00141]
[SWS_CM_00205] [SWS_CM_00310]
[SWS_CM_00311] [SWS_CM_00313]
[SWS_CM_00314] [SWS_CM_00315]
[SWS_CM_00700] [SWS_CM_10377]
[SWS_CM_10381] [SWS_CM_11018]
[SWS_CM_11019] [SWS_CM_11020]
[SWS_CM_11133] [SWS_CM_11134]
[SWS_CM_11135]

[RS_CM_00104] Communication Management
shall provide an interface to stop
the subscription to an event of a
service instance

[SWS_CM_00151] [SWS_CM_00207]
[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_10378]
[SWS_CM_11021] [SWS_CM_11136]

[RS_CM_00105] Communication Management
shall provide an interface to stop
offering services

[SWS_CM_00111] [SWS_CM_00204]
[SWS_CM_11005]

15 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00106] Communication Management

shall provide a means to monitor
the state of the subscription to
an event

[SWS_CM_00310] [SWS_CM_00311]
[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_00316]
[SWS_CM_00333] [SWS_CM_00334]
[SWS_CM_11022] [SWS_CM_11027]
[SWS_CM_11028] [SWS_CM_11137]
[SWS_CM_11142] [SWS_CM_11143]

[RS_CM_00107] Communication Management
shall provide a means to
automatically update a proxy
instance in case of restart of the
offered service

[SWS_CM_00313] [SWS_CM_00314]
[SWS_CM_00315] [SWS_CM_10383]

[RS_CM_00200] The Communication
Management shall transform
Fully Qualified Service IDs to
communication protocol specific
Service IDs

[SWS_CM_00102] [SWS_CM_00202]
[SWS_CM_00203] [SWS_CM_00205]
[SWS_CM_01010] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10323] [SWS_CM_10325]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10346]
[SWS_CM_10377] [SWS_CM_10381]
[SWS_CM_11001] [SWS_CM_11002]
[SWS_CM_11003] [SWS_CM_11004]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11013]
[SWS_CM_11014] [SWS_CM_11029]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11041] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11107]
[SWS_CM_11151] [SWS_CM_90403]
[SWS_CM_90409] [SWS_CM_90414]

[RS_CM_00201] Communication Management
shall provide an API to send
events to other applications

[SWS_CM_00003] [SWS_CM_00162]
[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00308]
[SWS_CM_10034] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]

16 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10226]
[SWS_CM_10227] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10250]
[SWS_CM_10251] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10254]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10361]
[SWS_CM_10391] [SWS_CM_11015]
[SWS_CM_11016] [SWS_CM_11017]
[SWS_CM_11040] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11130]
[SWS_CM_11131] [SWS_CM_11132]
[SWS_CM_11262] [SWS_CM_11263]
[SWS_CM_90437] [SWS_CM_90438]

[RS_CM_002013] No description [SWS_CM_11108]

17 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00202] Communication Management

shall provide an API to the
application to poll received
events

[SWS_CM_00252] [SWS_CM_00253]
[SWS_CM_00254] [SWS_CM_00255]
[SWS_CM_00256] [SWS_CM_00257]
[SWS_CM_00258] [SWS_CM_00259]
[SWS_CM_00260] [SWS_CM_00264]
[SWS_CM_00265] [SWS_CM_00306]
[SWS_CM_00701] [SWS_CM_00702]
[SWS_CM_00703] [SWS_CM_00704]
[SWS_CM_00705] [SWS_CM_00706]
[SWS_CM_00707] [SWS_CM_00708]
[SWS_CM_00714] [SWS_CM_10016]
[SWS_CM_10017] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10169] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10226] [SWS_CM_10227]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10242] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10250] [SWS_CM_10251]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10254] [SWS_CM_10255]
[SWS_CM_10256] [SWS_CM_10257]
[SWS_CM_10258] [SWS_CM_10259]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10295]
[SWS_CM_10327] [SWS_CM_10361]
[SWS_CM_10391] [SWS_CM_11023]
[SWS_CM_11024] [SWS_CM_11042]
[SWS_CM_11043] [SWS_CM_11044]
[SWS_CM_11046] [SWS_CM_11047]
[SWS_CM_11048] [SWS_CM_11049]
[SWS_CM_11050] [SWS_CM_11138]
[SWS_CM_11139] [SWS_CM_11262]
[SWS_CM_11263]

18 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00203] Communication Management

shall trigger the application on
reception of an event

[SWS_CM_00181] [SWS_CM_00182]
[SWS_CM_00183] [SWS_CM_00306]
[SWS_CM_00309] [SWS_CM_00709]
[SWS_CM_00710] [SWS_CM_00711]
[SWS_CM_10296] [SWS_CM_10328]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_11025] [SWS_CM_11026]
[SWS_CM_11140] [SWS_CM_11141]

[RS_CM_00204] The Communication
Management shall map the
protocol independent Service
Oriented Communication to the
configured protocol binding and
shall execute the protocol
accordingly.

[SWS_CM_00201] [SWS_CM_00202]
[SWS_CM_00203] [SWS_CM_00204]
[SWS_CM_00205] [SWS_CM_00206]
[SWS_CM_00207] [SWS_CM_00208]
[SWS_CM_00209] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00264]
[SWS_CM_01046] [SWS_CM_10000]
[SWS_CM_10013] [SWS_CM_10016]
[SWS_CM_10017] [SWS_CM_10034]
[SWS_CM_10036] [SWS_CM_10037]
[SWS_CM_10042] [SWS_CM_10053]
[SWS_CM_10054] [SWS_CM_10055]
[SWS_CM_10056] [SWS_CM_10057]
[SWS_CM_10058] [SWS_CM_10059]
[SWS_CM_10060] [SWS_CM_10070]
[SWS_CM_10072] [SWS_CM_10076]
[SWS_CM_10169] [SWS_CM_10172]
[SWS_CM_10174] [SWS_CM_10218]
[SWS_CM_10219] [SWS_CM_10222]
[SWS_CM_10234] [SWS_CM_10235]
[SWS_CM_10242] [SWS_CM_10245]
[SWS_CM_10247] [SWS_CM_10248]
[SWS_CM_10252] [SWS_CM_10253]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10260] [SWS_CM_10261]
[SWS_CM_10262] [SWS_CM_10262]
[SWS_CM_10264] [SWS_CM_10265]
[SWS_CM_10266] [SWS_CM_10267]
[SWS_CM_10268] [SWS_CM_10269]
[SWS_CM_10270] [SWS_CM_10271]
[SWS_CM_10272] [SWS_CM_10273]

19 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[SWS_CM_10274] [SWS_CM_10275]
[SWS_CM_10276] [SWS_CM_10277]
[SWS_CM_10278] [SWS_CM_10279]
[SWS_CM_10280] [SWS_CM_10281]
[SWS_CM_10282] [SWS_CM_10283]
[SWS_CM_10284] [SWS_CM_10285]
[SWS_CM_10287] [SWS_CM_10288]
[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10294]
[SWS_CM_10295] [SWS_CM_10296]
[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10300]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10304]
[SWS_CM_10306] [SWS_CM_10307]
[SWS_CM_10308] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10311]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10314] [SWS_CM_10315]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10357]
[SWS_CM_10358] [SWS_CM_10361]
[SWS_CM_10377] [SWS_CM_10378]
[SWS_CM_10379] [SWS_CM_10380]
[SWS_CM_10381] [SWS_CM_10387]
[SWS_CM_10388] [SWS_CM_10389]
[SWS_CM_10390] [SWS_CM_10391]
[SWS_CM_10429] [SWS_CM_10430]
[SWS_CM_10431] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10444]
[SWS_CM_11000] [SWS_CM_11001]
[SWS_CM_11002] [SWS_CM_11003]

20 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[SWS_CM_11004] [SWS_CM_11005]
[SWS_CM_11006] [SWS_CM_11007]
[SWS_CM_11008] [SWS_CM_11009]
[SWS_CM_11010] [SWS_CM_11011]
[SWS_CM_11012] [SWS_CM_11013]
[SWS_CM_11014] [SWS_CM_11015]
[SWS_CM_11016] [SWS_CM_11017]
[SWS_CM_11018] [SWS_CM_11019]
[SWS_CM_11020] [SWS_CM_11021]
[SWS_CM_11022] [SWS_CM_11023]
[SWS_CM_11024] [SWS_CM_11025]
[SWS_CM_11026] [SWS_CM_11027]
[SWS_CM_11028] [SWS_CM_11029]
[SWS_CM_11030] [SWS_CM_11031]
[SWS_CM_11040] [SWS_CM_11041]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11100] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11103]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11106] [SWS_CM_11107]
[SWS_CM_11108] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11130]
[SWS_CM_11131] [SWS_CM_11132]
[SWS_CM_11133] [SWS_CM_11134]
[SWS_CM_11135] [SWS_CM_11136]
[SWS_CM_11137] [SWS_CM_11138]
[SWS_CM_11139] [SWS_CM_11140]
[SWS_CM_11141] [SWS_CM_11142]
[SWS_CM_11143] [SWS_CM_11144]
[SWS_CM_11145] [SWS_CM_11146]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]
[SWS_CM_11262] [SWS_CM_11263]

[RS_CM_00205] The Communication
Management shall realize the
SOME/IP service discovery
protocol, the SOME/IP protocol
and the E2E supervision (E2E
protocol).

[SWS_CM_01032] [SWS_CM_01046]
[SWS_CM_01050] [SWS_CM_01051]
[SWS_CM_01052] [SWS_CM_01053]
[SWS_CM_01054] [SWS_CM_01055]
[SWS_CM_01056] [SWS_CM_01057]
[SWS_CM_01058] [SWS_CM_01059]
[SWS_CM_01060] [SWS_CM_01061]
[SWS_CM_01062] [SWS_CM_01063]
[SWS_CM_01064] [SWS_CM_01065]
[SWS_CM_01066] [SWS_CM_01067]
[SWS_CM_01068] [SWS_CM_01069]
[SWS_CM_10000]

[RS_CM_00207] No description [SWS_CM_00118] [SWS_CM_10452]
[SWS_CM_10590]

21 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00211] Communication Management

shall provide an interface to
provide methods to other
applications

[SWS_CM_00191] [SWS_CM_00198]
[SWS_CM_00199] [SWS_CM_00252]
[SWS_CM_00253] [SWS_CM_00254]
[SWS_CM_00255] [SWS_CM_00256]
[SWS_CM_00257] [SWS_CM_00258]
[SWS_CM_00259] [SWS_CM_00260]
[SWS_CM_00264] [SWS_CM_00265]
[SWS_CM_00301] [SWS_CM_00400]
[SWS_CM_00402] [SWS_CM_00403]
[SWS_CM_00404] [SWS_CM_00405]
[SWS_CM_00406] [SWS_CM_00407]
[SWS_CM_00408] [SWS_CM_00409]
[SWS_CM_00410] [SWS_CM_00411]
[SWS_CM_00414] [SWS_CM_00421]
[SWS_CM_00423] [SWS_CM_00424]
[SWS_CM_00425] [SWS_CM_00426]
[SWS_CM_00449] [SWS_CM_00450]
[SWS_CM_00452] [SWS_CM_00503]
[SWS_CM_00504] [SWS_CM_00505]
[SWS_CM_00509] [SWS_CM_10036]
[SWS_CM_10037] [SWS_CM_10042]
[SWS_CM_10053] [SWS_CM_10054]
[SWS_CM_10055] [SWS_CM_10056]
[SWS_CM_10057] [SWS_CM_10058]
[SWS_CM_10059] [SWS_CM_10060]
[SWS_CM_10070] [SWS_CM_10072]
[SWS_CM_10076] [SWS_CM_10088]
[SWS_CM_10098] [SWS_CM_10099]
[SWS_CM_10218] [SWS_CM_10219]
[SWS_CM_10222] [SWS_CM_10226]
[SWS_CM_10227] [SWS_CM_10234]
[SWS_CM_10235] [SWS_CM_10242]
[SWS_CM_10245] [SWS_CM_10247]
[SWS_CM_10248] [SWS_CM_10250]
[SWS_CM_10251] [SWS_CM_10252]
[SWS_CM_10253] [SWS_CM_10254]
[SWS_CM_10255] [SWS_CM_10256]
[SWS_CM_10257] [SWS_CM_10258]
[SWS_CM_10259] [SWS_CM_10260]
[SWS_CM_10261] [SWS_CM_10262]
[SWS_CM_10263] [SWS_CM_10264]
[SWS_CM_10265] [SWS_CM_10266]
[SWS_CM_10267] [SWS_CM_10268]
[SWS_CM_10269] [SWS_CM_10270]
[SWS_CM_10271] [SWS_CM_10272]
[SWS_CM_10273] [SWS_CM_10274]
[SWS_CM_10275] [SWS_CM_10276]
[SWS_CM_10277] [SWS_CM_10278]

22 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[SWS_CM_10279] [SWS_CM_10280]
[SWS_CM_10281] [SWS_CM_10282]
[SWS_CM_10283] [SWS_CM_10284]
[SWS_CM_10285] [SWS_CM_10361]
[SWS_CM_10362] [SWS_CM_10371]
[SWS_CM_10376] [SWS_CM_10391]
[SWS_CM_10409] [SWS_CM_10411]
[SWS_CM_11042] [SWS_CM_11043]
[SWS_CM_11044] [SWS_CM_11046]
[SWS_CM_11047] [SWS_CM_11048]
[SWS_CM_11049] [SWS_CM_11050]
[SWS_CM_11262] [SWS_CM_11263]
[SWS_CM_11265] [SWS_CM_11266]

[RS_CM_00212] Communication Management
shall provide an interface to call
methods of other applications
synchronously

[SWS_CM_00006] [SWS_CM_00192]
[SWS_CM_00194] [SWS_CM_00195]
[SWS_CM_00196] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10315] [SWS_CM_10316]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10414]
[SWS_CM_10441] [SWS_CM_10442]
[SWS_CM_10443] [SWS_CM_10444]
[SWS_CM_11100] [SWS_CM_11101]
[SWS_CM_11102] [SWS_CM_11103]
[SWS_CM_11104] [SWS_CM_11105]
[SWS_CM_11106] [SWS_CM_11107]
[SWS_CM_11108] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11144]
[SWS_CM_11145] [SWS_CM_11146]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]

23 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00213] Communication Management

shall provide an interface to call
service methods asynchronously

[SWS_CM_00006] [SWS_CM_00193]
[SWS_CM_00194] [SWS_CM_00196]
[SWS_CM_00197] [SWS_CM_10297]
[SWS_CM_10298] [SWS_CM_10299]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10315] [SWS_CM_10316]
[SWS_CM_10317] [SWS_CM_10318]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10347]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10414]
[SWS_CM_10440] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444] [SWS_CM_11100]
[SWS_CM_11101] [SWS_CM_11102]
[SWS_CM_11103] [SWS_CM_11104]
[SWS_CM_11105] [SWS_CM_11106]
[SWS_CM_11107] [SWS_CM_11109]
[SWS_CM_11110] [SWS_CM_11111]
[SWS_CM_11112] [SWS_CM_11144]
[SWS_CM_11147] [SWS_CM_11148]
[SWS_CM_11149] [SWS_CM_11150]
[SWS_CM_11151] [SWS_CM_11152]
[SWS_CM_11153] [SWS_CM_11154]
[SWS_CM_11155] [SWS_CM_11156]

[RS_CM_00213)] No description [SWS_CM_11145] [SWS_CM_11146]
[RS_CM_00214] Communication Management

shall provide an interface to
query the result of an
asynchronously called service
method

[SWS_CM_00193] [SWS_CM_10362]
[SWS_CM_10371] [SWS_CM_10440]

[RS_CM_00215] Communication Management
shall trigger the application on
completion of an asynchronously
called service method

[SWS_CM_00197] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_11104]
[SWS_CM_11108] [SWS_CM_11148]

24 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00216] Communication Management

shall provide an interface which
aggregates methods to receive a
notification on a changed field
value as well as explicitly getting
and setting the field value

[SWS_CM_00008] [SWS_CM_01031]

[RS_CM_00217] Communication Management
shall provide a method to
remotely set the field value

[SWS_CM_00113] [SWS_CM_10329]
[SWS_CM_10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]
[SWS_CM_10443] [SWS_CM_11151]
[SWS_CM_11152]

[RS_CM_00218] Communication Management
shall provide a method to
remotely get the field value

[SWS_CM_00112] [SWS_CM_00114]
[SWS_CM_00115] [SWS_CM_00116]
[SWS_CM_00117] [SWS_CM_00119]
[SWS_CM_00120] [SWS_CM_00128]
[SWS_CM_00129] [SWS_CM_00132]
[SWS_CM_00133] [SWS_CM_10329]
[SWS_CM_10333] [SWS_CM_10335]
[SWS_CM_10344] [SWS_CM_10346]
[SWS_CM_10412] [SWS_CM_10413]
[SWS_CM_10415] [SWS_CM_10443]
[SWS_CM_11151] [SWS_CM_11152]

[RS_CM_00219] Communication Management
shall provide an interface which
aggregates methods to send a
notification on value change and
to register a get and set function
for the field value

[SWS_CM_00007]

[RS_CM_00220] Communication Management
shall trigger the set method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00221] Communication Management
shall trigger the get method of
the application which provides
the field

[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_11153]
[SWS_CM_11154] [SWS_CM_11155]
[SWS_CM_11156]

[RS_CM_00222] The Communication
Management shall transform
Fully Qualified Service IDs, its
instance and Event ID or Method
ID to E2E Data ID.

[SWS_CM_90401] [SWS_CM_90402]
[SWS_CM_90403] [SWS_CM_90404]
[SWS_CM_90405] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90409] [SWS_CM_90410]
[SWS_CM_90411] [SWS_CM_90412]
[SWS_CM_90413] [SWS_CM_90414]
[SWS_CM_90416] [SWS_CM_90417]
[SWS_CM_90418] [SWS_CM_90419]
[SWS_CM_90430] [SWS_CM_90431]
[SWS_CM_90433]

[RS_CM_00223] Communication Management
shall protect the transmission of
data using E2E protocol, hidden
behind the event API.

[SWS_CM_90433]

[RS_CM_00225] Communication Management
shall provide an interface to call
fire&forget service methods

[SWS_CM_90419] [SWS_CM_90431]
[SWS_CM_90434] [SWS_CM_90435]
[SWS_CM_90436]

25 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_CM_00315] The Communication

Management shall support a
change of the configured
protocol binding without
requiring a re-compilation of the
adaptive application

[SWS_CM_10384] [SWS_CM_10385]
[SWS_CM_10386]

[RS_CM_200] No description [SWS_CM_11112]
[RS_E2E_08534] E2E Protocol shall provide E2E

Check status to the application
[SWS_CM_90411] [SWS_CM_90413]
[SWS_CM_90416] [SWS_CM_90417]
[SWS_CM_90418] [SWS_CM_90419]
[SWS_CM_90420] [SWS_CM_90421]
[SWS_CM_90422] [SWS_CM_90423]
[SWS_CM_90424] [SWS_CM_90431]

[RS_E2E_08540] E2E protocol shall support
protected periodic/mixed
periodic communication

[SWS_CM_90401] [SWS_CM_90402]
[SWS_CM_90403] [SWS_CM_90404]
[SWS_CM_90405] [SWS_CM_90406]
[SWS_CM_90407] [SWS_CM_90408]
[SWS_CM_90409] [SWS_CM_90410]
[SWS_CM_90411] [SWS_CM_90412]
[SWS_CM_90413] [SWS_CM_90414]
[SWS_CM_90415] [SWS_CM_90416]
[SWS_CM_90417] [SWS_CM_90430]
[SWS_CM_90433]

[RS_SEC_03002] No description [SWS_CM_90001] [SWS_CM_90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006]

[RS_SEC_03003] No description [SWS_CM_90004]
[RS_SEC_03005] No description [SWS_CM_90004]
[RS_SEC_03008] No description [SWS_CM_90001] [SWS_CM_90002]

[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006]

[RS_SEC_03010] No description [SWS_CM_90001] [SWS_CM_90002]
[SWS_CM_90003] [SWS_CM_90005]
[SWS_CM_90006]

[RS_SEC_04001] Secure communication shall be
performed through secure
channels

[SWS_CM_90101] [SWS_CM_90102]
[SWS_CM_90103] [SWS_CM_90104]
[SWS_CM_90105] [SWS_CM_90106]
[SWS_CM_90107] [SWS_CM_90108]
[SWS_CM_90109] [SWS_CM_90110]
[SWS_CM_90115] [SWS_CM_90116]
[SWS_CM_90117] [SWS_CM_90118]
[SWS_CM_90120] [SWS_CM_90121]
[SWS_CM_90201] [SWS_CM_90202]
[SWS_CM_90203] [SWS_CM_90204]
[SWS_CM_90205] [SWS_CM_90206]
[SWS_CM_90207] [SWS_CM_90209]
[SWS_CM_90210]

[RS_SEC_04003] The assignment of
communication to secure
channels shall be defined

[SWS_CM_90102] [SWS_CM_90202]

[RS_SEC_04004] Using secure channels shall be
transparent on the
communication API

[SWS_CM_90111] [SWS_CM_90112]
[SWS_CM_90113] [SWS_CM_90114]
[SWS_CM_90119]

26 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_SEC_05019] Access to Adaptive AUTOSAR

Foundation and Services
[SWS_CM_90004]

[RS_SOMEIPSD_00006] SOME/IP Service Discovery
Protocol shall define the format
of the Service Discovery
message

[SWS_CM_00202] [SWS_CM_00203]
[SWS_CM_00204] [SWS_CM_00205]
[SWS_CM_00206] [SWS_CM_00207]
[SWS_CM_00208] [SWS_CM_10377]
[SWS_CM_10378] [SWS_CM_10381]

[RS_SOMEIPSD_00015] SOME/IP Service Discovery
Protocol shall support to
subscribe to events

[SWS_CM_00206]

[RS_SOMEIPSD_00016] SOME/IP Service Discovery
Protocol shall support to deny
subscriptions

[SWS_CM_00208]

[RS_SOMEIPSD_00024] SOME/IP Service Discovery
shall support configurable
timings

[SWS_CM_00201] [SWS_CM_00209]

[RS_SOMEIP_00003] SOME/IP protocol shall provide
support of multiple versions of a
service interface

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00004] SOME/IP protocol shall support
event communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10288] [SWS_CM_10289]
[SWS_CM_10290] [SWS_CM_10291]
[SWS_CM_10292] [SWS_CM_10293]
[SWS_CM_10294] [SWS_CM_10295]
[SWS_CM_10296] [SWS_CM_10319]
[SWS_CM_10320] [SWS_CM_10321]
[SWS_CM_10322] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]
[SWS_CM_10326] [SWS_CM_10327]
[SWS_CM_10328] [SWS_CM_10379]
[SWS_CM_10380]

[RS_SOMEIP_00005] SOME/IP protocol shall support
different strategies for event
communication

[SWS_CM_10034] [SWS_CM_10287]
[SWS_CM_10319]

[RS_SOMEIP_00006] SOME/IP protocol shall support
uni-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10314]
[SWS_CM_10441]

[RS_SOMEIP_00007] SOME/IP protocol shall support
bi-directional RPC
communication

[SWS_CM_10297] [SWS_CM_10298]
[SWS_CM_10300] [SWS_CM_10301]
[SWS_CM_10302] [SWS_CM_10303]
[SWS_CM_10304] [SWS_CM_10306]
[SWS_CM_10307] [SWS_CM_10308]
[SWS_CM_10309] [SWS_CM_10310]
[SWS_CM_10311] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10316] [SWS_CM_10317]
[SWS_CM_10318] [SWS_CM_10329]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10332] [SWS_CM_10333]

27 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[SWS_CM_10334] [SWS_CM_10335]
[SWS_CM_10336] [SWS_CM_10338]
[SWS_CM_10339] [SWS_CM_10340]
[SWS_CM_10341] [SWS_CM_10342]
[SWS_CM_10343] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]
[SWS_CM_10348] [SWS_CM_10349]
[SWS_CM_10350] [SWS_CM_10441]
[SWS_CM_10442] [SWS_CM_10443]
[SWS_CM_10444]

[RS_SOMEIP_00008] SOME/IP protocol shall support
error handling of RPC
communication

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10317] [SWS_CM_10334]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10357] [SWS_CM_10358]
[SWS_CM_10429] [SWS_CM_10430]

[RS_SOMEIP_00009] SOME/IP protocol shall support
field communication

[SWS_CM_10319] [SWS_CM_10320]
[SWS_CM_10321] [SWS_CM_10322]
[SWS_CM_10323] [SWS_CM_10324]
[SWS_CM_10325] [SWS_CM_10326]
[SWS_CM_10327] [SWS_CM_10328]
[SWS_CM_10329] [SWS_CM_10330]
[SWS_CM_10331] [SWS_CM_10332]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10336]
[SWS_CM_10338] [SWS_CM_10339]
[SWS_CM_10340] [SWS_CM_10341]
[SWS_CM_10342] [SWS_CM_10343]
[SWS_CM_10344] [SWS_CM_10345]
[SWS_CM_10346] [SWS_CM_10348]
[SWS_CM_10349] [SWS_CM_10350]
[SWS_CM_10380] [SWS_CM_10443]
[SWS_CM_10444]

[RS_SOMEIP_00010] SOME/IP protocol shall support
different transport protocols
underneath

[SWS_CM_10288] [SWS_CM_10298]
[SWS_CM_10299] [SWS_CM_10309]
[SWS_CM_10310] [SWS_CM_10320]
[SWS_CM_10330] [SWS_CM_10331]
[SWS_CM_10341] [SWS_CM_10342]

[RS_SOMEIP_00012] SOME/IP protocol shall support
session handling

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00014] SOME/IP protocol shall support
handling of protocol errors on
receiver side

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]

[RS_SOMEIP_00017] SOME/IP protocol shall support
grouping events into
eventgroups

[SWS_CM_10287] [SWS_CM_10319]

[RS_SOMEIP_00018] SOME/IP protocol shall support
grouping fields in eventgroups

[SWS_CM_10319]

[RS_SOMEIP_00019] SOME/IP protocol shall identify
services using unique identifiers

[SWS_CM_10292] [SWS_CM_10302]
[SWS_CM_10313] [SWS_CM_10324]
[SWS_CM_10334] [SWS_CM_10345]

28 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Requirement Description Satisfied by
[RS_SOMEIP_00021] SOME/IP protocol shall identify

RPC methods of services using
unique identifiers

[SWS_CM_10301] [SWS_CM_10302]
[SWS_CM_10303] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10314]
[SWS_CM_10333] [SWS_CM_10334]
[SWS_CM_10335] [SWS_CM_10344]
[SWS_CM_10345] [SWS_CM_10346]

[RS_SOMEIP_00022] SOME/IP protocol shall identify
events of services using unique
identifiers

[SWS_CM_10291] [SWS_CM_10292]
[SWS_CM_10293] [SWS_CM_10323]
[SWS_CM_10324] [SWS_CM_10325]

[RS_SOMEIP_00025] SOME/IP protocol shall support
the identification of callers of an
RPC using unique identifiers

[SWS_CM_10301] [SWS_CM_10312]
[SWS_CM_10313] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00026] SOME/IP protocol shall define
the endianness of header and
payload

[SWS_CM_10013] [SWS_CM_10172]

[RS_SOMEIP_00028] SOME/IP protocol shall specify
the serialization algorithm for
data

[SWS_CM_10034] [SWS_CM_10294]
[SWS_CM_10304] [SWS_CM_10316]
[SWS_CM_10326] [SWS_CM_10336]
[SWS_CM_10348] [SWS_CM_10442]
[SWS_CM_10444]

[RS_SOMEIP_00041] SOME/IP protocol shall provide
support of multiple versions of
the protocol

[SWS_CM_10291] [SWS_CM_10301]
[SWS_CM_10312] [SWS_CM_10313]
[SWS_CM_10323] [SWS_CM_10333]
[SWS_CM_10344] [SWS_CM_10345]

[RS_SOMEIP_00042] SOME/IP protocol shall support
unicast and multicast based
event communication

[SWS_CM_10289] [SWS_CM_10290]
[SWS_CM_10321] [SWS_CM_10322]

[RS_SOMEIP_00050] SOME/IP protocol shall support
serialization of extensible data
structs

[SWS_CM_01032] [SWS_CM_01046]
[SWS_CM_01050] [SWS_CM_01051]
[SWS_CM_01052] [SWS_CM_01053]
[SWS_CM_01054] [SWS_CM_01055]
[SWS_CM_01056] [SWS_CM_01057]
[SWS_CM_01058] [SWS_CM_01059]
[SWS_CM_01060] [SWS_CM_01061]
[SWS_CM_01062] [SWS_CM_01063]
[SWS_CM_01064] [SWS_CM_01065]
[SWS_CM_01066] [SWS_CM_01067]
[SWS_CM_01068] [SWS_CM_01069]

29 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7 Functional specification

7.1 General description

The AUTOSAR Adaptive architecture organizes the software of the AUTOSAR Adap-
tive foundation as functional clusters. These clusters offer common functionality as
services to the applications. The Communication Management (CM) for AUTOSAR
Adaptive is such a functional cluster and is part of "AUTOSAR Runtime for Adaptive
Applications" - ARA. It is responsible for the construction and supervision of communi-
cation paths between applications, both local and remote.

The CM provides the infrastructure that enables communication between Adaptive
AUTOSAR Applications within one machine and with software entities on other ma-
chines, e.g. other Adaptive AUTOSAR applications or Classic AUTOSAR SWCs. All
communication paths can be established at design- , start-up- or run-time.

This specification includes the syntax of the API, the relationship of API to the model
and describes semantics, e.g. through state machines, and assumption of pre-, post-
conditions and use of APIs. The specification does not provide constraints on the SW
architecture of a platform implementation, so there is no definition of basic software
modules and no specification of implementation or internal technical architecture of
the Communication Management.

7.1.1 Architectural concepts

The Communication management of AUTOSAR Adaptive can be logically divided into
the following sub-parts:

• Language binding

• End-to-end communication protection

• Communication / Network binding

• Communication Management software

30 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Adaptive Platform Foundation

(Virtual) Machine / Hardware

Communication Management

Adaptive Application

Ethernet Driver

TCP/IP

SOME/IP

Transport

IPC

Transport

IPC

Dispatching and Discovery

ara::com API

Execution Management

API

C++ 11 Language Binding

Communication Binding

Figure 7.1: Technical Architecture of Communication Management

In the context of Communication Management, the following types of interfaces are
defined:

• Public Application Interface: Part of the Adaptive AUTOSAR API and specified in
the SWS. This is the standardized ara::com API.

• Functional Cluster Interactions: Interaction between functional clusters. Not nor-
mative, intended to make specification more readable and to support integration
of SW into demonstrator. (dotted arrow in 7.1) And also interactions between
elements within a functional cluster. Not used in specifications, so it is a non-
standardized interface. Used for communication inside Communication Manage-
ment software (grey arrow in 7.1)

Please note, that Language Binding and Communication Binding depend on a specific
configuration by the integrator, but they need to be deployed within the application
binary. This results in the fact that the serialization of the Communication Binding will
run in the execution context of the Adaptive Application.

For the design of ARA API the following constraints apply:

• Support the independence of application software components

• Use of Service-oriented communication without dependency on a specific com-
munication protocol

• Make the API as lean as possible, neither supporting very specific use cases
which could also be done on top of the API, nor supporting component model

31 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

or higher level concepts. The API is restricted to support core communication
mechanisms.

• Support for dynamic communication:

– No discovery by application middleware, the clients know the server but the
Server does not know the clients. Event subscription is the only dynamic
communication pattern in the application.

– Full service discovery in the application. No communication paths are known
at configuration time. An API for Service discovery allows the application
code to choose the service instance.

• Support both Event/Callback and Polling style usage of the API to enable classic
RTE style paradigms. To support high determinism demands in case of callback-
based / event-based interaction, there shall be the possibility to avoid uncontrolled
context switches.

• Support both synchronous callback-based communication and asynchronous
communication philosophy.

• Support of client/server communication.

• Support of sender/receiver communication with both last-is-best and queued se-
mantics. In case of queued communication, the receiver caches are configurable.

• Support of selection of trigger conditions for task activation.

• Extensions for security.

• Extensions for Quality Of Service QoS.

• Scalability for real-time systems.

• Support of built-in end-to-end communication protection, where a use-case-
specific behavior can be done on top of ARA API.

7.1.2 Design decisions

The design of the ARA API covers the following principles:

• It uses the Proxy/Skeleton pattern:

– The (service) proxy is the representative of the possibly remote (i.e. other
process, other core, other node) service. It is an instance of a C++ class
local to the application/client, which uses the service.

– The (service) skeleton is the connection of the user provided service imple-
mentation to the middleware transport infrastructure. Service implementa-
tion class is derived from the (service) skeleton.

32 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

– Beside proxies/skeletons, there might exist a so-called "Runtime" (singleton)
class to provide some essentials to manage proxies and skeletons. But
this is communication management software implementation specific and
therefore not specified in this document, but may be specified in a future
version.

Regarding proxy/skeleton design pattern in general and its role in middleware
implementations, see [9, 10].

• It supports callback mechanisms on data reception.

• The API has zero-copy capabilities including the possibility for memory manage-
ment in the middleware.

• It supports filtering of received data.

• It is aligned with the AUTOSAR service model (services, instances, events, meth-
ods, ...) to allow the generation of proxies and skeletons out of this model.

• Full discovery and service instance selection support on API level.

• Client/Server Communication uses concepts introduced by C++11 language, e.g.
std::future, std::promise, to fully support method calls between different contexts.

• Abstract from SOME/IP specific behavior, but support SOME/IP service mecha-
nisms, as methods, events and fields.

• Support/implement the standard end-to-end protection protocols, as specified in
[7] and [4].

• Support Event and Polling style usage of the API equally to enable classic RT
style paradigms.

• Fully exploit C++11/14 features in API design to provide usability and comfort for
the application developer.

See ARAComAPI explanatory [1] for more details and explanations on the ARA API
design.

7.1.3 Communication paradigms

Service-Oriented Communication (SoC) as a part of Service-Oriented Architecture
(SOA) [11] is the main communication pattern for Adaptive AUTOSAR Applications.
It allows establishing communication paths both at run-time, so it can be used to build
up dynamic communication with unknown number of participants. Figure 7.2 shows
the basic operation principle of Service-Oriented Communication.

33 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Service
Registry

Application 1
Service provider

offer

call

Service
Registry

Application 2
Service requester

find

Figure 7.2: Service-Oriented Communication

Service Discovery decides whether external and internal service-oriented communi-
cation is established. The discovery strategy shall allow either returning a specific
service instance or all available instances providing the requested service at the time
of the request, no matter if they are available locally or remote. The Communication
Management software should provide an optimized implementation for both the Ser-
vice discovery and the communication connection, depending on the location where
the service provider resides. More about Service Discovery can be found in SOME/IP
Service Discovery Protocol Specification [12].

The service class is the central element of the Service-Oriented Communication pat-
tern applied in Adaptive AUTOSAR. It represents the service by collecting the methods
and events which are provided or requested by the applications implementing the con-
crete service functionality.

7.2 End-to-end communication protection for Events

This section specifies the integration of E2E protection in ara::com for processing
periodic events, that are polled by the Subscriber. Note that there are limitations in
the released E2E functionality, the limitations are documented in chapter 4.1.

[SWS_CM_90402]{DRAFT} d An e2e-protected event shall have its options config-
ured in End2EndEventProtectionProps and E2EProfileConfiguration. c
(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90433]{DRAFT} d The E2E functions mentioned in this section -
E2EProtect and E2ECheck - shall comply with the E2E protection protocol as spec-
ified in [7] and [4]. c(RS_CM_00222, RS_E2E_08540, RS_CM_00223)

34 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7.2.1 Publisher

[SWS_CM_90401]{DRAFT} d For e2e-protected events, E2E protection shall be per-
formed within the context of Send, by means of Send invoking E2EProtect. c(
RS_CM_00222, RS_E2E_08540)

Figure 7.3 shows an overview of the interaction of components involved during the E2E
protection.

Figure 7.3: E2E Publisher

35 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90430]{DRAFT} d For e2e-protected events, Send shall serialize the sam-
ple according to the agreed serialization protocol, resulting in serialized Sample.
c(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90403]{DRAFT} d For e2e-protected events, Send shall determine
dataID, based on Service ID, Instance ID and Event ID of this Event in-
stance. c(RS_CM_00222, RS_CM_00200, RS_E2E_08540)

[SWS_CM_90404]{DRAFT} d For e2e-protected events, Send shall provide
the serializedSample to E2EProtect, where serializedSample is made
of (1) the header that is part of e2e protection and (2) the serialized
data (see [PRS_SOMEIP_00940] and [PRS_SOMEIP_00941]) c(RS_CM_00222,
RS_E2E_08540)

[SWS_CM_90405]{DRAFT} d For e2e-protected events, after the e2e protection is
done, Send shall add the non-e2e-protected header (if any) and trigger the transmis-
sion. c(RS_CM_00222, RS_E2E_08540)

7.2.2 Subscriber - GetNewSamples

[SWS_CM_90406]{DRAFT} d For e2e-protected events, E2ECheck [4] shall be per-
formed within the context of GetNewSamples. c(RS_CM_00222, RS_E2E_08540)

Figure 7.4 shows an overview of the interaction of components involved during the E2E
check.

36 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Subscriber application ara::com Transmission

There are possibly several

new messages. Update()

processes all of them in a

sequence.

The core E2E logic. DataID

is determined at latest

during the instantiation of

the proxy.

alt new serializedSamples from Transmission

[at least one serializedSample - perform for each serializedSample]

[no new serializedSamples]

If no new

serializedSamples, then

execute Check() so that E2E

knows that no data has

been received

(lost/delayed).

Each sample is now

accompanied by

ProfileCheckResult

attribute.

The entire communication

state ("can the samples be

consumed or not") is

available with the new

getter function GetResult().

Deserialize(&serializedSample): sample

Access data, e.g. samples[idx].speed, samples[idx].GetProfileCheckStatus()

Store Result as proxy.Result

GetResult(): Result

Check(dataID, null_ptr): Result

E2Echeck(dataID, &serializedSample): Result

GetMessage(): serializedSamples

ProcessE2EProtectedHeader(&serializedSample)

Add sample+ProfileCheckStatus to the cache(cache policy, cache size,

filter)

Store Result as proxy.Result

Store Result.ProfileCheckStatus in sample

f(SamplePtr(sample) with

ProfileCheckStatus)

GetNewSamples(F&& f, size_t maxNumberOfSamples): ara::core::

Result<size_t>

ProcessNonProtectedHeader(&serializedSample)

Figure 7.4: E2E Subscriber

37 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90407]{DRAFT} d For e2e-protected events, GetNewSamples shall first
get the collection of all SerializedSamples that have not been fetched in the last
triggering of this GetNewSamples function. c(RS_CM_00222, RS_E2E_08540)

7.2.2.1 Case 1 - there are one or more serialized samples

For e2e-protected events, in case one or more SerializedSamples are received,
then for each SerializedSample, the following steps are to be done:

[SWS_CM_90408]{DRAFT} d For the given e2e-protected SerializedSample,
GetNewSamples shall process the non-e2e protected header (if any) of the serial-
izedSample. c(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90409]{DRAFT} d GetNewSamples shall determine the DataID based
on Service ID, Service Instance ID, Event ID of this Event instance. c
(RS_CM_00222, RS_CM_00200, RS_E2E_08540)

[SWS_CM_90410]{DRAFT} d For the given e2e-protected SerializedSample,
GetNewSamples shall invoke the E2ECheck, providing to it dataID and serialized-
Sample. c(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90411]{DRAFT} d In return, for the given e2e-protected Serialized-
Sample, E2ECheck shall provide Result containing SMState and ProfileCheck-
Status. c(RS_CM_00222, RS_E2E_08540, RS_E2E_08534)

[SWS_CM_90412]{DRAFT} d For the given e2e-protected SerializedSample,
GetNewSamples shall deserialize it, resulting with deserialized sample. c
(RS_CM_00222, RS_E2E_08540)

[SWS_CM_90413]{DRAFT} d For the given e2e-protected SerializedSample,
GetNewSamples shall store the pair sample and ProfileCheckStatus in the ap-
plication cache and it shall update/overwrite event.SMState with Result.SMState.
c(RS_CM_00222, RS_E2E_08540, RS_E2E_08534)

7.2.2.2 Case 2 - there are no serialized samples

In case no e2e-protected SerializedSamples are received, the steps are simpler
and E2E works as a timeout detection.

[SWS_CM_90414]{DRAFT} d In case no e2e-protected SerializedSamples are
received, GetNewSamples shall determine the DataID based on Service ID,
Service Instance ID, Event ID of this Event instance. c(RS_CM_00222,
RS_CM_00200, RS_E2E_08540)

[SWS_CM_90415]{DRAFT} d In case no e2e-protected SerializedSamples are
received, GetNewSamples shall invoke the E2ECheck, providing to it dataID and
null sample. c(RS_E2E_08540)

38 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90416]{DRAFT} d In case no e2e-protected SerializedSamples are
received, in return, E2ECheck shall provide Result containing SMState and Pro-
fileCheckStatus. c(RS_CM_00222, RS_E2E_08540, RS_E2E_08534)

[SWS_CM_90417]{DRAFT} d In case no e2e-protected SerializedSamples
are received, GetNewSamples shall update/overwrite event.SMState with Re-
sult.SMState.

c(RS_CM_00222, RS_E2E_08540, RS_E2E_08534)

7.2.3 Subscriber - Callback f

[SWS_CM_90418]{DRAFT} d The user provided Callable f, which has been
passed to call of GetNewSamples shall get a smart pointer to pairs made of (sample
and ProfileCheckStatus), where f is called for each sample determined/provided
in the most recent invocation of GetNewSamples. c(RS_CM_00222, RS_E2E_08534)

7.2.4 Subscriber - Access to E2E information

[SWS_CM_90419]{DRAFT} d Each sample shall have a getter function GetPro-
fileCheckStatus allowing to access ProfileCheckStatus of each Sample. c
(RS_CM_00222, RS_CM_00225, RS_E2E_08534)

[SWS_CM_90431]{DRAFT} d Each Event shall have a getter function GetSMState
allowing to access SMState that was determined by the last run of E2ECheck function
invoked during the last GetNewSamples of the Event (see [SWS_CM_00701]). c
(RS_CM_00222, RS_CM_00225, RS_E2E_08534)

7.3 End-to-end communication protection for Methods

This section is a placeholder for the specification of the E2E protection in ara::com
for methods.

7.4 Network binding

The following chapters describe the requirements according to specific network proto-
col bindings.

Since the selection of a particular network protocol binding is an integrator driven de-
ployment decision, any change in the selection of a particular network protocol binding
or changes in the various attributes and parameters of a particular network protocol
binding shall be possible without requiring a re-compilation of the involved adaptive

39 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

applications. The required changes to the involved adaptive application shall be limited
to a re-linking (either static or dynamic) of the involved adaptive application.

[SWS_CM_10384]{DRAFT} Change of Service Interface Deployment d A change
of the service interface deployment shall be possible without re-compiling the involved
adaptive applications. – This means that the following changes in the service interface
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

• changes to the concrete type of ServiceInterfaceDeployment and the com-
posed ServiceMethodDeployment, ServiceFieldDeployment, and Ser-
viceEventDeployment (e.g., changing a SomeipServiceInterfaceDe-
ployment to a UserDefinedServiceInterfaceDeployment)

• changes to one or more attributes of meta classes derived from Servi-
ceInterfaceDeployment, ServiceMethodDeployment, ServiceField-
Deployment, and ServiceEventDeployment (e.g., changing the value of
SomeipEventDeployment.separationTime)

Note that changes to SomeipServiceInterfaceVersion.majorVersion are an
exception here, since any change to SomeipServiceInterfaceVersion.ma-
jorVersion indicates an incompatible change of the ServiceInterface and thus
affects the involved adaptive applications mandating a re-compilation of the involved
adaptive applications. c(RS_CM_00315)

[SWS_CM_10385]{DRAFT} Change of Service Instance Deployment d A change
of the service instance deployment shall be possible without re-compiling the involved
adaptive applications. – This means that the following changes in the service instance
deployment shall be possible without the need for a re-compilation of the adaptive
applications:

• changes to the concrete type of ProvidedApServiceInstance and/or Re-
quiredApServiceInstance (e.g., changing a ProvidedSomeipService-
Instance to a ProvidedUserDefinedServiceInstance and a Required-
SomeipServiceInstance to a RequiredUserDefinedServiceInstance)

• changes to one or more attributes of meta class derived from ProvidedApSer-
viceInstance and/or RequiredApServiceInstance (e.g., changing the
value of the SomeipProvidedEventGroup.multicastThreshold or the
SomeipSdServerServiceInstanceConfig.serviceOfferTimeToLive).

Note that changes to SomeipServiceInterfaceVersion.majorVersion are an
exception here, since any change to SomeipServiceInterfaceVersion.ma-
jorVersion indicates an incompatible change of the ServiceInterface and thus
affects the involved adaptive applications mandating a re-compilation of the involved
adaptive applications. c(RS_CM_00315)

[SWS_CM_10386]{DRAFT} Change of Network Configuration d A change of the
network configuration shall be possible without re-compiling the involved adaptive ap-

40 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

plications. – This means that the following changes in the network configuration shall
be possible without the need for a re-compilation of the adaptive applications:

• changes to one or more attributes of a concrete ServiceInstance-
ToMachineMapping (e.g., changing the value of the SomeipService-
InstanceToMachineMapping.udpPort or the SomeipServiceInstance-
ToMachineMapping.tcpPort.

c(RS_CM_00315)

Abstract network protocol bindings for service ports shall be specified inside the service
instance manifest to deploy network bindings of service instances.

[SWS_CM_10590]{DRAFT} Abstract Network Protocol Binding d The usage of
abstract network protocol binding for ProvidedApServiceInstance and Re-
quiredApServiceInstance shall be supported to deploy network bindings of Ser-
viceInterfaces. An abstract network protocol binding shall cover SOME/IP, DDS
and UserDefined protocols and is specified inside the service instance manifest. It
is used with an InstanceSpecifier and shall be specified as followed:
<port context>::<port name>, where:

• <port context> specifies the instantiation context of the port which might be
an instantiation path or any other unique identifiable information.

• <port name> specifies the port name.

Note: it is possible to specify multiple technology bindings for a port (Multi-Binding). c
(RS_CM_00207)

7.4.1 SOME/IP Network binding

[SWS_CM_10000]{DRAFT} d The SOME/IP network binding shall implement the
SOME/IP Protocol and the SOME/IP Service Discovery Protocol defined in [5] and
[12]. c(RS_CM_00204, RS_CM_00205)

[SWS_CM_10013]{DRAFT} d All headers shall be encoded in network byte order Big
Endian (MostSignificantByteFirst) [RFC 791]. c(RS_CM_00204, RS_SOMEIP_00026)

This means that Length and Type fields shall be always in network byte order.

[SWS_CM_10172]{DRAFT} d The byte order of the parameters inside the pay-
load shall be defined by byteOrder of ApSomeipTransformationProps. c
(RS_CM_00204, RS_SOMEIP_00026)

7.4.1.1 Service Discovery

[SWS_CM_00201]{DRAFT} Start of service discovery protocol on Server side
d The registration of a new offered service which is bound to SOME/IP shall trig-

41 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

ger the start of the initial wait phase of the SOME/IP service discovery protocol. c
(RS_CM_00204, RS_CM_00101, RS_SOMEIPSD_00024)

The different phases of SOME/IP Service Discovery on the Server side are configured
in the Manifest in the ProvidedSomeipServiceInstance element. The configura-
tion is described in more detail in TPS_ManifestSpecification by

• [TPS_MANI_03012] (Initial Wait Phase),

• [TPS_MANI_03013] (Repetition Wait Phase),

• [TPS_MANI_03014] (Main Phase).

[SWS_CM_00209]{DRAFT} Start of service discovery protocol on Client side d
The search for a new service which is bound to SOME/IP shall trigger the start of
the initial wait phase of the SOME/IP service discovery protocol. c(RS_CM_00204,
RS_CM_00102, RS_SOMEIPSD_00024)

The different phases of SOME/IP Service Discovery on the Client side are configured in
the Manifest in the RequiredSomeipServiceInstance element. The configuration
is described in more detail in TPS_ManifestSpecification by

• [TPS_MANI_03026] (Initial Wait Phase),

• [TPS_MANI_03027] (Repetition Wait Phase).

[SWS_CM_00202]{DRAFT} SOME/IP FindService message d The entries in the
SOME/IP FindService message shall be as follows:

• The entry type shall be set to FindService (0x00).

• The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfaceId.

• The Instance ID shall be derived from the Manifest where the Required-
SomeipServiceInstance element defines the requiredServiceInstan-
ceId for the SomeipServiceInterfaceDeployment that is referenced by
the RequiredSomeipServiceInstance in the role serviceInterface. If
the requiredServiceInstanceId is set to "ANY" then 0xFFFF shall be used.

• Major Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest where the SomeipServiceInterfaceVer-
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the majorVersion.

• Minor Version of the RequiredSomeipServiceInstance that is searched
shall be derived from the Manifest from the requiredMinorVersion attribute
in the RequiredSomeipServiceInstance. If the minorVersion is set to
"ANY" then 0xFFFF FFFF shall be used.

• TTL shall be derived from the Manifest where the SomeipSdClientService-
InstanceConfig element that is referenced by the RequiredSomeipServi-

42 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

ceInstance in the role sdClientConfig defines the serviceFindTimeTo-
Live.

• Configuration Option shall be used in the find message if at least one capa-
bilityRecord is defined in the SomeipSdClientServiceInstanceConfig
element that is referenced by the RequiredSomeipServiceInstance in the
role sdClientConfig. The content of the Configuration Option shall be derived
from the key/value pairs defined in each capabilityRecord.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102, RS_SOMEIPSD_00006)

[SWS_CM_00203]{DRAFT} SOME/IP OfferService message d The entries in the
SOME/IP OfferService message shall be as follows:

• The entry type shall be set to OfferService (0x01).

• The Service ID shall be derived from the Manifest where the SomeipServi-
ceInterfaceDeployment element defines the serviceInterfaceId.

• The Instance ID shall be derived from the Manifest where the Provided-
SomeipServiceInstance element defines the serviceInstanceId for the
SomeipServiceInterfaceDeployment that is referenced by the Provid-
edSomeipServiceInstance in the role serviceInterface.

• Major Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceInterfaceVer-
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the majorVersion.

• Minor Version of the SomeipServiceInterfaceDeployment that is offered
shall be derived from the Manifest where the SomeipServiceInterfaceVer-
sion element that is aggregated by the SomeipServiceInterfaceDeploy-
ment in the role serviceInterfaceVersion defines the minorVersion .

• TTL shall be derived from the Manifest where the SomeipSdServerService-
InstanceConfig element that is referenced by the ProvidedSomeipServi-
ceInstance in the role sdServerConfig defines the serviceOfferTime-
ToLive.

• IPv4 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa-
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint in the role unicastNetworkEndpoint where an IPv4
Address is configured in theIpv4Configuration element.

• IPv6 Endpoint Option shall be used if the Machine to which the Provid-
edSomeipServiceInstance is mapped with the ServiceInstanceToMa-
chineMapping provides an EthernetCommunicationConnector that refers
to a NetworkEndpoint in the role unicastNetworkEndpoint where an IPv6
Address is configured in theIpv6Configuration element.

43 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipServiceIn-
stanceToMachineMapping element that maps the ProvidedSomeipServi-
ceInstance to an EthernetCommunicationConnector of a Machine de-
fines the TP and PortNumber.

– UDP shall be used if SomeipServiceInstanceToMachineMap-
ping.udpPort is configured.

– TCP shall be used if SomeipServiceInstanceToMachineMap-
ping.tcpPort is configured.

• Configuration Option shall be used in the offer message if at least one capa-
bilityRecord is defined for the ProvidedSomeipServiceInstance in the
referenced SomeipSdServerServiceInstanceConfig. The content of the
Configuration Option shall be derived from the key/value pairs defined in each
capabilityRecord.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101, RS_SOMEIPSD_00006)

[SWS_CM_00204]{DRAFT} SOME/IP StopOffer message d The entries in the
SOME/IP StopOffer message shall be as follows:

• The entry type shall be set to StopOfferService (0x01).

• ServiceId shall be set to the same value as in the OfferService message.

• InstanceId shall be set to the same value as in the OfferService message.

• Major Version shall be set to the same value as in the OfferService message.

• Minor Version shall be set to the same value as in the OfferService message.

• TTL shall be set to 0x000000 value.

• IPv4 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

• IPv6 Endpoint Option shall be set to the same value as in the OfferService mes-
sage.

• Configuration Option shall be set to the same value as in the OfferService mes-
sage.

c(RS_CM_00204, RS_CM_00105, RS_SOMEIPSD_00006)

[SWS_CM_10377]{DRAFT} Sending SOME/IP SubscribeEventgroup messages
- initial d The subscription to at least one Event (ServiceInterface.event) of
an Eventgroup (SomeipEventGroup) by invoking the Subscribe method (see
[SWS_CM_00141]) of the specific Event class of the ServiceProxy class shall
cause the sending of a SOME/IP SubscribeEventgroup messages in case there is
no active subscription for the particular Eventgroup (either because there was no
previous subscription to this particular Eventgroup or the TTL of every received Sub-

44 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

scribeGroupAck message (see [SWS_CM_00206]) for the particular Eventgroup has
already expired).

The subscription to at least one Event of an Eventgroup by invoking the Subscribe
method (see [SWS_CM_00141]) of the specific Event class of the ServiceProxy
class shall not cause the sending of a SOME/IP SubscribeEventgroup messages in
case there is an active subscription for the particular Eventgroup (because there
was some previous subscription to this particular Eventgroup and the TTL of at least
one received SubscribeGroupAck message (see [SWS_CM_00206]) for the particular
Eventgroup has not yet expired). c(RS_CM_00204, RS_CM_00200, RS_CM_00103,
RS_SOMEIPSD_00006)

[SWS_CM_10381]{DRAFT} Sending SOME/IP SubscribeEventgroup messages -
renewal d If the TTL of an active subscription for a particular Eventgroup is about to
expire and there is at least one active subscription for an Event of this Eventgroup,
a SubscribeEventgroup message shall be sent to refresh the active subscription
to the particular Eventgroup. c(RS_CM_00204, RS_CM_00200, RS_CM_00103,
RS_SOMEIPSD_00006)

[SWS_CM_00205]{DRAFT} Content of SOME/IP SubscribeEventgroup message
d The entries in the SOME/IP SubscribeEventgroup message shall be as follows:

• The entry type shall be set to SubscribeEventgroup (0x06).

• The Service ID shall be taken from the offer message.

• The Instance ID shall be taken from the offer message.

• Major Version shall be derived from the offer message.

• Eventgroup ID shall be derived from Manifest where the RequiredSomeipSer-
viceInstance element aggregates the SomeipRequiredEventGroup in the
role requiredEventGroup. The SomeipRequiredEventGroup contains the
eventGroup reference to the SomeipEventGroup where the eventGroupId
is defined.

• TTL shall be derived from Manifest where the RequiredSomeipServiceIn-
stance element aggregates the SomeipRequiredEventGroup in the role re-
quiredEventGroup. The SomeipRequiredEventGroup aggregates the sd-
ClientEventTimingConfig where the timeToLive is defined.

• IPv4 Endpoint Option shall be sent if the offer message contains an IPv4 End-
point Option. In this case the IPv4 Address sent in the IPv4 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping to an EthernetCommunicationConnector of
a Machine. The EthernetCommunicationConnector refers to a Network-
Endpoint in the role unicastNetworkEndpoint where an IPv4 Address is
configured in theIpv4Configuration element.

45 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• IPv6 Endpoint Option shall be sent if the offer message contains an IPv6 End-
point Option. In this case the IPv6 Address sent in the IPv6 Endpoint Option of
the SubscribeEventgroup message is configured in the Manifest where the Re-
quiredSomeipServiceInstance element is mapped with the ServiceIn-
stanceToMachineMapping to an EthernetCommunicationConnector of
a Machine. The EthernetCommunicationConnector refers to a Network-
Endpoint in the role unicastNetworkEndpoint where an IPv6 Address is
configured in theIpv6Configuration element.

• The Transport Layer Protocol used in the IPv4 Endpoint option and/or IPv6 End-
point option shall be derived from the Manifest where the SomeipEventGroup
points either to SomeipEventDeployments where the transportProtocol
is set to udp or to tcp. The SomeipServiceInstanceToMachineMapping
element that maps the RequiredSomeipServiceInstance to an Ethernet-
CommunicationConnector of a Machine defines the TP and PortNumber.

– UDP shall be used if SomeipServiceInstanceToMachineMap-
ping.udpPort is configured and the SomeipEventGroup contains
SomeipEventDeployments where the transportProtocol is set to
udp. The UDP Port shall be derived from SomeipServiceInstance-
ToMachineMapping.udpPort.

– TCP shall be used if SomeipServiceInstanceToMachineMap-
ping.tcpPort is configured and the SomeipEventGroup contains
SomeipEventDeployments where the transportProtocol is set to
tcp. The TCP Port shall be derived from SomeipServiceInstance-
ToMachineMapping.tcpPort.

c(RS_CM_00204, RS_CM_00200, RS_CM_00103, RS_SOMEIPSD_00006)

[SWS_CM_00206]{DRAFT} SOME/IP SubscribeEventgroupAck message d The
entries in the SOME/IP SubscribeEventgroupAck message shall be as follows:

• The entry type shall be set to SubscribeEventgroupAck (0x07).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupAck message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupAck message.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupAck message.

• TTL shall be set to the same value as in the SubscribeEventgroup message that
is answered by this SubscribeEventgroupAck message.

• IPv4 Multicast Option shall be derived from the Manifest if a multicastThresh-
old with a value greater 0 is defined for the SomeipProvidedEventGroup and

46 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

a ipv4MulticastIpAddress is defined in the SomeipServiceInstance-
ToMachineMapping that maps the ProvidedSomeipServiceInstance that
aggregates the SomeipProvidedEventGroup to an EthernetCommunica-
tionConnector of a Machine.

• IPv6 Multicast Option shall be derived from the Manifest if a multicastThresh-
old with a value greater 0 is defined for the SomeipProvidedEventGroup and
a ipv6MulticastIpAddress is defined in the SomeipServiceInstance-
ToMachineMapping that maps the ProvidedSomeipServiceInstance that
aggregates the SomeipProvidedEventGroup to an EthernetCommunica-
tionConnector of a Machine.

• The Transport Layer Protocol shall be set to UDP. Only UDP is supported as
transport layer protocol in the IPv4 Multicast Option and/or IPv6 Multicast Option.

• The UDP Port shall be derived from the the Manifest where the Provid-
edSomeipServiceInstance that aggregates the SomeipProvidedEvent-
Group is mapped with the SomeipServiceInstanceToMachineMapping to
an EthernetCommunicationConnector of a Machine. The SomeipServi-
ceInstanceToMachineMapping defines the eventMulticastUdpPort.

c(RS_CM_00204, RS_SOMEIPSD_00015, RS_SOMEIPSD_00006)

[SWS_CM_00208]{DRAFT} SOME/IP SubscribeEventgroupNack message d The
entries in the SOME/IP SubscribeEventgroupNack message shall be as follows:

• The entry type shall be set to SubscribeEventgroupNack (0x07).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message
that is answered by this SubscribeEventgroupNack message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage that is answered by this SubscribeEventgroupNack message.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message that is answered by this SubscribeEventgroupNack message.

• TTL shall be set to the 0x000000 value.

c(RS_CM_00204, RS_SOMEIPSD_00016, RS_SOMEIPSD_00006)

[SWS_CM_10378]{DRAFT} Sending SOME/IP StopSubscribeEventgroup mes-
sages d Stopping the subscription of an Event (ServiceInterface.event) of
an Eventgroup (SomeipEventGroup) by invoking the Unsubscribe method (see
[SWS_CM_00151]) of the specific Event class of the ServiceProxy class shall not
cause the sending of a SOME/IP StopSubscribeEventgroup message if there are still
active subscriptions for other Events of the same Eventgroup.

47 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Stopping the subscription of the last Event of an Eventgroup by invoking the Un-
subscribe method (see [SWS_CM_00151]) of the specific Event class of the Ser-
viceProxy class shall cause the sending of a SOME/IP StopSubscribeEventgroup
message. c(RS_CM_00204, RS_CM_00104, RS_SOMEIPSD_00006)

[SWS_CM_00207]{DRAFT} Content of SOME/IP StopSubscribeEventgroup mes-
sage d The entries in the SOME/IP StopSubscribeEventgroup message shall be as
follows:

• The entry type shall be set to StopSubscribeEventgroup (0x06).

• ServiceId shall be set to the same value as in the SubscribeEventgroup message.

• InstanceId shall be set to the same value as in the SubscribeEventgroup mes-
sage.

• Major Version shall be set to the same value as in the SubscribeEventgroup mes-
sage.

• Eventgroup ID shall be set to the same value as in the SubscribeEventgroup
message.

• TTL shall be set to the 0x000000 value.

• IPv4 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

• IPv6 Endpoint Option shall be set to the same value as in the SubscribeEvent-
group message.

c(RS_CM_00204, RS_CM_00104, RS_SOMEIPSD_00006)

7.4.1.2 Accumulation of SOME/IP messages

[SWS_CM_10387]{DRAFT} Data accumulation for UDP data transmission d To
allow for the transmission of multiple SOME/IP event, method request and method
response messages within a single UDP datagram, data accumulation for UDP data
transmission shall be supported. c(RS_CM_00204)

[SWS_CM_10388]{DRAFT} Enabling of data accumulation for UDP data trans-
mission d Data accumulation for UDP data transmission over the udpPort and
unicastNetworkEndpoint defined on the EthernetCommunicationConnector
that is referenced by a SomeipServiceInstanceToMachineMapping shall be en-
abled if the attribute SomeipServiceInstanceToMachineMapping.udpCollec-
tionBufferSizeThreshold is set to a value. In this case all event and method
messages that are configured for data accumulation shall be aggregated in a buffer un-
til a transmission trigger (see [SWS_CM_10389] and [SWS_CM_10390]) arrives and
the data transmission starts. c(RS_CM_00204)

48 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10389]{DRAFT} Configuration of a data accumulation on a Provid-
edServiceInstance for transmission over UDP d For a ProvidedServiceIn-
stance all method responses and events for which the udpCollectionTrigger
is set to never shall be aggregated in a buffer until a trigger arrives that starts the data
transmission.

The following trigger options shall be supported:

• a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is set to always.

• the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

• the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

• adding the method response or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

c(RS_CM_00204)

[SWS_CM_10390]{DRAFT} Configuration of a data accumulation on a Re-
quiredSomeipServiceInstance for transmission over UDP d For a Required-
SomeipServiceInstance all method requests for which the udpCollection-
Trigger is set to never shall be aggregated in a buffer until a trigger arrives that
starts the data transmission.

The following trigger options shall be supported:

• a SOME/IP message needs to be transmitted for which the udpCollection-
Trigger is set to always.

• the udpCollectionBufferTimeout is reached for one of the SOME/IP mes-
sage already aggregated in the buffer.

• the buffer size defined by the attribute udpCollectionBufferSizeThresh-
old is reached.

• adding the method request or event to the buffer would lead to a message
larger than the maximum possible size (e.g. MTU size). In this case the actual
buffer shall be triggered before handling the new event or method response.

c(RS_CM_00204)

In the following sections the term "sending of a SOME/IP message shall be requested"
will be used to describe that fact that the sending of the message is requested but
may be deferred due to data accumulation for UDP data transmission according to
[SWS_CM_10388], [SWS_CM_10389], and [SWS_CM_10390].

49 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7.4.1.3 Execution context of message reception actions

In the following sections the term "upon reception" will be used to describe that fact that
certain actions (e.g, the deserialization of the payload according to [SWS_CM_10294])
will be performed at a point in time between the actual reception of a message and
the call of the corresponding API (e.g., the GetNewSamples (see [SWS_CM_00701])
method of the respective Event class). This specification deliberately does not explic-
itly state whether these actions will be performed in the context of message reception,
in the context of the API call, or in a completely seperate execution context to leave
room for potential optimizations of a concrete ara::com implementation.

The only restriction imposed here refers to the execution context of the EventRe-
ceiveHandler (see [SWS_CM_00309]). – Executing the EventReceiveHandler
in the context of the GetNewSamples (see [SWS_CM_00701]) method is not allowed,
since according to [SWS_CM_00181] the EventReceiveHandlershall use the Get-
NewSamples method to access the retrieved event data.

7.4.1.4 Handling Events

[SWS_CM_10287]{DRAFT} Conditions for sending of a SOME/IP event message
d The sending of a SOME/IP event message shall be requested by invoking the Send
method of the respective Event class (see [SWS_CM_00162] and [SWS_CM_90437])
if there is at least one active subscriber and the offer of the service containing the
event has not been stopped (either because the TTL contained in the SOME/IP Of-
ferService message (see [SWS_CM_00203]) has expired or because the StopOf-
ferService method (see [SWS_CM_00111]) of the ServiceSkeleton class has
been called). An active subscriber is an adaptive application that has invoked the
Subscribe method of the respective Event class (see [SWS_CM_00141]) and
has not canceled the subscription by invoking the Unsubscribe method of the re-
spective Event class (see [SWS_CM_00151]) and where the subscription has not
yet expired since the TTL contained in the SOME/IP SubscribeEventgroup mes-
sage (see [SWS_CM_00205]) has been exceeded. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_00017)

[SWS_CM_10288]{DRAFT} Transport protocol for sending of a SOME/IP event
message d The SOME/IP event message shall be transmitted using UDP if the thresh-
old defined by the multicastThreshold attribute of the SomeipProvidedEvent-
Group that is aggregated by the ProvidedSomeipServiceInstance in the role
eventGroup in the Manifest has been reached (see [PRS_SOMEIPSD_00134]). The
SOME/IP event message shall be transmitted using the transport protocol defined by
the attribute SomeipServiceInterfaceDeployment.eventDeployment.trans-
portProtocol in the Manifest if this threshold has not been reached (see
[PRS_SOMEIPSD_00802]). c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00010)

50 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10289]{DRAFT} Source of a SOME/IP event message d The SOME/IP
event message shall use the unicast IP address and port taken from the IPv4/v6
Endpoint Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP OfferService mes-
sage ([SWS_CM_00203]) as source address and source port for the transmission. c
(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00042)

[SWS_CM_10290]{DRAFT} Destination of a SOME/IP event message d The
SOME/IP event message shall use the multicast IP address and the port taken
from the IPv4/v6 Multicast Option (see [PRS_SOMEIPSD_00322]) of the SOME/IP
SubscribeEventgroupAck message (see [SWS_CM_00206]) as destination address
and destination port for the transmission if the threshold defined by the mul-
ticastThreshold attribute of the SomeipProvidedEventGroup that is aggre-
gated by the ProvidedSomeipServiceInstance in the role eventGroup in
the Manifest has been reached (see [PRS_SOMEIPSD_00134]). The SOME/IP
event message shall use the unicast IP address and the port taken from the
IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP Sub-
scribeEventgroup message ([SWS_CM_00205]) as destination address and des-
tination port for the transmission if this threshold has not been reached (see
[PRS_SOMEIPSD_00134]). In case multiple Endpoint Options have been contained in
the SOME/IP SubscribeEventgroup message, the one matching the selected transport
protocol (see [SWS_CM_10289]) shall be used. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00042)

[SWS_CM_10291]{DRAFT} Content of the SOME/IP event message d The entries
in the SOME/IP event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
eventDeployment.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling the Session ID (see [PRS_SOMEIP_00703])
is unused for event messages and thus shall be set to 0x000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]). In case of active Session
Handling the Session ID is used for event messages and thus shall be incre-
mented (with proper wrap around) upon every transmission of an event message
(see [PRS_SOMEIP_00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521],
and [PRS_SOMEIP_00925]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

51 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00040]) is unused for event messages
and thus (according to [PRS_SOMEIP_00040]) shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Variable-
DataPrototype composed by the ServiceInterface in role event) accord-
ing to the SOME/IP serialization rules.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041,
RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004) The serializa-
tion rules are explained in section 7.4.1.7.

[SWS_CM_10292]{DRAFT} Checks for a received SOME/IP event message d
Upon reception of a SOME/IP event message the following checks shall be conducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to NOTIFI-
CATION (0x02) to determine that the received SOME/IP message is actually a
SOME/IP event messages.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Event ID (see [PRS_SOMEIP_00040]) matches the eventId at-
tribute of one of the SomeipEventDeployments of the SomeipServiceIn-
terfaceDeployment.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) is set to 0x0000.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP event message
shall be discarded and and the incident shall be logged (if logging is en-
abled for the ara::com implementation). c(RS_CM_00204, RS_CM_00200,
RS_CM_00201, RS_SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003,
RS_SOMEIP_00004, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10293]{DRAFT} Identifying the right event d Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the

52 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

SomeipServiceInterfaceDeployment element as well as the Event ID (see
[PRS_SOMEIP_00040]) and the eventId attribute of the SomeipEventDeploy-
ments of the SomeipServiceInterfaceDeployment, the right event shall be
identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00022)

[SWS_CM_10379]{DRAFT} Silently discarding SOME/IP event messages for un-
subscribed events d If the event identified according to [SWS_CM_10293] does not
have an active subscription because the Subscribe method (see [SWS_CM_00141])
of the specific Event class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Event class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10294], [SWS_CM_10295],
and [SWS_CM_10296] shall not be performed). c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004)

[SWS_CM_10296]{DRAFT} Invoke receive handler d In case a receive handler
was registered using the SetReceiveHandler method (see [SWS_CM_00181]) of
the respective Event class for the event determined according to [SWS_CM_10293]
this registered receive handler shall be invoked. c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004)

[SWS_CM_10294]{DRAFT} Deserializing the payload d Based on the event deter-
mined according to [SWS_CM_10293] the Payload of the SOME/IP event message
(i.e., the serialized VariableDataPrototype composed by the ServiceInter-
face in role event) shall be deserialized according to the SOME/IP serialization
rules. c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00028)
The serialization rules are explained in section 7.4.1.7.

[SWS_CM_10295]{DRAFT} Providing the received event data d The deserial-
ized payload containing the event data shall be provided via the GetNewSam-
ples (see [SWS_CM_00701]) method of the respective Event class for the event
determined according to [SWS_CM_10293]. c(RS_CM_00204, RS_CM_00202,
RS_SOMEIP_00004)

7.4.1.5 Handling Method Calls

[SWS_CM_10297]{DRAFT} Conditions for sending of a SOME/IP request mes-
sage d The sending of a SOME/IP request message shall be requested by in-
voking the function call operator (operator()) of the respective Method class
(see [SWS_CM_00196]) if the providing service instance has not stopped offer-
ing the service (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the StopOfferSer-
vice method (see [SWS_CM_00111]) of the ServiceSkeleton class has been
called). c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006,
RS_SOMEIP_00007)

53 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10441]{DRAFT} Failures in sending of a SOME/IP request mes-
sage d If the sending of the SOME/IP request message fails locally (in a
way which is notified to the ara::com implementation), the ara::com im-
plementation shall make the Future returned by the function call operator
(operator()) of the respective Method class (see [SWS_CM_00196]) ready ac-
cording to [SWS_CM_10440]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10298]{DRAFT} Transport protocol for sending of a SOME/IP
request message d The SOME/IP request message shall be transmitted
using the transport protocol defined by the attribute SomeipServiceIn-
terfaceDeployment.methodDeployment.transportProtocol in the Mani-
fest. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006,
RS_SOMEIP_00007, RS_SOMEIP_00010)

[SWS_CM_10299]{DRAFT} Source of a SOME/IP request message d The SOME/IP
request message shall use the unicast IP address defined in the Manifest by
the Ipv4Configuration/Ipv6Configuration attribute of the NetworkEnd-
point that is referenced (in role unicastNetworkEndpoint) by the Ether-
netCommunicationConnector of a Machine which in turn is mapped to the
RequiredSomeipServiceInstance by means of a SomeipServiceInstance-
ToMachineMapping as source address for the transmission. The udpPort shall
be used as source port for the transmission in case the selected transport protocol
(see [SWS_CM_10298]) is UDP. The tcpPort shall be used as source port for the
transmission in case the selected transport protocol (see [SWS_CM_10298]) is TCP. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00010)

[SWS_CM_10300]{DRAFT} Destination of a SOME/IP request message d The
SOME/IP request message shall use the unicast IP address and port taken from
the IPv4/v6 Endpoint Option (see [PRS_SOMEIPSD_00304]) of the SOME/IP Of-
ferService message ([SWS_CM_00203]) as destination address and destination port
for the transmission. In case multiple Endpoint Options have been contained in the
SOME/IP OfferService message, the one matching the selected transport protocol (see
[SWS_CM_10298]) shall be used. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10301]{DRAFT} Content of the SOME/IP request message d The en-
tries in the SOME/IP request message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

54 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. - This may be achived by dynamically
generating unique client IDs upon construction of the ServiceProxy.

• The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the
first call of a particular method by a given client and shall be incremented
by 1 after each call performed by this client for the respective method (see
[PRS_SOMEIP_00533]). Once the Session ID reaches 0xFFFF, it shall wrap
around and start with 0x0001 again (see [PRS_SOMEIP_00521]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to RE-
QUEST_NO_RETURN (0x01) in case the ClientServerOperation referenced
by methodDeployment.method contains a fireAndForget attribute which is
set to true. The Message Type shall be set to REQUEST (0x00) otherwise.

• The Return Code (see [PRS_SOMEIP_00040]) is unused for request messages
and thus (according to [PRS_SOMEIP_00920]) shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the ArgumentDataPro-
totypes of the ClientServerOperation which are not referenced by any
of the ClientServerOperation’s possible ApplicationErrors in role er-
rorContext with direction set to in and inout serialized according to their
order) according to the SOME/IP serialization rules.

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00003,
RS_SOMEIP_00012, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS_SOMEIP_00041) The SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10302]{DRAFT} Checks for a received SOME/IP request message d
Upon reception of a SOME/IP request message the following checks shall be con-
ducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
QUEST_NO_RETURN (0x01) or REQUEST (0x00) to determine that the received
SOME/IP message is actually a SOME/IP request message.

55 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to RE-
QUEST_NO_RETURN (0x01) in case the the ClientServerOperation ref-
erenced by methodDeployment.method of the SomeipMethodDeployment
with matching methodId attribute contains a fireAndForget attribute which is
set to true. Verify that the Message Type is set to REQUEST (0x00) otherwise.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request message shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation). c(RS_CM_00204, RS_CM_00200, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00003,
RS_SOMEIP_00019, RS_SOMEIP_00021, RS_SOMEIP_00008,
RS_SOMEIP_00014)

[SWS_CM_10303]{DRAFT} Identifying the right method d Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipMethodDeploy-
ments of the SomeipServiceInterfaceDeployment, the right method shall
be identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00021)

[SWS_CM_10304]{DRAFT} Deserializing the payload d Based on the method
determined according to [SWS_CM_10303] the Payload of the SOME/IP re-
quest message shall be deserialized according to the SOME/IP serialization
rules. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006,
RS_SOMEIP_00007, RS_SOMEIP_00028) The SOME/IP serialization rules are ex-
plained in section 7.4.1.7.

[SWS_CM_10306]{DRAFT} Invoke the method - event driven d In case a Method-
CallProcessingMode of either kEvent or kEventSingleThread has been
passed to the constructor of the ServiceSkeleton (see [SWS_CM_00130]), the de-
serialized payload containing the method data (i.e., method ID and input arguments)
shall be used to invoke the service method (see [SWS_CM_00191]) identified ac-
cording to [SWS_CM_10303] of the ServiceSkeleton class as a consequence to
the reception of the SOME/IP request message. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

56 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10307]{DRAFT} Invoke the method - polling d In case a Method-
CallProcessingMode of kPoll has been passed to the constructor of the Ser-
viceSkeleton (see [SWS_CM_00130]), the deserialized payload containing the
method data (i.e., method ID and input arguments) shall be used to invoke the
service method (see [SWS_CM_00191]) identified according to [SWS_CM_10303]
of the ServiceSkeleton class upon a call to the ProcessNextMethodCall
method (see [SWS_CM_00199]) of the ServiceSkeleton class. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00006, RS_SOMEIP_00007)

[SWS_CM_10308]{DRAFT} Conditions for sending of a SOME/IP response mes-
sage d The sending of a SOME/IP response message shall be requested upon avail-
ability of a result of the ara::core::Future, which either contains a valid value or
an ara::core::ErrorCode matching one of the possible ApApplicationErrors
referenced by the ClientServerOperation in the role possibleError of the ser-
vice method (see [SWS_CM_10306] and [SWS_CM_10307]) in case the Message
Type of the corresponding SOME/IP request message was set to REQUEST (0x00). c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10309]{DRAFT} Transport protocol for sending of a SOME/IP re-
sponse message d The SOME/IP response message shall be transmitted using
the transport protocol defined by the attribute SomeipServiceInterfaceDeploy-
ment.methodDeployment.transportProtocol in the Manifest. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00010)

[SWS_CM_10310]{DRAFT} Source of a SOME/IP response message d The
SOME/IP response message shall use the unicast IP address defined in the Mani-
fest by the Ipv4Configuration/Ipv6Configuration attribute of the Network-
Endpoint that is referenced (in role unicastNetworkEndpoint) by the Eth-
ernetCommunicationConnector of a Machine which in turn is mapped to the
ProvidedSomeipServiceInstance by means of a SomeipServiceInstance-
ToMachineMapping as source address for the transmission. The udpPort shall
be used as source port for the transmission in case the selected transport proto-
col (see [SWS_CM_10309]) is UDP. The tcpPort shall be used as source port
for the transmission in case the selected transport protocol (see [SWS_CM_10309])
is TCP. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00010)

[SWS_CM_10311]{DRAFT} Destination of a SOME/IP response message d
The SOME/IP response message shall use the unicast source IP address and
the source port of the corresponding received SOME/IP request message (see
[SWS_CM_10299]) as destination address and destination port for the transmission. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007)

[SWS_CM_10312]{DRAFT} Content of the SOME/IP response message d The en-
tries in the SOME/IP response message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

57 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The Method ID (see [PRS_SOMEIP_00038]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
methodDeployment.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to ERROR (0x81)
in case the ClientServerOperation returned one of the possible ApAppli-
cationErrors referenced by the ClientServerOperation in role possi-
bleError1. The Message Type shall be set to RESPONSE (0x80) otherwise.

• The Return Code (see [PRS_SOMEIP_00040]) shall be set to E_NOT_OK (0x01)
in case the ClientServerOperation raised one of the possible ApAppli-
cationErrors referenced by the ClientServerOperation in role possi-
bleError. The Return Code shall be set to E_OK (0x00) otherwise.

• The Payload shall contain the serialized payload according to the SOME/IP
serialization rules. In case of NO raised ApApplicationError, the Ar-
gumentDataPrototypes of the ClientServerOperation with direction
set to inout and out shall be serialized according to their order. – other-
wise in case of a raised ApApplicationError, which is represented as an
ara::core::ErrorCode contained in the ara::core::Result, the payload
shall contain the serialized application error according to [SWS_CM_10428].

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00012,
RS_SOMEIP_00021, RS_SOMEIP_00025, RS_SOMEIP_00041,
RS_SOMEIP_00008) The SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10428]{DRAFT} payload representing application error d A raised ap-
plication error shall be represented by a SOME/IP union: The type field of the union

1Note that this is in fact an incompatibility with the AUTOSAR classic platform (i.e., in cases where an
AUTOSAR adaptive platform server operates with an AUTOSAR classic platform client) which defines
that a Message Type of RESPONSE (0x80) shall be used in case an ApplicationErrors is raised. –
Please consult the release notes of the AUTOSAR classic platform regarding details about this incom-
patibility issue and how to create a project specific work-around.

58 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

shall be set to 0x01. The element of the union with type field set to 0x01 shall be a
SOME/IP struct with the following elements in depicted order:

• an uint64 representing the ApApplicationErrorDomain.value, to which
the raised ApApplicationError belongs (ApApplicationError.errorDo-
main).

• an int32 representing the ApApplicationError.errorCode, which is repre-
sented on binding level as ara::core::ErrorCode::Value().

• an int32 representing additional (vendor specific) support data, which is repre-
sented on binding level as ara::core::ErrorCode::SupportData().

• a variable lenght string representing a user message, which is represented on
binding level as ara::core::ErrorCode::UserMessage().

c()

[SWS_CM_10313]{DRAFT} Checks for a received SOME/IP response message d
Upon reception of a SOME/IP response message the following checks shall be con-
ducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to either RE-
SPONSE (0x80) or ERROR (0x81) to determine that the received SOME/IP mes-
sage is actually a SOME/IP response message or error response message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Client ID (see [PRS_SOMEIP_00702]) matches the client from the
corresponding SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) matches the client from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

If any of the above checks fails the received SOME/IP response message shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation). c(RS_CM_00204, RS_CM_00200, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00003, RS_SOMEIP_00012,

59 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

RS_SOMEIP_00019, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS_SOMEIP_00041, RS_SOMEIP_00008, RS_SOMEIP_00014)

[SWS_CM_10314]{DRAFT} Identifying the right method d Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipMethodDeploy-
ments of the SomeipServiceInterfaceDeployment, the right method shall
be identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00006, RS_SOMEIP_00007, RS_SOMEIP_00021)

[SWS_CM_10315]{DRAFT} Discarding orphaned responses d In case the method
call has been canceled according to [SWS_CM_00194] in the mean time, the received
response/error messages of the canceled methods shall be ignored. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213)

[SWS_CM_10357]{DRAFT} Distinguishing errors from normal responses d
The Message Type (see [PRS_SOMEIP_00055]) and the Return Code (see
[PRS_SOMEIP_00040]) of the SOME/IP message shall be used to determine whether
the received SOME/IP message is a normal response (Message Type set to RE-
SPONSE (0x80) and Return Code set to 0x0) or an error response (Message Type
set to ERROR (0x81) or Return Code set to a value different from 0x0)2 w.r.t. the further
processing according to [SWS_CM_10316], [SWS_CM_10358], [SWS_CM_10429],
[SWS_CM_10430] and [SWS_CM_10317]. c(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10316]{DRAFT} Deserializing the payload - normal response mes-
sages d Based on the method determined according to [SWS_CM_10314] the Pay-
load of the response message shall be deserialized according to the SOME/IP se-
rialization rules. – Therefore the ArgumentDataPrototypes with direction set
to inout and out shall be deserialized according to their order. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00028) The
SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10442]{DRAFT} Failures during deserialization of response mes-
sages d In case of failures during deserialization of response messages, the
ara::com implementation shall make the Future returned by the function call op-
erator (operator()) of the respective Method class (see [SWS_CM_00196]) ready
according to [SWS_CM_10440]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00028)

[SWS_CM_10358]{DRAFT} Identifying the right application error in a mes-
sage with Message Type set to RESPONSE (0x80) d If the Return Code see
[PRS_SOMEIP_00040]) contains a value larger than 0x1F the corresponding value

2The additional case of SOME/IP response messages with a Return Code (see
[PRS_SOMEIP_00040]) set to a value different from 0x0 is in place for the sake of compatibility
with the AUTOSAR classic platform (i.e., AUTOSAR adaptive platform client and AUTOSAR classic
platform server) which defines that a Message Type of RESPONSE (0x80) shall be used even in case
ApplicationErrors are raised.

60 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

of the ApApplicationError.errorCode attribute shall be determined by subtract-
ing 0x1F from the Return Code value. Using this computed ApApplication-
Error.errorCode attribute value and the ApApplicationError.errorCode at-
tribute of all ApApplicationErrors referenced in role possibleApError by the
ClientServerOperation corresponding to the method determined according to
[SWS_CM_10314], the right application error shall be identified.

If this computed ApApplicationError.errorCode attribute value does not match
any of the ApApplicationError.errorCode attributes of all ApApplication-
Errors referenced in role possibleError by the ClientServerOperation, the
error response message shall be discarded, the incident shall be logged (if logging is
enabled for the ara::com implementation), and the Future returned by the function
call operator (operator()) of the respective Method class (see [SWS_CM_00196])
shall be made ready according to [SWS_CM_10440].

If this computed ApApplicationError.errorCode attribute value does match
more than one of the ApApplicationError.errorCode attributes of all ApAp-
plicationErrors referenced in role possibleError by the ClientServerOp-
eration, the error response message shall be discarded, the incident shall be
logged (if logging is enabled for the ara::com implementation), and the Future re-
turned by the function call operator (operator()) of the respective Method class
(see [SWS_CM_00196]) shall be made ready according to [SWS_CM_10440]. c
(RS_CM_00204, RS_SOMEIP_00008)

Note: This is for backward compatibility to old servers using RESPONSE (0x80) even in
case of application errors.

[SWS_CM_10429]{DRAFT} Identifying the right application error in a mes-
sage with Message Type set to ERROR (0x81) d If the Return Code see
[PRS_SOMEIP_00040]) contains a value equal to 0x01 (E_NOT_OK) then the cor-
responding ApApplicationError shall be identfied by deserializing the Payload of
the message according to the error payload format described in [SWS_CM_10428]. c
(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10430]{DRAFT} Handling invalid messages with Message Type set to
RESPONSE (0x81) d If the Return Code see [PRS_SOMEIP_00040]) contains a value
NOT equal to 0x01 or the value is equal to 0x01, but either the contained payload
does NOT comply with [SWS_CM_10428] or the application error identified by the de-
serialized ApApplicationErrorDomain.value and ApApplicationError.er-
rorCode is not referenced in role possibleError by the related ClientServer-
Operation, the error response message shall be discarded, the incident shall be
logged (if logging is enabled for the ara::com implementation), and the Future re-
turned by the function call operator (operator()) of the respective Method class
(see [SWS_CM_00196]) shall be made ready according to [SWS_CM_10440]. c
(RS_CM_00204, RS_SOMEIP_00008)

[SWS_CM_10317]{DRAFT} Making the Future ready d In order to make the Fu-
ture returned by the function call operator (operator()) of the respective Method
class (see [SWS_CM_00196]) ready, depending on the type or received message

61 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

(see [SWS_CM_10357]) either the set_value operation (see [SWS_CORE_00345]
and [SWS_CORE_00346]) or the SetError (see [SWS_CORE_00347]) operation
of the Promise corresponding to this Future shall be invoked. This will unblock
any blocking get, wait, wait_for, and wait_until calls that have been per-
formed on this Future. – The set_value operation shall be invoked in case of
a received normal response message using the deserialized payload according to
[SWS_CM_10316] as an argument. The SetError operation shall be invoked in case
of a received error response message using the determined application error accord-
ing to [SWS_CM_10358] and [SWS_CM_10429] of type ara::core::ErrorCode
as an argument. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215,
RS_SOMEIP_00007, RS_SOMEIP_00008)

[SWS_CM_10318]{DRAFT} Invoke the notification function d If a notification func-
tion has been registered with the Future’s then method (see [SWS_CM_00197]),
this notification function shall be invoked. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_CM_00215, RS_SOMEIP_00007)

7.4.1.6 Handling Fields

[SWS_CM_10319]{DRAFT} Conditions for sending of a SOME/IP event mes-
sage d The sending of a SOME/IP event message shall be requested by invok-
ing the Update method of the respective Field class (see [SWS_CM_00119])
or if the Future returned by the SetHandler registered with Register-
SetHandler (see [SWS_CM_00116]) becomes ready if there is at least one
active subscriber and the offer of the service containing the event has not
been stopped (either because the TTL contained in the SOME/IP OfferService
message (see [SWS_CM_00203]) has expired or because the StopOfferSer-
vice method (see [SWS_CM_00111]) of the ServiceSkeleton class has been
called). An active subscriber is an adaptive application that has invoked the
Subscribe method of the respective Field class (see [SWS_CM_00120]) and
has not canceled the subscription by invoking the Unsubscribe method of
the respective Field class (see [SWS_CM_00120]) and where the subscription
has not yet expired since the TTL contained in the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has been exceeded. c(RS_CM_00204,
RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00005,
RS_SOMEIP_00017, RS_SOMEIP_00018)

[SWS_CM_10320]{DRAFT} Transport protocol for sending of a SOME/IP event
message d The SOME/IP event message shall be transmitted using UDP if the thresh-
old defined by the multicastThreshold attribute of the SomeipProvidedEvent-
Group that is aggregated by the ProvidedSomeipServiceInstance in the role
eventGroup in the Manifest has been reached (see [PRS_SOMEIPSD_00134]).
The SOME/IP event message shall be transmitted using the transport protocol
defined by the attribute SomeipServiceInterfaceDeployment.fieldDeploy-
ment.notifier.transportProtocol in the Manifest if this threshold has not

62 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

been reached (see [PRS_SOMEIPSD_00802]). c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10321]{DRAFT} Source of a SOME/IP event message d The source
address and the source port of the SOME/IP event message shall set accord-
ing to [SWS_CM_10289]. c(RS_CM_00204, RS_CM_00201, RS_SOMEIP_00004,
RS_SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10322]{DRAFT} Destination of a SOME/IP event message d The
destination address and the destination port of the SOME/IP event message
shall be set according to [SWS_CM_10290]. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00042)

[SWS_CM_10323]{DRAFT} Content of the SOME/IP event message d The entries
in the SOME/IP event message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00040]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Event ID (see [PRS_SOMEIP_00040]) shall be derived from the Mani-
fest where the SomeipServiceInterfaceDeployment element defines the
fieldDeployment.notifier.eventId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) is unused for event messages (ac-
cording to [PRS_SOMEIP_00702]) and thus shall be set to 0x0000.

• In case of inactive Session Handling the Session ID (see [PRS_SOMEIP_00703])
is unused for event messages and thus shall be set to 0x000 (see
[PRS_SOMEIP_00932]) and [PRS_SOMEIP_00925]). In case of active Session
Handling the Session ID is used for event messages and thus shall be incre-
mented (with proper wrap around) upon every transmission of an event message
(see [PRS_SOMEIP_00933], [PRS_SOMEIP_00934], [PRS_SOMEIP_00521],
and [PRS_SOMEIP_00925]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to NOTIFICATION
(0x02).

• The Return Code (see [PRS_SOMEIP_00040]) is unused for event messages
and thus (according to [PRS_SOMEIP_00040]) shall be set to E_OK (0x00).

63 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) according to the SOME/IP
serialization rules.

c(RS_CM_00204, RS_CM_00200, RS_CM_00201, RS_SOMEIP_00041,
RS_SOMEIP_00022, RS_SOMEIP_00003, RS_SOMEIP_00004,
RS_SOMEIP_00009) The SOME/IP serialization rules are explained in section 7.4.1.7.

[SWS_CM_10324]{DRAFT} Checks for a received SOME/IP event message d
Upon reception of a SOME/IP event message the checks defined in [SWS_CM_10292]
shall be conducted. If any of the above checks fails the received SOME/IP
event message shall be discarded and and the incident shall be logged
(if logging is enabled for the ara::com implementation). c(RS_CM_00204,
RS_CM_00201, RS_SOMEIP_00019, RS_SOMEIP_00022, RS_SOMEIP_00003,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00014)

[SWS_CM_10325]{DRAFT} Identifying the right event d Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Event ID (see
[PRS_SOMEIP_00040]) and the eventId attribute of the SomeipFieldDe-
ployment.notifiers of the SomeipServiceInterfaceDeployment, the right
event shall be identified. c(RS_CM_00204, RS_CM_00200, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00022)

[SWS_CM_10380]{DRAFT} Silently discarding SOME/IP event messages for un-
subscribed events d If the event identified according to [SWS_CM_10325] does not
have an active subscription because the Subscribe method (see [SWS_CM_00141])
of the specific Field class of the ServiceProxy class has not been called, or the
Unsubscribe method (see [SWS_CM_00151]) of the specific Field class of the
ServiceProxy class has been called, or the TTL of the SOME/IP SubscribeEvent-
group message (see [SWS_CM_00205]) has expired, the received SOME/IP event
message shall be silently discarded (i.e., [SWS_CM_10326], [SWS_CM_10327],
and [SWS_CM_10328] shall not be performed). c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10328]{DRAFT} Invoke receive handler d In case a ReceiveHandler
was registered using the SetReceiveHandler method (see [SWS_CM_00120]) of
the respective Field class for the event determined according to [SWS_CM_10325]
this registered receive handler shall be invoked. c(RS_CM_00204, RS_CM_00203,
RS_SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10326]{DRAFT} Deserializing the payload d Based on the event deter-
mined according to [SWS_CM_10325] the Payload of the SOME/IP event message
(i.e., the serialized Field composed by the ServiceInterface in role field)
shall be deserialized according to the SOME/IP serialization rules. c(RS_CM_00204,
RS_CM_00201, RS_SOMEIP_00004, RS_SOMEIP_00009, RS_SOMEIP_00028)
The SOME/IP serialization rules are explained in section 7.4.1.7.

64 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10327]{DRAFT} Providing the received event data d The deserial-
ized payload containing the event data shall be provided via the GetNewSam-
ples (see [SWS_CM_00701]) method of the respective Field class for the event
determined according to [SWS_CM_10325]. c(RS_CM_00204, RS_CM_00202,
RS_SOMEIP_00004, RS_SOMEIP_00009)

[SWS_CM_10329]{DRAFT} Conditions for sending of a SOME/IP request mes-
sage d The sending of a SOME/IP request message shall be requested by invok-
ing the Set or Get method of the respective Field class (see [SWS_CM_00112]
and [SWS_CM_00113]) if the providing service instance has not stopped offer-
ing the service (either because the TTL contained in the SOME/IP OfferSer-
vice message (see [SWS_CM_00203]) has expired or because the StopOf-
ferService method (see [SWS_CM_00111]) of the ServiceSkeleton class has
been called). c(RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10443]{DRAFT} Failures in sending of a SOME/IP request mes-
sage d If the sending of the SOME/IP request message fails locally (in a way
which is notified to the ara::com implementation), the ara::com implementa-
tion shall make the Future returned by the Set or Get method of the re-
spective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) ready ac-
cording to [SWS_CM_10440]. c(RS_CM_00212, RS_CM_00213, RS_CM_00217,
RS_CM_00218, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10330]{DRAFT} Transport protocol for sending of a SOME/IP re-
quest message d The SOME/IP request message for the Set method shall be
transmitted using the transport protocol defined by the attribute SomeipSer-
viceInterfaceDeployment.fieldDeployment.set.transportProtocol
in the Manifest. The SOME/IP request message for the Get method shall be
transmitted using the transport protocol defined by the attribute SomeipServi-
ceInterfaceDeployment.fieldDeployment.get.transportProtocol re-
spectively. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10331]{DRAFT} Source of a SOME/IP request message d The source
address and the source port of the SOME/IP request message shall be set ac-
cording to [SWS_CM_10299]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10332]{DRAFT} Destination of a SOME/IP request message d The des-
tination address and the destination port of the SOME/IP request message shall be set
according to [SWS_CM_10300]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10333]{DRAFT} Content of the SOME/IP request message d The en-
tries in the SOME/IP request message shall be as follows:

65 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) for the Set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element
defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be set to a value that uniquely
identifies the client within a Machine. – This may be achieved by dynamically
generating unique client IDs upon construction of the ServiceProxy.

• The Session ID (see [PRS_SOMEIP_00703]) shall be set to 0x0001 for the
first call of the particular method by a given client and shall be incremented
by 1 after each call performed by this client for the respective method (see
[PRS_SOMEIP_00533]). Once the Session ID reaches 0xFFFF, it shall wrap
around and start with 0x0001 again (see [PRS_SOMEIP_00521]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to REQUEST (0x00).

• The Return Code (see [PRS_SOMEIP_00040]) is unused for request messages
and thus (according to [PRS_SOMEIP_00920]) shall be set to E_OK (0x00).

• The Payload for the request message for the Set method shall contain the seri-
alized payload (i.e., the serialized Field composed by the ServiceInterface
in role field) according to the SOME/IP serialization rules. The Payload for the
request message for the Get method will be empty.

c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00003, RS_SOMEIP_00012, RS_SOMEIP_00021,
RS_SOMEIP_00025, RS_SOMEIP_00041) The SOME/IP serialization rules are
explained in section 7.4.1.7.

[SWS_CM_10334]{DRAFT} Checks for a received SOME/IP request message d
Upon reception of a SOME/IP request message the following checks shall be con-
ducted:

• Verify that the Protocol Version (see [PRS_SOMEIP_00052]) is set to 0x01.

66 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• Verify that the Length (see [PRS_SOMEIP_00042]) is larger than 7.

• Use the Message Type (see [PRS_SOMEIP_00055]) which is set to REQUEST
(0x00) to determine that the received SOME/IP message is actually a SOME/IP
request message.

• Use the Service ID (see [PRS_SOMEIP_00040]) and the serviceInter-
faceId attribute of the SomeipServiceInterfaceDeployment element in
the Manifest to determine the right ServiceInterface.

• Verify that the Method ID (see [PRS_SOMEIP_00038]) matches the metho-
dId attribute of one of the SomeipMethodDeployments of the SomeipSer-
viceInterfaceDeployment.

• Verify that the Message Type (see [PRS_SOMEIP_00055]) is set to REQUEST
(0x00).

• Verify that the Interface Version (see [PRS_SOMEIP_00053]) matches
SomeipServiceInterfaceDeployment.serviceInterfaceVersion.ma-
jorVersion.

• Verify that the Return Code (see [PRS_SOMEIP_00040]) is set to E_OK (0x00).

If any of the above checks fails the received SOME/IP request message shall
be discarded and the incident shall be logged (if logging is enabled for the
ara::com implementation). c(RS_CM_00204, RS_CM_00200, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003,
RS_SOMEIP_00019, RS_SOMEIP_00021, RS_SOMEIP_00008,
RS_SOMEIP_00014)

[SWS_CM_10335]{DRAFT} Identifying the right method d Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see
[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipFieldDe-
ployment.sets and SomeipFieldDeployment.gets of the SomeipServiceIn-
terfaceDeployment, the right method shall be identified. c(RS_CM_00204,
RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00021)

[SWS_CM_10336]{DRAFT} Deserializing the payload d Based on the method
determined according to [SWS_CM_10335] the Payload of the SOME/IP re-
quest message shall be deserialized according to the SOME/IP serialization
rules. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS_SOMEIP_00028) The SOME/IP serialization rules are ex-
plained in section 7.4.1.7.

[SWS_CM_10338]{DRAFT} Invoke the registered set/get handlers - event driven
d In case a MethodCallProcessingMode of either kEvent or kEventSin-
gleThread has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the deserialized payload containing the method data (i.e.,
method ID and input arguments) shall be used to invoke a registered SetHandler

67 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

resp. GetHandler (see [SWS_CM_00114] and [SWS_CM_00116]) of the Field
class as a consequence to the reception of the SOME/IP request message. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10339]{DRAFT} Invoke the registered set/get handlers - polling d In
case a MethodCallProcessingMode of kPoll has been passed to the construc-
tor of the ServiceSkeleton (see [SWS_CM_00130]), the deserialized payload con-
taining the method data (i.e., method ID and input arguments) shall be used to in-
voke a registered SetHandler resp. GetHandler (see [SWS_CM_00114] and
[SWS_CM_00116]) of the Field class upon a call to the ProcessNextMethod-
Call method (see [SWS_CM_00199]) of the ServiceSkeleton class. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221,
RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10340]{DRAFT} Conditions for sending of a SOME/IP response mes-
sage d The sending of a SOME/IP response message shall be requested upon
the return of a registered SetHandler resp. GetHandler (see [SWS_CM_00114]
and [SWS_CM_00116]). c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00220, RS_CM_00221, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10341]{DRAFT} Transport protocol for sending of a SOME/IP re-
sponse message d The SOME/IP response message for the Set method shall
be transmitted using the transport protocol defined by the attribute SomeipSer-
viceInterfaceDeployment.fieldDeployment.set.transportProtocol
in the Manifest. The SOME/IP response message for the Get method shall be
transmitted using the transport protocol defined by the attribute SomeipServi-
ceInterfaceDeployment.fieldDeployment.get.transportProtocol re-
spectively. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10342]{DRAFT} Source of a SOME/IP response message d The source
address and the source port of the SOME/IP response message shall be set ac-
cording to [SWS_CM_10310]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00010)

[SWS_CM_10343]{DRAFT} Destination of a SOME/IP response message d The
destination address and the destination port of the SOME/IP response message
shall be set according to [SWS_CM_10311]. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10344]{DRAFT} Content of the SOME/IP response message d The en-
tries in the SOME/IP response message shall be as follows:

• The Service ID (see [PRS_SOMEIP_00038]) shall be derived from the Manifest
where the SomeipServiceInterfaceDeployment element defines the ser-
viceInterfaceId.

• The Method ID (see [PRS_SOMEIP_00038]) for the Set method shall be derived
from the Manifest where the SomeipServiceInterfaceDeployment element

68 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

defines the fieldDeployment.set.methodId. The Method ID for the Get
method shall be derived from the Manifest where the SomeipServiceInter-
faceDeployment element defines the fieldDeployment.get.methodId.

• The Length (see [PRS_SOMEIP_00042]) shall be set to the length of the seri-
alized payload in units of bytes incremented by 8 (second part of the SOME/IP
header that is covered by the Length)

• The Client ID (see [PRS_SOMEIP_00702]) shall be copied from the correspond-
ing SOME/IP request message (see [SWS_CM_10301]).

• The Session ID (see [PRS_SOMEIP_00703]) shall be copied from the corre-
sponding SOME/IP request message (see [SWS_CM_10301]).

• The Protocol Version (see [PRS_SOMEIP_00052]) shall be set to 0x01.

• The Interface Version (see [PRS_SOMEIP_00053]) shall be derived from the
Manifest where the SomeipServiceInterfaceDeployment element defines
the serviceInterfaceVersion.majorVersion.

• The Message Type (see [PRS_SOMEIP_00055]) shall be set to RESPONSE
(0x80).

• The Return Code (see [PRS_SOMEIP_00040]) shall be set to E_OK (0x00).

• The Payload shall contain the serialized payload (i.e., the serialized Field com-
posed by the ServiceInterface in role field) which has either been pro-
vided by the value of the Future returned by the registered SetHandler resp.
GetHandler or obtained internally) according to the SOME/IP serialization rules.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00217,
RS_CM_00218, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003,
RS_SOMEIP_00012, RS_SOMEIP_00021, RS_SOMEIP_00025,
RS_SOMEIP_00041, RS_SOMEIP_00008) The SOME/IP serialization rules are
explained in section 7.4.1.7.

[SWS_CM_10345]{DRAFT} Checks for a received SOME/IP response mes-
sage d Upon reception of a SOME/IP response message the checks defined in
[SWS_CM_10313] shall be conducted. If any of the above checks fails the received
SOME/IP event message shall be discarded and the incident shall be logged (if logging
is enabled for the ara::com implementation). c(RS_CM_00204, RS_CM_00212,
RS_CM_00213, RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00003,
RS_SOMEIP_00012, RS_SOMEIP_00019, RS_SOMEIP_00021,
RS_SOMEIP_00025, RS_SOMEIP_00041, RS_SOMEIP_00008,
RS_SOMEIP_00014)

[SWS_CM_10346]{DRAFT} Identifying the right method d Using the Service
ID (see [PRS_SOMEIP_00040]) and the serviceInterfaceId attribute of the
SomeipServiceInterfaceDeployment element as well as the Method ID (see

69 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[PRS_SOMEIP_00038]) and the methodId attribute of the SomeipFieldDe-
ployment.sets and SomeipFieldDeployment.gets of the SomeipServiceIn-
terfaceDeployment, the right method shall be identified. c(RS_CM_00204,
RS_CM_00200, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00021)

[SWS_CM_10347]{DRAFT} Discarding orphaned responses d Orphaned re-
sponses shall be discarded according to [SWS_CM_10315]. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213)

[SWS_CM_10348]{DRAFT} Deserializing the payload d Based on the method
determined according to [SWS_CM_10346] the Payload of the SOME/IP re-
sponse message shall be deserialized according to the SOME/IP serialization
rules. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_SOMEIP_00007,
RS_SOMEIP_00009, RS_SOMEIP_00028) The SOME/IP serialization rules are ex-
plained in section 7.4.1.7.

[SWS_CM_10444]{DRAFT} Failures during deserialization of response mes-
sages d In case of failures during deserialization of response messages, the
ara::com implementation shall make the Future returned by the Set or Get method
of the respective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) ready
according to [SWS_CM_10440]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_SOMEIP_00007, RS_SOMEIP_00009, RS_SOMEIP_00028)

[SWS_CM_10349]{DRAFT} Making the Future ready d In order to make the Fu-
ture returned by the Set or Get method of the respective Field class (see
[SWS_CM_00113] and [SWS_CM_00112]) ready, the set_value operation (see
[SWS_CORE_00345] and [SWS_CORE_00346]) of the Promise corresponding to
this Future shall be invoked using the deserialized payload as an argument. This
will unblock any blocking get, wait, wait_for, and wait_until calls that have
been performed on this Future. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00215, RS_SOMEIP_00007, RS_SOMEIP_00009)

[SWS_CM_10350]{DRAFT} Invoke the notification function d Any registered noti-
fication function shall be invoked according to [SWS_CM_10318]. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_CM_00215, RS_SOMEIP_00007,
RS_SOMEIP_00009)

7.4.1.7 Serialization of Payload

[SWS_CM_10034]{DRAFT} d The serialization of the payload shall be based on the
definition of the ServiceInterface of the data. c(RS_CM_00204, RS_CM_00201,
RS_SOMEIP_00004, RS_SOMEIP_00005, RS_SOMEIP_00028)

[SWS_CM_10169]{DRAFT} d To allow migration the deserialization shall ignore pa-
rameters attached to the end of previously known parameter list. c(RS_CM_00204,
RS_CM_00202)

70 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

This means: Parameters that were not defined in the ServiceInterface used to
generate or parametrize the deserialization code but exist at the end of the serialized
data will be ignored by the deserialization.

[SWS_CM_10259]{DRAFT} d After the serialized data of a variable data length Dat-
aPrototype a padding for alignment purposes shall be added for the configured
alignment (see [SWS_CM_10260]) if the variable data length DataPrototype is not
the last element in the serialized data stream. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211) This requirement does not apply for the serialization
of extensible structs and methods (see chapter 7.4.1.7.4).

[SWS_CM_10260]{DRAFT} d If SomeipDataPrototypeTransformation-
Props.someipTransformationProps. alignment is set for a variable data
length data element, the value of SomeipDataPrototypeTransformation-
Props.someipTransformationProps.alignment shall define the alignment.
This requirement does not apply for the serialization of extensible structs and
methods. c(RS_CM_00204, RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211) (see chapter 7.4.1.7.4)

[SWS_CM_11262]{DRAFT} d If SomeipDataPrototypeTransformation-
Props.someipTransformationProps.alignment is not set for a variable data
length data element, the value of TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.alignment shall
define the alignment. This requirement does not apply for the serialization of ex-
tensible structs and methods. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211) (see chapter 7.4.1.7.4)

[SWS_CM_11263]{DRAFT} d If SomeipDataPrototypeTransformation-
Props.someipTransformationProps.alignment and Transformation-
PropsToServiceInterfaceElementMappingSet.mapping.transformation-
Props.alignment are both not set for a variable data length data element, no
alignment shall be applied. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10263]{DRAFT} d After serialized fixed data length data elements, the
SOME/IP network binding shall never add automatically a padding for alignment. c
(RS_CM_00201, RS_CM_00211)

Note:
If the following data element shall be aligned, a padding element of according size
needs to be explicitly inserted into the CppImplementationDataType.

[SWS_CM_10037]{DRAFT} d Alignment shall always be calculated from start
of SOME/IP message. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

This attribute defines the memory alignment. The SOME/IP network binding does not
try to automatically align parameters but aligns as specified. The alignment is currently
constraint to multiple of 1 Byte to simplify code generators.

71 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

SOME/IP payload should be placed in memory so that the SOME/IP payload is suit-
able aligned. For infotainment ECUs an alignment of 8 Bytes (i.e. 64 bits) should be
achieved, for all ECU at least an alignment of 4 Bytes should be achieved. An efficient
alignment is highly hardware dependent.

[SWS_CM_10016]{DRAFT} d If more data than expected shall be deserialized, the
unexpected data shall be discarded. The known fraction shall be considered. c
(RS_CM_00204, RS_CM_00202)

[SWS_CM_10017]{DRAFT} d If less data than expected shall be deserialized and the
data to be deserialized belong to a Field, the initValue should be used if it is de-
fined. Otherwise the data shall be discarded and the incident shall be logged (if logging
is enabled for the ara::com implementation). c(RS_CM_00204, RS_CM_00202)

In the following the serialization of different parameters is specified.

7.4.1.7.1 Basic Data Types

[SWS_CM_10036]{DRAFT} d The primitive StdCppImplementationDataTypes
defined in [13] which shall be supported for serialization are listed in Table 7.1. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

Type Description Size [bit] Remark
boolean TRUE/FALSE value 8 FALSE (0), TRUE (1)
uint8_t unsigned Integer 8
uint16_t unsigned Integer 16
uint32_t unsigned Integer 32
uint64_t unsigned Integer 64
int8_t signed Integer 8
int16_t signed Integer 16
int32_t signed Integer 32
int64_t signed Integer 64
float floating point number 32 IEEE 754 binary32 (Single Preci-

sion)
double floating point number 64 IEEE 754 binary64 (Double Preci-

sion)

Table 7.1: Primitive StdCppImplementationDataTypes supported for serialization

The Byte Order is specified common for all parameters by byteOrder of ApSomeip-
TransformationProps.

7.4.1.7.2 Enumeration Data Types

[SWS_CM_10361]{DRAFT} d Enumeration Data Types shall be serialized ac-
cording to [SWS_CM_10036] based on their underlying primitive StdCppImplemen-
tationDataType (i.e., the Primitive Cpp Implementation Data Type that

72 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

is defined as the underlying type of the enumeration as defined in [SWS_CM_00424])
c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.4.1.7.3 Scale Linear And Texttable Data Types

[SWS_CM_10391]{DRAFT} d Scale Linear And Texttable Data Types
shall be serialized according to [SWS_CM_10361] based on the Enumeration
Data Type they were specified with (see [SWS_CM_10409]). c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.4.1.7.4 Structured Data Types (structs)

[SWS_CM_10042]{DRAFT} d A Structure Cpp Implementation Data Type
shall be serialized in order of depth-first traversal. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

The SOME/IP network binding doesn’t automatically align parameters of a struct.

Insert reserved/padding elements into the AUTOSAR data type if needed for alignment,
since the SOME/IP network binding shall not automatically add such padding.

So if for example a struct includes a uint8_t and a uint32_t, they are just written se-
quentially into the buffer. This means that there is no padding between the uint8 and
the first byte of the uint32_t; therefore, the uint32_t might not be aligned. So the sys-
tem designer has to consider to add padding elements to the data type to achieve the
required alignment or set it globally.

Warning about unaligned structs or similar shall not be done in the SOME/IP network
binding but only in the tool chain used to generate the SOME/IP network binding.

The SOME/IP network binding does not automatically insert dummy/padding elements.

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of structs. The length
field of a struct describes the number of bytes of the struct. This allows for extensible
structs which allow better migration of interfaces.

[SWS_CM_00252]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfStructLengthField is set
to a value equal to 0, no length field shall be inserted in front of the serialized struct
for which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10252]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfStructLengthField is set
to a value greater 0, a length field shall be inserted in front of the serialized struct

73 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

for which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10268]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of
the serialized struct for which the ApSomeipTransformationProps is de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00253]{DRAFT} d If attribute TransformationPropsToServi-
ceInterfaceElementMappingSet.mapping.transformationProps.size-
OfStructLengthField is set to a value equal to 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.size-
OfStructLengthField is not set, no length field shall be inserted in front of
the serialized struct for which the ApSomeipTransformationProps is defined
via SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00254]{DRAFT} d If attribute TransformationPropsToServi-
ceInterfaceElementMappingSet.mapping.transformationProps.size-
OfStructLengthField is set to a value greater 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StructLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10269]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder
is set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, the attribute Transformation-
PropsToServiceInterfaceElementMappingSet.mapping.transformation-
Props.byteOrder shall define the byte order for the length field that shall be inserted
in front of the serialized struct for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00255]{DRAFT} d If attribute TransformationPropsToServi-
ceInterfaceElementMappingSet.mapping.transformationProps.size-
OfStructLengthField is not set and attribute SomeipDataPrototypeTrans-
formationProps.someipTransformationProps.sizeOfStructLengthField
is not set, no length field shall be inserted in front of the serialized struct. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10270]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder is

74 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

not set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, a byte order of mostSignifi-
cantByteFirst (i.e., big endian) shall be used for the length field that shall be in-
serted in front of the serialized associative struct. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10253]{DRAFT} d If SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfStructLengthField defines the
data type for the length field of a struct, the data shall be:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00256]{DRAFT} d If TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StructLengthField defines the the data type for the length field of a struct, the
data shall be:

• uint8 if sizeOfStructLengthField equals 1

• uint16 if sizeOfStructLengthField equals 2

• uint32 if sizeOfStructLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10218]{DRAFT} d The serializing SOME/IP network binding shall write the
size (in bytes) of the serialized struct (without the size of the length field) into the length
field of the struct. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10219]{DRAFT} d If the length is greater than the expected length of a
struct (as specified in the data type definition) a deserializing SOME/IP network binding
shall only interpret the expected data and skip the unexpected. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

75 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint32 a

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

Figure 7.5: Serialization of Structs without Length Fields (Example)

Struct_1

uint32 a

float32 b[2]

Struct_2 c Struct_2

uint32 d

float32 e[2]

Struct_3 f

serialization

uint16 lf1

float32 b_1

float32 b_2

uint32 d

float32 e_1

float32 e_2

…

uint32 a

uint16 lf2

uint16 lf3

Figure 7.6: Serialization of Structs with Length Fields (Example)

[SWS_CM_01046]{DRAFT} Definition of tlvDataId d Regarding the definition of
tlvDataId see [TPS_MANI_01097] and [constr_1594] for details. c(RS_CM_00204,
RS_CM_00205, RS_SOMEIP_00050)

7.4.1.7.5 Structured Datatypes and Arguments with Identifier and optional
Members

To achieve enhanced forward and backward compatibility, an additional Data ID can
be added in front of struct members or method arguments. The receiver then can

76 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

skip unknown members/arguments, i.e. where the Data ID is unknown. New member-
s/arguments can be added at arbitrary positions when Data IDs are transferred in the
serialized byte stream.

Structs are modeled in the Manifest using CppImplementationDataType of
category STRUCTURE and members are represented by CppImplementation-
DataTypeElements. Method arguments are represented by ArgumentDataProto-
types.

The assignment of Data IDs is modeled in the Manifest in the context of Transforma-
tionPropsToServiceInterfaceElementMapping. Refer to [6] for more details.

Moreover, the usage of Data IDs allows describing structs with optional members.
Whether a member is optional or not, is defined in the Manifest using the attribute
CppImplementationDataTypeElement.isOptional.

Whether an optional member is actually present in the struct or not, must be
determined during runtime. This is realized in the Adaptive Platform using the
ara::core::Optional class template (see 8.1.2.4.2 Optional Data Types).

In addition to the Data ID, a wire type encodes the datatype of the following member.
Data ID and wire type are encoded in a so-called tag.

[SWS_CM_90439]{DRAFT} d The length of a tag shall be two bytes. c()

[SWS_CM_90440]{DRAFT} d The tag shall consist of

• reserved (Bit 7 of the first byte)

• wire type (Bit 6-4 of the first byte)

• Data ID (Bit 3-0 of the first byte and bit 7-0 of the second byte)

c() Refer to Figure 7.7 for the layout of the tag. Bit 7 is the high-
est significant bit of a byte, bit 0 is the lowest significant bit of a byte.

Wire Type
Data ID (Higher

Sig. Part)
Data ID (Lower Sig. Part) Length Field (8/16/32 bit) Member Data ...

Byte n Byte n + 1 Byte n + 2 ...

7 0 7 0 7/15/31 0

re
s
e
rv

e
d

Figure 7.7: SOME/IP Struct Tag Layout

[SWS_CM_90441]{DRAFT} d The lower significant part of the Data ID of the member
shall be encoded in bits 7-0 of the second byte of the tag. The higher significant part
of the Data ID of the member shall be encoded in bits 3-0 of the first byte. c()

Example: The Data ID of the member is 1266 (dec). Then bits 3-0 of the first byte are
set to 0x4. The second byte is set to 0xF2.

[SWS_CM_90442]{DRAFT} d The wire type shall determine the type of the following
data of the member. The value shall be assigned as shown in Table 7.2. c()

77 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Wire Type Value
0 8 Bit Data Base data type
1 16 Bit Data Base data type
2 32 Bit Data Base data type
3 64 Bit Data Base data type
4 Complex Data Type: Array, Struct, String, Union with length

field size 1 byte (configured in data definition)
5 Complex Data Type: Array, Struct, String, Union with length

field size 1 byte (ignore static definition)
6 Complex Data Type: Array, Struct, String, Union with length

field size 2 byte (ignore static definition)
7 Complex Data Type: Array, Struct, String, Union with length

field size 4 byte (ignore static definition)

Table 7.2: Message Types

Note: Wire type 4 ensures the compatibility with the current approach where the size
of length fields is statically configured. This approach has the drawback that changing
the size of the length field during evolution of interfaces is always incompatible. Thus,
wire types 5, 6 and 7 allow to encode the size of the used length field in the transferred
byte stream.

[SWS_CM_90443]{DRAFT} d If TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.isDynami-
cLengthFieldSize is set to false or is not defined, the serializer shall use
wire type 4 for serializing complex types and shall use the fixed size length fields.
The size is defined in TransformationPropsToServiceInterfaceEle-
mentMappingSet.mapping.transformationProps.sizeOfStructLength-
Field, sizeOfArrayLengthField or sizeOfStringLengthField. c()

[SWS_CM_90444]{DRAFT} d If TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.isDynami-
cLengthFieldSize is set to true, the transformer shall use wire types 5,6,7
for serializing complex types and shall chose the size of the length field according to
this wire type. c()

[SWS_CM_90445]{DRAFT} d A deserializer shall always be able to handle the wire
types 4, 5, 6 and 7 independent of the setting of TransformationPropsToSer-
viceInterfaceElementMappingSet.mapping.transformationProps.isDy-
namicLengthFieldSize. c()

[SWS_CM_90446]{DRAFT} d If a Data ID is defined for an ArgumentDataPro-
totype or CppImplementationDataType by means of TransformationProp-
sToServiceInterfaceElementMappingSet.TlvDataIdDefinition.id, a tag
shall be inserted in the serialized byte stream. c()

Note: regarding existence of Data IDs, refer to [6].

[SWS_CM_90447]{DRAFT} d If the datatype of the serialized member / argument is
a basic datatype (wire types 0-3) and a Data ID is configured, the tag shall be inserted

78 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

directly in front of the member/argument. No length field shall be inserted into the
serialized stream. c()

[SWS_CM_90448]{DRAFT} d If the datatype of the serialized member/argument is not
a basic datatype (wire type 4-7) and a Data ID is configured, the tag shall be inserted
in front of the length field. c()

[SWS_CM_90449]{DRAFT} d If the datatype of the serialized member/argument is
not a basic datatype and a Data ID is configured, a length field shall always be inserted
in front of the member/argument. c()

Rationale: The length field is required to skip unknown members/arguments during
deserialization.

[SWS_CM_90450]{DRAFT} d The length field shall always contain the length up to
the next tag of the struct, but does not include the tag size and length field size itself. c
()

[SWS_CM_90451]{DRAFT} d TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder shall
define the byte order for the length field. c()

[SWS_CM_90452]{DRAFT} d TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.byteOrder is
not defined, a byte order of mostSignificantByteFirst shall be used for the length field.
c()

[SWS_CM_90453]{DRAFT} d If the member itself is of type struct, there shall be ex-
actly one length field. c()

[SWS_CM_90454]{DRAFT} d If the member itself is of type dynamic length string,
there shall be exactly one length field. c()

[SWS_CM_90455]{DRAFT} d If the member itself is of type fixed length string, there
shall be exactly one length field corresponding to dynamic length strings. c()

Note: When serialized without tag, fixed length strings do not have a length field. For
the serialization with tag, a length field is also required for fixed length strings in the
same way as for dynamic length strings.

[SWS_CM_90456]{DRAFT} d If the member itself is of type array or vector, there shall
be exactly one length field. c()

[SWS_CM_90457]{DRAFT} d If the member itself is of type fixed length array, there
shall be exactly one length field corresponding to dynamic length arrays. c()

[SWS_CM_90467]{DRAFT} d If the member itself is of type associative map, there
shall be exactly one length field. c()

[SWS_CM_90458]{DRAFT} d If the member itself is of type Variant, there shall be
exactly one length field. The length field is added with a size of 8,16 or 32 bit. c()

79 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90459]{DRAFT} d If the member itself is of type Variant, the length field
shall cover the size of the type field, data and padding bytes. c()

Note: For the serialization without tags, the length field of Variants does not cover the
type field. For the serialization with tags, it is required that the complete content of the
serialized Variant is covered by the length field.

[SWS_CM_90460]{DRAFT} d A member of a non-extensible (standard) struct which is
of type extensible struct, shall be serialized according to the requirements for extensible
structs. c()

[SWS_CM_90461]{DRAFT} d A member of an extensible struct which is of type non-
extensible (standard) struct, shall be serialized according to the requirements for stan-
dard structs. c()

[SWS_CM_90462]{DRAFT} d For extensible structs and extensible methods no align-
ment shall be applied. c()

Rationale: When alignment greater 8 bits is used, the serializer may add padding bytes
after variable length data. The padding bytes are not covered by the length field. If the
receiver does not know the Data ID of the member, it also does not know that it is
variable length data and that there might be padding bytes.

[SWS_CM_90463]{DRAFT} d The serializer shall not include optional members in the
serialized byte stream if the has_value() method of the member returns false. c()

[SWS_CM_90464]{DRAFT} d If optional members are not available in the serialized
byte stream, the deserializer shall mark the member as not available using the reset()
method. c()

[SWS_CM_90465]{DRAFT} d If the deserializer reads an unknown Data ID (i.e. not
contained in its data definition), it shall skip the unknown member/argument by using
the information of the wire type and length field. c()

[SWS_CM_90466]{DRAFT} d If the deserializer cannot find a required (i.e. non-
optional) member defined in its data definition in the serialized byte stream, the de-
serialization shall be aborted and Unchecked Exception shall be raised. c()

For examples, please refer to [5].

7.4.1.7.6 Strings

[SWS_CM_10053]{DRAFT} d Strings shall be encoded using Unicode and ter-
minated with a "\0"-character. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10054]{DRAFT} d Different Unicode encoding shall be supported includ-
ing UTF-8, UTF-16BE, and UTF-16LE. Since these encoding have a dynamic length
of bytes per character, the maximum length in bytes is up to three times the length of
characters in UTF-8 plus 1 Byte for the termination with a "\0" or two times the length of

80 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

the characters in UTF-16 plus 2 Bytes for a "\0". UTF-8 character can be up to 6 bytes
and an UTF-16 character can be up to 4 bytes. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10285]{DRAFT} Responsibility of proper string encoding d The appli-
cation provides the string always in the UTF-8 encoding. The SOME/IP binding has
to re-encode the data to the on-the-wire encoding that is configured by ApSomeip-
TransformationProps.stringEncoding. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10055]{DRAFT} d UTF-16LE and UTF-16BE strings shall be zero termi-
nated with a "\0" character. This means they shall end with (at least) two 0x00 Bytes. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10056]{DRAFT} d UTF-16LE and UTF-16BE strings shall have an even
length. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10057]{DRAFT} d For UTF-16LE and UTF-16BE strings having an odd
length the last byte shall be silently removed by the receiving SOME/IP network bind-
ing. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10248]{DRAFT} d In case of UTF-16LE and UTF-16BE strings having an
odd length, after removal of the last byte, the two bytes before shall be 0x00 bytes (ter-
mination) for a string to be valid. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10058]{DRAFT} d All strings shall always start with a Byte Order Mark
(BOM). c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

For the specification of BOM, see [14] and [15]. Please note that the BOM is used in
the serialized strings to achieve compatibility with Unicode.

[SWS_CM_10059]{DRAFT} d The receiving SOME/IP network binding implementa-
tion shall check the BOM and handle a missing BOM or a malformed BOM as an
error by discarding the complete payload and logging the incident (if logging is enabled
for the ara::com implementation). c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10060]{DRAFT} d The BOM shall be added by the SOME/IP sending
network binding implementation. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10242]{DRAFT} Model representation of UTF-8 Strings d An UTF-8
String shall be represented by an CppImplementationDataType

• with category equal to STRING

• which may be mapped to an ApplicationDataType with category equal to
STRING using a DataTypeMap

81 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• with ApplicationPrimitiveDataType.swDataDefProps.sw-
TextProps.baseType.baseTypeDefinition.baseTypeEncoding set
to UTF-8 in case that the DataTypeMap is defined.

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

Please note that according to [constr_1674] the only supported encoding of CppIm-
plementationDataType with category equal to STRING is UTF-8.

According to SOME/IP serialized strings start with a length field of 8, 16 or 32 bit which
preceeds the actual string data. The value of this length field holds the length of the
string including the BOM and any string termination in units of bytes.

[SWS_CM_10271]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfStringLengthField is set
to a value greater 0, a length field shall be inserted in front of the serialized string
for which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10272]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of
the serialized string for which the ApSomeipTransformationProps is de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10273]{DRAFT} d If attribute TransformationPropsToServi-
ceInterfaceElementMappingSet.mapping.transformationProps.size-
OfStringLengthField is set to a value greater 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField is not set, a length field shall be inserted in front of the
serialized struct for which the ApSomeipTransformationProps is defined via
SomeipDataPrototypeTransformationProps.someipTransformation-
Props. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10274]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder
is set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, the attribute Transformation-
PropsToServiceInterfaceElementMappingSet.mapping.transformation-
Props.byteOrder shall define the byte order for the length field that shall be inserted
in front of the serialized string for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

82 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10275]{DRAFT} d If attribute TransformationPropsToServi-
ceInterfaceElementMappingSet.mapping.transformationProps.size-
OfStringLengthField is not set or set a value of 0 and attribute SomeipDat-
aPrototypeTransformationProps.someipTransformationProps.sizeOf-
StringLengthField is not set or set to a value of 0, a length field of 4 bytes with the
data type uint32 shall be inserted in front of the serialized string. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10276]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder is
not set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, a byte order of mostSignificant-
ByteFirst (i.e., big endian) shall be used for the length field that shall be inserted
in front of the serialized string. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10277]{DRAFT} d If SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfStringLengthField defines the
the data type for the length field of a string, the data shall be:

• uint8 if sizeOfStringLengthField equals 1

• uint16 if sizeOfStringLengthField equals 2

• uint32 if sizeOfStringLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10278]{DRAFT} d If TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOf-
StringLengthField defines the the data type for the length field of a string, the
data shall be:

• uint8 if sizeOfStringLengthField equals 1

• uint16 if sizeOfStringLengthField equals 2

• uint32 if sizeOfStringLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10245]{DRAFT} Serialization of strings d Serialization of strings shall
consist of the following steps:

1. Add the Length Field - The value of the length field shall be filled
with the number of bytes needed for the string (i.e., the result of
ara::core::String::length()), including the BOM and any string termi-
nation that needs to be added.

2. Appending BOM right after the length field according to the configured Ap-
SomeipTransformationProps.byteOrder, if BOM is not already available

83 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

in the first 3 (UTF-8) bytes of the to be serialized array containing the string. If
the BOM is already present, simply copy the BOM into the output buffer.

3. Perform the re-encoding from UTF-8 to UTF-16 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-8 to UTF-16BE shall be done if the configured
ApSomeipTransformationProps.byteOrder is set to mostSignificant-
ByteFirst. The re-encoding rom UTF-8 to to UTF-16LE shall be done if the
configured ApSomeipTransformationProps.byteOrder is set to mostSig-
nificantByteLast.

4. Copying the string data into the output buffer.

5. Termination of the string with 0x00(UTF-8) or 0x0000 (UTF-16) if not terminated
yet by appending 0x00(UTF-8) or 0x0000 (UTF-16).

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10247]{DRAFT} Deserialization of strings d Deserialization of strings
shall consist of the following steps:

1. Check whether the string starts with a BOM. If not, the complete payload shall be
discarded and the incident shall be logged (if logging is enabled for the ara::com
implementation).

2. Check whether BOM has the same value as ApSomeipTransformation-
Props.byteOrder. If not, error handling shall be performed according to
[SWS_CORE_00001].

3. Remove the BOM

4. Silently discard the last byte of the string in case of an UTF-16 string with odd
length (in bytes)

5. Check whether the string terminates with 0x00 (UTF-8) or 0x0000 (UTF-16). If
not, error handling shall be performed according to [SWS_CORE_00001].

6. Perform the re-encoding from UTF-16 to UTF-8 if the on-the-wire encoding is
configured as UTF-16 by ApSomeipTransformationProps.stringEncod-
ing. The re-encoding from UTF-16BE to UTF-8 shall be done if the configured
ApSomeipTransformationProps.byteOrder is set to mostSignificant-
ByteFirst. The re-encoding from UTF-16LE to UTF-8 shall be done if the
configured ApSomeipTransformationProps.byteOrder is set to mostSig-
nificantByteLast.

7. Copy the string data (i.e., everything but the BOM and any string termination
added during serialization).

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

84 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7.4.1.7.7 Vectors and arrays

SOME/IP supports arrays with static and dynamic length but there is no definition of
vectors on this abstraction level. Therefore, vectors are mapped to arrays with dynamic
length. The SOME/IP specification requires to add a length field of 8, 16 or 32 bit in
front of data structures with dynamic length. The length field of arrays describes the
total number of bytes. Note that this section uses only the term array which can also
be used to realize vectors.

[SWS_CM_00257]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfArrayLengthField is set to
a value equal to 0, no length field shall be inserted in front of the serialized ar-
ray for which the ApSomeipTransformationProps is defined via SomeipDat-
aPrototypeTransformationProps.someipTransformationProps. – Note
that omitting the length field by setting someipTransformationProps.sizeO-
fArrayLengthField to 0 is only allowed for arrays with static length (i.e., fixed
length arrays) though (see also [constr_3447]). c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10256]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfArrayLengthField is set to
a value greater 0, a length field shall be inserted in front of the serialized array for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10279]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of
the serialized array for which the ApSomeipTransformationProps is de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00258]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value equal to 0 and attribute SomeipDataPro-
totypeTransformationProps.someipTransformationProps.sizeOfAr-
rayLengthField is not set, no length field shall be inserted in front of the serialized
array for which the ApSomeipTransformationProps is defined via SomeipDat-
aPrototypeTransformationProps.someipTransformationProps. – Note
that omitting the length field by setting someipTransformationProps.sizeO-
fArrayLengthField to 0 is only allowed for arrays with static length (i.e., fixed
length arrays) though (see also [constr_3447]). c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

85 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00259]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value greater 0 and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.sizeOfArrayLength-
Field is not set, a length field shall be inserted in front of the serialized array for
which the ApSomeipTransformationProps is defined via SomeipDataProto-
typeTransformationProps.someipTransformationProps. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10280]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder
is set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, the attribute Transformation-
PropsToServiceInterfaceElementMappingSet.mapping.transformation-
Props.byteOrder shall define the byte order for the length field that shall be inserted
in front of the serialized array for which the ApSomeipTransformationProps is
defined via SomeipDataPrototypeTransformationProps.someipTransfor-
mationProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10258]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is not set and attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.sizeOfArrayLengthField is not
set, a length field of 4 bytes with the data type uint32 shall be inserted in front of the
serialized array. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10281]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder is
not set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, a byte order of mostSignificant-
ByteFirst (i.e., big endian) shall be used for the length field that shall be inserted
in front of the serialized array. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10257]{DRAFT} d If SomeipDataPrototypeTransformation-
Props.someipTransformationProps.sizeOfArrayLengthField defines the
the data type for the length field of a array, the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00260]{DRAFT} d If TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField defines the the data type for the length field of a array, the
data shall be:

86 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10076]{DRAFT} d A array shall be serialized as the concatenation of the
following elements:

• the length indicator which holds the length (in bytes) of the following array

• the array which contains the serialized elements of the array

where the size of the length field shall be determined as specified by ApSomeip-
TransformationProps.sizeOfArrayLengthField which applies to the array c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10234]{DRAFT} d A vector is represented in adaptive platform by a Cp-
pImplementationDataType with the category VECTOR. The payload is defined by a
templateArgument that points with the templateType reference to the data type of
elements that are contained in the vector. Note that vectors are realized with dynamic
sized arrays on SOME/IP level. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10235]{DRAFT} d An array is represented in adaptive platform by an Cp-
pImplementationDataType with the category ARRAY. The payload is defined by a
templateArgument that points with the templateType reference to the data type of
elements that are contained in the array. Note that CppImplementationDataType
with the category ARRAY are realized with fixed length arrays on SOME/IP level. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

In case of nested arrays, the same scheme applies.

[SWS_CM_10222]{DRAFT} d The serializing SOME/IP network binding shall write the
size (in bytes) of the serialized array (without the size of the length field) into the length
field. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

The layout of arrays with dynamic length is shown in 7.8 and Figure 7.9 where L_1
and L_2 denote the length in bytes. The serialization of one- and multi-dimensional
dynamic length arrays is described in the next two subchapters.

One-dimensional

A one-dimensional array carries a number of elements of the same type.

87 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Element_1

…

element size e

n [byte]

Length n

8,16 or 32 bit

Element_2 Element_3 Element_n

Figure 7.8: One-dimensional arrays (Example)

[SWS_CM_10070]{DRAFT} d A one-dimensional array shall be serialized by
concatenating the arrays elements in order. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

Multi-dimensional

[SWS_CM_10072]{DRAFT} d The serialization of multi-dimensional arrays shall
happen in depth-first order. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

Element_a[1][j…k_1]

L_1 [byte]

Length n

8,16 or 32 bit

E1,1 E1,2 E1,k_1 …
L_1

Element_a[2][j…k_2]

E1,1 E1,2 E1,k_2 …
L_2 …

L_2 [byte]

n [byte]

Figure 7.9: Multi-dimensional arrays (Example)

In case of multi-dimensional dynamic length arrays, each array (serialized as SOME/IP
array) needs to have its own length field. See L_1 and L_2 in Figure 7.9.

7.4.1.7.8 Associative Maps

Associative map is modeled as StdCppImplementationDataType with cate-
gory ASSOCIATIVE_MAP in the Manifest. As stated in the AUTOSAR Manifest
Specification [6] the “natural” language binding in C++ for an associative map is
ara::core::Map<key_type,value_type> where key_type is the data type
used for the key of a map element and value_type is the data type for the value
of a map element. Hereby key_type and value_type are derived from defined
CppTemplateArguments aggregated by the Associative Map Cpp Implemen-
tation Data Type. Please see [SWS_CM_00409] for more details.

88 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10261]{DRAFT} Serialization of an associative map d As far as serial-
ization is concerned the serialized representation of an associative map shall consist
of the following parts without any intermediate padding:

• Length field: A length field describing the size of the associative map excluding
the length field itself in units of bytes.

• Elements: The individual map elements themselves

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10262]{DRAFT} Insertion of an associative map length field d
If attribute SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps.sizeOfArrayLengthField is set to a value greater 0, a length field
shall be inserted in front of the serialized associative map for which the ApSomeip-
TransformationProps is defined via SomeipDataPrototypeTransformation-
Props.someipTransformationProps. – Note that omitting the length field by
setting someipTransformationProps.sizeOfArrayLengthField to 0 is only
allowed for arrays with static length (i.e., fixed length arrays) though (see also
[constr_3447]). c(RS_CM_00204, RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10282]{DRAFT} d If attribute SomeipDataPrototypeTransforma-
tionProps.someipTransformationProps.byteOrder is set this attribute shall
define the byte order for the length field that shall be inserted in front of the se-
rialized associative map for which the ApSomeipTransformationProps is de-
fined via SomeipDataPrototypeTransformationProps.someipTransforma-
tionProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00264]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField is set to a value greater 0 and attribute SomeipDataPrototype-
TransformationProps.someipTransformationProps.sizeOfArrayLength-
Field is not set, a length field shall be inserted in front of the serialized associative
map for which the ApSomeipTransformationProps is defined via SomeipDat-
aPrototypeTransformationProps.someipTransformationProps. – Note
that omitting the length field by setting someipTransformationProps.sizeO-
fArrayLengthField to 0 is only allowed for arrays with static length (i.e., fixed
length arrays) though (see also [constr_3447]). c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10283]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder
is set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, the attribute Transformation-
PropsToServiceInterfaceElementMappingSet.mapping.transformation-
Props.byteOrder shall define the byte order for the length field that shall be inserted

89 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

in front of the serialized associative map for which the ApSomeipTransformation-
Props is defined via SomeipDataPrototypeTransformationProps.someip-
TransformationProps. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

[SWS_CM_10267]{DRAFT} Insertion of an associative map length field
d If attribute TransformationPropsToServiceInterfaceElementMap-
pingSet.mapping.transformationProps.sizeOfArrayLengthField is not
set and attribute SomeipDataPrototypeTransformationProps.someipTrans-
formationProps.sizeOfArrayLengthField is not set, a length field of 4 bytes
with the data type uint32 shall be inserted in front of the serialized associative map. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10284]{DRAFT} d If attribute TransformationPropsToServiceIn-
terfaceElementMappingSet.mapping.transformationProps.byteOrder is
not set and attribute SomeipDataPrototypeTransformationProps.someip-
TransformationProps.byteOrder is not set, a byte order of mostSignifi-
cantByteFirst (i.e., big endian) shall be used for the length field that shall be in-
serted in front of the serialized associative map. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10264]{DRAFT} Size of the associative map length field d If Someip-
DataPrototypeTransformationProps.someipTransformationProps.size-
OfArrayLengthField defines the the data type for the length field of an associative
map, the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_00265]{DRAFT} d If TransformationPropsToServiceInter-
faceElementMappingSet.mapping.transformationProps.sizeOfAr-
rayLengthField defines the the data type for the length field of an associative map,
the data shall be:

• uint8 if sizeOfArrayLengthField equals 1

• uint16 if sizeOfArrayLengthField equals 2

• uint32 if sizeOfArrayLengthField equals 4

c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10265]{DRAFT} Serialization of associative map elements d The in-
dividual elements of the associative map shall be serialized as a sequence of key-
value pairs without any additional intermediate padding. Hereby the key attribute of
an element shall be serialized first followed by the value attribute of this element. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

90 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Table 7.3 illustrates the serialized form of an example map consisting of 3 elements
where each element consists of a key-value pair of type uint16 each. The sizeO-
fArrayLengthField is set to 4 bytes.

length field = 4 Bytes
key0 value0
key1 value1
key2 value2

Table 7.3: Example of a serialized associative map

[SWS_CM_10266]{DRAFT} Applicability of mandatory padding after variable
length data elements d Any mandatory padding after variable length data elements
according to [TPS_MANI_03104] shall be applied after the serialized key attribute
as well as after the value attribute in case the respective attributes is typed by a
variable length data type. This requirement does not apply for the serialization of
extensible structs and methods. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211) (see chapter 7.4.1.7.4)

Note: Adhering to [SWS_CM_10266] is essential to ensure interoperability with the
AUTOSAR classic platform where maps may be modelled as ApplicationAr-
rayDataType with a dynamicArraySizeProfile of VSA_LINEAR where each
array element is an ApplicationRecordDataType of variable length and thus
[TPS_SYST_02126] applies to the individual ApplicationRecordElements.

7.4.1.7.9 Variants

A Variant (type-safe union) can contain different types of elements. For example, if one
defines a Variant of type uint8 and type uint16, the Variant shall carry an element of
uint8 or uint16. When using different types of elements the alignment of subsequent
parameters may be distorted. To resolve this, padding might be needed.

[SWS_CM_10088]{DRAFT} d The default serialization layout of Variants are specified
by the union data type in SOME/IP which is shown in Table 7.4. c(RS_CM_00201,
RS_CM_00202, RS_CM_00211)

Length field (optional)
Type field
Element including padding [sizeof(padding) = length - sizeof(element)]

Table 7.4: Default serialization layout of unions (Variants)

SOME/IP allows to add a length field of 8, 16 or 32 bit in front of unions (Variants). The
length field of a union (Variant) describes the number of bytes in the union (Variant).

This allows the deserializing network binding to quickly calculate the position where the
data after the union (Variant) begin in the serialized data stream. This gets necessary
if the union (Variant) contains data which are larger than expected, for example if a

91 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

struct was extended with appended new members and only the first "old" members are
deserialized by the SOME/IP network binding.

[SWS_CM_10254]{DRAFT} d If attribute sizeOfUnionLengthField of Ap-
SomeipTransformationProps is set to a value greater 0, a length field shall be
inserted in front of the serialized Variant for which the ApSomeipTransformation-
Props is defined. c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10255]{DRAFT} d If ApSomeipTransformationProps.sizeOfU-
nionLengthField is present for a Variant specified the data type of the length field
for the Variant shall be determined by the value of ApSomeipTransformation-
Props.sizeOfUnionLengthField:

• uint8 if sizeOfUnionLengthField equals 1

• uint16 if sizeOfUnionLengthField equals 2

• uint32 if sizeOfUnionLengthField equals 4

c(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10226]{DRAFT} d The serializing SOME/IP network binding shall write the
size (in bytes) of the serialized Variant (including padding bytes but without the size of
the length field and type field) into the length field of the Variant. This requirement does
not apply for the serialization of extensible structs and methods. c(RS_CM_00201,
RS_CM_00202, RS_CM_00211) (see chapter 7.4.1.7.4)

[SWS_CM_10227]{DRAFT} d If the length is greater than the expected length of a
Variant a deserializing SOME/IP network binding shall only interpret the expected data
and skip the unexpected. c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

To determine the start of the next expected data following the skipped unexpected part,
the SOME/IP network binding can use the supplied length information.

The type field describes the type of the element. The length of the type field can be 32,
16, 8 or 0 bits.

[SWS_CM_10250]{DRAFT} d The data type of the type field of a Variant shall be de-
termined using the ara::core::Variant::index() member function. The Variant
template class is specified in [16]. c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10251]{DRAFT} d The value of the type field shall be set to the value
which is returned by the ara::core::Variant::index() member function and
incremented by 1.
Note: The ara::core::Variant::index() member function returns a zero-based
index of the element hold in the Variant. A negative index represents a valueless
Variant. c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_10098]{DRAFT} d Possible values of the type field are defined by the ele-
ments of the Variant. The types are encoded in ascending order starting with 1 reusing
the index encoding format of the Variant incremented by 1. The encoded value 0

92 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

is reserved for the NULL type - i.e. a valueless (empty) Variant. c(RS_CM_00201,
RS_CM_00202, RS_CM_00211)

[SWS_CM_10099]{DRAFT} d The element is serialized depending on the type in the
type field. This also defines the length of the data. All bytes behind the data that are
covered by the length, are padding. The deserializer shall skip the padding bytes by
calculating the required number according to the formula given in [SWS_CM_10088].
c(RS_CM_00201, RS_CM_00202, RS_CM_00211)

7.4.1.7.9.1 Example: Variant of uint8/uint16 both padded to 32 bit

In this example a length of the length field is specified as 32 bits. The Variant shall
support a uint8 and a uint16 as elements. Both are padded to the 32 bit boundary
(length=4 Bytes).

A uint8 will be serialized like this:

Length = 4 Bytes
Type = 1
uint8 Padding 0x00 Padding 0x00 Padding 0x00

A uint16 will be serialized like this:

Length = 4 Bytes
Type = 2
uint16 Padding 0x00 Padding 0x00

7.4.2 Signal-Based Network binding

The applications on the adaptive platform communicate with each other in a service-
oriented manner. When exchanging information with software components executed
on an AUTOSAR classic platform which make use of signal-based communication,
a conversion between this signal-based communication and the service-oriented com-
munication needs to take place. Hereby the signals of a received signal-based commu-
nication is being made available as elements of a provided ServiceInterface. The
signals of a sent signal-based communication are being made available as elements of
a required ServiceInterface. The conversion between signal-based communica-
tion and service-oriented communication may be performed by a software component
on an AUTOSAR classic platform gateway ECU or by an adaptive application on an
AUTOSAR adaptive platform ECU.

Note: Behavioral details of this signal-based “network binding” are currently not spec-
ified in this specification. The actual implementation is completely proprietary. Details
on serialization, timing and transmission/reception behavior, however, can be found in
the specifications of the AUTOSAR Classic Platform.

93 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

The modeling of the signal-based communication and the mapping between the indi-
vidual elements of a ServiceInterface to the corresponding ISignalTrigger-
ings is defined in the chapter “Signal-based communication” in [6].

[SWS_CM_10174]{DRAFT} Mix of signal-based and SOME/IP communication d
A combination of signal-based network binding and SOME/IP network binding shall
be possible in a way to support the reception of a mix of signal-based communication
and SOME/IP communication within a single UDP datagram or a single TCP stream on
one UDP/TCP socket. Such a mix can occur when using [17] with enabled PDU-header
option on the sender side. c(RS_CM_00204)

7.4.3 DDS Network binding

[SWS_CM_11000]{DRAFT} d The DDS network binding shall comply with the DDS
Minimum Profile defined in [18], the DDS Wire Interoperability protocol (RTPS) defined
in [19], and the DDS-XTYPES Minimal Programming Interface and Network Interoper-
ability Profiles defined in [20]. c(RS_CM_00204)

7.4.3.1 Service Discovery

[SWS_CM_11001]{DRAFT} Mapping of OfferService method d When instructed to
offer a Service, the DDS Binding shall perform the following operations:

• [SWS_CM_11002] It shall assign a DDS DomainParticipant to the Service In-
stance.

• [SWS_CM_11003] It shall assign a DDS Topic and a DDS DataWriter to ev-
ery VariableDataPrototype defined in the ServiceInterface in the role
event.

• [SWS_CM_11029] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DataReader, to provide ac-
cess to all ClientServerOperations defined in the ServiceInterface the
role method.

• [SWS_CM_11030] It shall assing a DDS Topic and a DDS DataWriter to every
Field defined in the ServiceInterface in the role field with its hasNoti-
fier attribute set to true.

• [SWS_CM_11031] It shall assign a DDS Request Topic and a DDS Reply Topic,
and create their corresponding DDS DataWriter and DDS DataReader, to provide
access to all the Fields defined in the ServiceInterface in the role field
with hasGetter and/or hasSetter attributes set to true via getter/setter invo-
cation.

• [SWS_CM_11004] It shall add the Service and Service Instance IDs to the DDS
DomainParticipant’s USER_DATA QoS Policy.

94 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11002]{DRAFT} Assigning a DDS DomainParticipant to a Service In-
stance d The DDS Binding shall assign a DDS DomainParticipant to every Ser-
vice Instance. The configuration of the DomainParticipant is described in the
TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsProvidedServiceInstance element defines the qosProfile.

Before creating a new DomainParticipant, the DDS binding shall first look for existing
DomainParticipants in the current process that match the configuration criteria speci-
fied above3. If the search is successful, the binding shall assign the DomainParticipant
found to the Service4; otherwise, the binding shall create a new DomainParticipant
according to the desired configuration and assign it to the Service.

Once the DomainParticipant is available to the Service Instance, the binding implemen-
tation shall create a DDS Publisher and a DDS Subscriber to enclose all DataWriters
and DataWriters associated with the Instance. The Partition QoS of both the DDS
Publisher and DDS Subscriber shall contain the following partition name:

"ara.com://services/<svcId>_<svcInId>"

Where:

<svcId> is the Service Id derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfaceId.

<svcInId> is the Instance Id derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

Publisher and Subscriber objects may be reused across events and other resources
provided by the Service Instance; therefore, they shall not be removed until the enclos-
ing DomainParticipant is destroyed.

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11003]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Event in the ServiceInterface d The DDS binding shall assign a DDS Topic to
every event in the ServiceInterface according to the mapping rules specified
in [SWS_CM_11015]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required

3The DDS APIs that provide the ability to find existing DomainParticipants search in the scope of the
address space of the current process—only local DomainParticipants may be reused.

4The rules specified in this binding ensure the creation of only one DomainParticipant for a given
Domain and set of QoS settings (qosProfile).

95 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the event as defined in [SWS_CM_11015].

Once all DDS Topics representing the events in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per event using the DDS Publisher created in
[SWS_CM_11002]. The DataWriter shall be configured according to the qosProfile
specified in the associated DdsEventQosProps.

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. c(RS_CM_00204,
RS_CM_00200, RS_CM_00101)

[SWS_CM_11029]{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Methods in the ServiceInterface d The DDS
binding shall instantiate a DDS Service [21] to handle requests to all the methods in
the ServiceInterface.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service that handles those method calls according to the mapping rules spec-
ified in [SWS_CM_11100]. Since these DDS Topics may already be available in the
DomainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the service
shall first look for existing Topics in the DomainParticipant matching the required crite-
ria. If the search is unsuccessful, the DomainParticipant shall create new DDS Request
and Reply Topics to represent the DDS Service as specified in [SWS_CM_11100].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

• [SWS_CM_11106] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

• [SWS_CM_11107] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. c(RS_CM_00204,
RS_CM_00200, RS_CM_00101) The handling of method calls with DDS is specified
in 7.4.3.3.

[SWS_CM_11030]{DRAFT} Assigning a DDS Topic and a DDS DataWriter to ev-
ery Field in the ServiceInterface with its hasNotifier attribute equal to true d The
DDS binding shall assign a DDS Topic to every field in the ServiceInterface
with its hasNotifier attribute set to true according to the mapping rules specified
in [SWS_CM_11130]. Since these DDS Topics may already be available in the Do-
mainParticipant assigned to the Service Instance (e.g., because a different Service
Instance assigned to the same DomainParticipant may have created them), the ser-
vice shall first look for existing Topics in the DomainParticipant matching the required

96 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

criteria. If the search is unsuccessful, the DomainParticipant shall create a new DDS
Topic to represent the field as defined in [SWS_CM_11130].

Once all DDS Topics representing the fields in the ServiceInterface are ready
for use, the DomainParticipant assigned to the Service Instance shall create one DDS
DataWriter of the equivalent Topic per field with the hasNotifier attribute set to
true using the DDS Publisher created in [SWS_CM_11002]. The DataWriter shall
be configured according to the qosProfile specified in the associated DdsField-
QosProps.

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. c(RS_CM_00204,
RS_CM_00200, RS_CM_00101)

[SWS_CM_11031]{DRAFT} Assigning a DDS Request and Reply Topic, and
DataWriters and DataReaders, to the Field Getters/Setters in the ServiceInter-
face d The DDS binding shall instantiate a DDS Service [21] to handle get/set requests
to all the fields in the ServiceInterface with hasGetter and/or hasSetter set
to true.

In practice, this implies assigning a DDS Request Topic and a DDS Reply Topic to the
DDS Service according to the mapping rules specified in [SWS_CM_11144]. Since
these DDS Topics may already be available in the DomainParticipant assigned to the
Service Instance (e.g., because a different Service Instance assigned to the same Do-
mainParticipant may have created them), the service shall first look for existing Topics
in the DomainParticipant matching the required criteria. If the search is unsuccessful,
the DomainParticipant shall create new DDS Request and Reply Topics to represent
the DDS Service as specified in [SWS_CM_11144].

Once the corresponding DDS Request and Reply Topics are ready for use, the Do-
mainParticipant assigned to the Service Instance shall create:

• [SWS_CM_11149] A DDS DataReader of the DDS Request Topic to handle re-
quests using the DDS Subscriber created in [SWS_CM_11002].

• [SWS_CM_11150] A DDS DataWriter of the DDS Reply Topic to handle replies
using the DDS Publisher created in [SWS_CM_11002].

Topic objects may be reused across service instances; therefore, they shall not
be removed until the enclosing DomainParticipant is destroyed. c(RS_CM_00204,
RS_CM_00200, RS_CM_00101) The handling of fields with DDS is specified in sec-
tion 7.4.3.4.

[SWS_CM_11004]{DRAFT} Adding Service and Service Instance IDs to the DDS
DomainParticipant’s USER_DATA QoS Policy d The binding implementation shall
configure the USER_DATA QoS Policy of the DDS DomainParticipant associated with
the Service Instance to propagate the Service and Instance IDs using the native DDS
discovery mechanisms defined in [19]. The USER_DATA QoS Policy appends a user-
defined value to the DomainParticipant’s discovery messages. This information shall

97 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

be used by ara::com Clients and DDS native applications to identify a DomainPartici-
pant as an “ara::com DomainParticipant” that provides one or more Service Instances.

Service and Service Instance IDs shall be encoded in the USER_DATA QoS Policy in
string format according to the following pattern:

"ara.com://services/<svcId>_<svcInId>[&<svcId>_<svcInId>]*"

Where:

<svcId> is the Service Id derived from the Manifest, where the DdsServiceInter-
faceDeployment element defines the serviceInterfaceId.

<svcInId> is the Instance Id derived from the Manifest, where the DdsProvided-
ServiceInstance element defines the serviceInstanceId.

Because a DomainParticipant may be associated with one or more Service Instances,
the syntax specified above allows appending one or more <svcId>_<svcInId> pairs
to the USER_DATA QoS:

• If USER_DATA QoS is empty, the binding implementation shall set it to
"ara.com://services/<svcId>_<svcInId>".

• Else, if USER_DATA QoS is not empty, the binding implementation shall append
the Service Id and Instance Id to the current value preceded by an ampersand
symbol (i.e., "&<svcId>_<svcInId>").

c(RS_CM_00204, RS_CM_00200, RS_CM_00101)

[SWS_CM_11005]{DRAFT} Mapping of StopOfferService method d When in-
structed to stop offering a Service, the DDS Binding shall perform the following op-
erations:

• It shall remove the appropriate Service and Instance IDs from the USER_DATA
QoS Policy of the DDS DomainParticipant assigned to the Service Instance.

• It shall remove all DDS DataWriters associated with events in the ServiceIn-
terface created in previous calls to the OfferService() method.

• It shall remove all DDS DataWriters and DataReaders associated with the
ClientServerOperations defined in the role method created in previous
calls to the OfferService() method.

• It shall remove all DDS DataWriters associated with fields in the ServiceIn-
terface with their hasNotifier attribute set to true created in previous calls
to the OfferService() method.

• It shall remove all DDS DataWriters and DataReaders associated with the
fields in the ServiceInterface with hasGetter and/or hasSetter at-
tributes set to true created in previous calls to the OfferService() method.

c(RS_CM_00204, RS_CM_00105)

98 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11006]{DRAFT} Mapping of FindService method d When instructed to
find remote Services, the DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Services Instances. If such DomainParticipant does not exist, the
DDS binding shall create a new one as specified in [SWS_CM_11008].

• [SWS_CM_11009] It shall iterate the list of discovered remote DomainPartici-
pants and look for those associated to Service Instances that match the filter
criteria specified in the FindService() call.

• It shall return a HandleType object for every Service Instance that matches the
filter criteria. The Handle object shall contain a reference to both the Domain-
Participant that was used in the discovery phase and the DDS Publisher and
Subscriber created to match the partition of the remote service instance (see
[SWS_CM_11009]), so that they can be used to create the appropriate DataWrit-
ers and DataReaders to handle remote communication.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11007]{DRAFT} Finding a DDS DomainParticipant suitable for per-
forming client-side operations d The DDS binding shall provide client-side methods
with a DDS DomainParticipant capable of discovering and communicating with remote
DDS DomainParticipants assigned to the requested Service Instance(s). The configu-
ration of the DomainParticipant is described in the TPS_ManifestSpecification:

• The Domain ID of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the domainId.

• The QoS Profile of the DomainParticipant shall be derived from the Manifest,
where the DdsRequiredServiceInstance element defines the qosProfile.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11008]{DRAFT} Creating a DDS DomainParticipant suitable for per-
forming client-side operations d To create a DomainParticipant capable of dis-
covering and communicating with remote DDS DomainParticipants assigned to Ser-
vice Instances, the binding implementation shall use the configuration parameters
in the TPS_ManifestSpecification described in [SWS_CM_11007]. c(RS_CM_00204,
RS_CM_00200, RS_CM_00102)

[SWS_CM_11009]{DRAFT} Discovering remote Service Instances through DDS
DomainParticipants d DDS DomainParticipants created or retrieved in the context
of Service Discoverty are responsible for discovering remote DomainParticipants as-
signed to ara::com Service Instances.

To retrieve the list of discovered Service Instances, the DDS binding shall iterate first
the list of remote DomainParticipants the DomainParticipant has discovered so far.
This shall be done by calling read() on the DomainParticipant’s built-in DataReader
for the DCPSParticipant Topic. DCPSParticipant is a standard DDS Topic de-
fined in [19] that DomainParticipants use to inform other DomainParticipants of their

99 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

presence in the network. Among other things, DCPSParticipant Topics propagate
the DomainParticipant’s USER_DATA QoS Policy; therefore, these messages provide
all the necessary information to identify remote DomainParticipants associated with
ara::com Service Instances.

The DDS binding shall analyze the content of the USER_DATA QoS of each remote Do-
mainParticipant and check whether they are associated with Service Instances match-
ing the following criteria:

If requiredServiceInstanceId is set to “ANY”, the binding shall return a new
handle for each service instance found in remote DomainParticipants’ USER_DATA
QoS according to the following pattern:

"ara.com://services/.*<svcId>.*"

Else, if requiredServiceInstanceId is set to any value other than “ANY”, the
binding shall return a new handle for every service instance found in remote Domain-
Participants’ USER_DATA QoS according to the following pattern:

"ara.com://services/.*<svcId>_<reqSvcInId>.*"

Where:

<svcId> is the corresponding serviceInterfaceId.

<reqSvcInId> is the corresponding requiredServiceInstanceId.

Before returning new handles, the binding implementation shall ensure that the Do-
mainParticipant used in the discovery phase has one DDS Publisher and one DDS
Subscriber per service instance found matching the filter criteria5. The Partition QoS
of both DDS Publisher and DDS Subscriber shall contain the following partition name
to match the partition in which the DataReaders and DataWriters associated with the
remote service instance are operating (in consonance with [SWS_CM_11002]):

"ara.com://services/<svcId>_<reqSvcInId>"

If the binding implementation does not find a DDS Publisher with the aforementioned
requirements, it shall create a new one and configure the Publisher’s Partition QoS with
the partition name defined above. Likewise, if it does not find a DDS Subscriber with
those requirements, it shall create a new one and configure it accordingly.

Publisher and Subscriber objects may be reused across proxies associated with a
remote service instance; therefore, they shall not be removed until the enclosing Do-
mainParticipant is destroyed.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11010]{DRAFT} Mapping of StartFindService method d When in-
structed to start a continuous service search, the DDS Binding shall perform the fol-
lowing operations:

5These Publishers and Subscribers will be used to enclose all the DDS DataWriters and DataRead-
ers, respectively, that will handle communication with the corresponding remote service instance’s DDS
DataReaders and DataWriters.

100 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable of
finding remote Service Instances. If such DomainParticipant does not exist, the
DDS binding shall create it as specified in [SWS_CM_11008].

• [SWS_CM_11011] It shall define a DDS BuiltinParticipantListener capable of call-
ing the given FindServiceHandler upon the occurrence of any of the following
events:

1. A remote DomainParticipant assigned to a matching Service is discovered.

2. A remote DomainParticipant assigned to a matching Service does not con-
tain the service anymore (i.e., any time a remote DomainParticipant stopped
offering a matching Service by removing it from its USER_DATA QoS).

3. A remote DomainParticipant assigned to a matching Service ceases
to exist (i.e., the instance state is either NOT_ALIVE_DISPOSED or
NOT_ALIVE_NO_WRITERS).

• [SWS_CM_11012] It shall bind the defined BuiltinParticipantListener to the Do-
mainParticipant.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11011]{DRAFT} Defining a DDS BuiltinParticipantListener d The DDS
Binding implementation shall define a BuiltinParticipantListener class to han-
dle notifications whenever a remote DomainParticipant is discovered. This class shall
derive from the standard DataReaderListener class [18], specifying that the data
type of the samples to be handled is ParticipantBuiltinTopicData—the data
type associated with the built-in DataReader for samples of DCPSParticipant Topic
[19].

BuiltinParticipantListener shall implement the following methods according
to the specified instructions:

• A Constructor that takes as a parameter references to a FindServiceHan-
dler and a requiredServiceInstanceId. These references shall be stored
in member variables so that they can be used by subsequent executions of
on_data_available()—which is the method the listener calls every time a
new DomainParticipant is discovered.

• An on_data_available() method that calls FindServiceHandler us-
ing the value of the member variable requiredServiceInstanceId. If
the returned ServiceHandleContainer contains more than one element,
on_data_available() shall invoke FindServiceHandler and pass the
container as a parameter; otherwise the method shall return and perform no
further action.

c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

101 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11012]{DRAFT} Binding a BuiltinParticipantListener to a DDS Do-
mainParticipant d To bind a BuiltinParticipantListener to a DDS Domain-
Participant, the DDS binding implementation shall create a new BuiltinPartici-
pantListener object (see [SWS_CM_11011]) passing FindServiceHandler and
requiredServiceInstanceId to the listener’s constructor. Then service shall then
bind the newly created listener to the DomainParticipant using the set_listener()
method with StatusMask = DATA_AVAILABLE_STATUS6.

The BuiltinParticipantListener shall be removed when the enclosing DomainParticipant
is destroyed. c(RS_CM_00204, RS_CM_00200, RS_CM_00102)

[SWS_CM_11013]{DRAFT} Mapping of StopFindService method d When in-
structed to stop a continuous service search initiated by a previous call to StartFind-
Service(), the DDS Binding shall perform the following operations:

• [SWS_CM_11007] It shall look for an existing DDS DomainParticipant capable
of finding remote Service Instances. If such DomainParticipant does not exist,
StopFindService() shall return and perform no further action.

• [SWS_CM_11014] It shall unbind the BuiltinParticipantListener from
the retrieved DDS DomainParticipant7.

c(RS_CM_00204, RS_CM_00200)

[SWS_CM_11014]{DRAFT} Unbinding a BuiltinParticipantListener from a DDS
DomainParticipant dWhen instructed to unbind a BuiltinParticipantListener
from a DDS DomainParticipant, the DDS binding implementation service shall invoke
the DomainParticipant’s set_listener() method to disable the listener. In that
case, set_listener() shall be called with StatusMask = STATUS_MASK_NONE.
c(RS_CM_00204, RS_CM_00200)

7.4.3.2 Handling Events

[SWS_CM_11015]{DRAFT} Mapping Events to DDS Topics d The DDS binding
shall map every VariableDataPrototype defined in the ServiceInterface in
the role event to a DDS Topic. The equivalent DDS Topic shall be configured as
follows:

• The Topic Name shall be derived from the Manifest, where the DdsEventDe-
ployment element defines the topicName.

• The Topic Data Type shall be defined as specified in [SWS_CM_11008], and shall
be registered under the equivalent data type’s name.

6Note that the syntax of set_listener() and StatusMask is described in terms of the DDS
Platform-Independent Model specified in [18]. Different Platform-Specific Mappings, such as the DDS-
CPP-PSM specified in [22], map these concepts into more language-friendly constructs.

7Note that with the behavior specified for FindService() and StartFindService()—the only
methods capable of creating DomainParticipants—guarantees that the DomainParticipant used by sub-
sequent calls to StartFindService() and StopFindService() will be the same.

102 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00204, RS_CM_00201)

[SWS_CM_11016]{DRAFT} DDS Topic data type definition d The data type of a
DDS Topic representing an Event shall be constructed according to the following IDL
definition8:

1 struct <eventTypeName>EventType {
2 @key uint16 instance_id;
3 @external <eventTypeName> data;
4 };

Where:

<eventTypeName> is the Cpp Implementation Data Type symbol

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

data is a reference (per language mapping of the @external annotation) to the ac-
tual value of the event, which shall be constructed and encoded according to
the DDS serialization rules.

c(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11017]{DRAFT} Mapping of Send method dWhen instructed to send an
event message, the DDS Binding shall construct a new sample of the equivalent DDS
Topic data type (see [SWS_CM_11016]) as follows:

• The Instance Id field (instance_id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-
ceId.

• The Data field (data) shall point to the data input parameter of the Send()
method.

That sample shall be then passed as a parameter to the write() method of the DDS
DataWriter associated with the event, which shall serialize the sample according to
the serialization rules, and publish it over DDS. c(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11018]{DRAFT} Mapping of Subscribe method d When instructed to
subscribe to an event, the DDS binding shall create a DDS DataReader using the
DDS Subscriber created for the proxy in [SWS_CM_11009]. The rules to create the
DataReader are specified in [SWS_CM_11019].

c(RS_CM_00204, RS_CM_00103)

8DDS types are often defined in OMG IDL [23], which provides a standard language-independent
format to represent data types and interfaces. Even though we use IDL throughout the specification
to define data types, the use of IDL to is not mandated (i.e., a compliant implementation could choose
to hand-craft these types, run code generation from an equivalent XML syntax, or run vendor-specific
mechanisms to generate the actual data types).

103 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11019]{DRAFT} Creating a DDS DataReader for event subscrip-
tion d The DDS binding shall create a DDS DataReader for the Topic associ-
ated with the event (see [SWS_CM_11015]). To ensure the proxy communi-
cates only with the service instance it is bound to, the binding implementation shall
use the DDS Subscriber created in [SWS_CM_11009] (whose partition name is
"ara.com://services/<svcId>_<reqSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsEven-
tQosProps element defines the qosProfile that shall be used. To configure
the DataReader’s cache size according to the maxSampleCount specified in the
Subscribe() method call, the value of the DataReader’s HISTORY QoS speci-
fied in qosProfile shall be overridden as follows:

– history.kind = KEEP_LAST_HISTORY_QOS

– history.depth = <maxSampleCount>

• Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11020].

• StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11020]{DRAFT} Defining a DDS DataReaderListener d The DDS Bind-
ing implementation shall define a DataReaderListener class capable of handling
notifications when a new sample is received and/or when the matched status of the
subscription changes. This class shall derive from the standard DataReaderLis-
tener class [18], specifying that the samples to be handled are of the Topic data type
specified in [SWS_CM_11016].

The DataReaderListener shall implement the following methods according to the
specified instructions:

• A Constructor that initializes two member variables that hold references to an
EventReceiveHandler and a SubscriptionStateChangeHandler.

• An on_data_available() method that calls the EventReceiveHandler if it
has been set and there are valid samples in the DataReader’s cache.

• An on_subscription_matched() method that calls GetSubscription-
State() and passes the resulting SubscriptionState to Subscription-
StateChangeHandler if it has been set.

• A set_event_receive_handler() method that takes as an input parameter
a reference to an EventReceiveHandler and updates the member variable
holding a reference to an EventReceiveHandler to point to the input parame-
ter.

104 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• A set_subscription_state_change_handler() method that takes as an
input parameter a reference to a SubscriptionStateChangeHandler and
updates the member variable holding a reference to a SubscriptionState-
ChangeHandler to point to the input parameter.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11021]{DRAFT} Mapping of Unsubscribe method d When instructed
to unsubscribe from a service event, the DDS binding shall delete the DataReader
associated with the event. c(RS_CM_00204, RS_CM_00104)

[SWS_CM_11022]{DRAFT} Mapping of GetSubscriptionState method d When
instructed to provide the subscription state, the DDS binding shall check if the
DataReader associated with the subscription exists:

• If it does exist, the binding shall call the DataReader’s
get_subscription_matched_status() method next.

– If the total_count attribute of the resulting SubscriptionMatched-
Status is greater than zero, GetSubscriptionState() shall return
SubscriptionState = kSubscribed.

– Otherwise, it shall return SubscriptionState = kSubscription-
Pending.

• Else, if it does not exist—which indicates that either Subscribe()
has never invoked or Unsubscribe() has been called before—
GetSubscriptionState() shall return SubscriptionState = kNot-
Subscribed.

c(RS_CM_00204, RS_CM_00106)

[SWS_CM_11023]{DRAFT} Mapping of GetNewSamples method d When in-
structed to get new samples, the DDS binding shall perform a take() on the
DataReader as follows:

• If a maxNumberOfSamples is specified, the binding implementation shall invoke
take() with max_samples = maxNumberOfSamples.

• Else, if no maxNumberOfSamples is specified (i.e., if maxNumberOfSamples
is equal to the default value std::numeric_limits<size_t>::max()), the
binding implementation shall invoke take() without specifying a max_samples
limit.

After calling take(), the binding implementation shall invoke the Callable f for ev-
ery valid sample taken from the DataReader’s cache (i.e., every sample with Sample-
Info.valid_data equal to true), providing f with a reference to the corresponding
sample.

c(RS_CM_00204, RS_CM_00202)

105 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11024]{DRAFT} Mapping of GetFreeSampleCount method d When
instructed to provide the number of free sample slots, the binding implementa-
tion shall return the number free sample slots in the DDS DataReader’s cache. c
(RS_CM_00204, RS_CM_00202)

[SWS_CM_11025]{DRAFT} Mapping of SetReceiveHandler method d When in-
structed to register an EventReceiveHandler, the binding implementation shall per-
form the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_event_receive_handler() method to instruct the lis-
tener to invoke the new EventReceiveHandler whenever there is data avail-
able.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to DATA_AVAILABLE_STATUS.

– If the original value of StatusMask was
SUBSCRIPTION_MATCHED_STATUS, set it to
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11026]{DRAFT} Mapping of UnsetReceiveHandler method d When in-
structed to unregister an EventReceiveHandler, the binding implementation shall
perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_event_receive_handler() method to unset the internal
EventReceiveHandler that is called whenever there is data available.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or
DATA_AVAILABLE_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was SUBSCRIP-
TION_MATCHED_STATUS, set it to SUBSCRIPTION_MATCHED_STATUS.

106 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11027]{DRAFT} Mapping of SetSubscriptionStateHandler method d
When instructed to register a SubscriptionStateChangeHandler, the binding im-
plementation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_subscription_state_change_handler() method to
instruct the listener to invoke the new SubscriptionStateChangeHandler
whenever there is a change in the SubscriptionMatchedStatus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE
or SUBSCRIPTION_MATCHED_STATUS, set it to SUBSCRIP-
TION_MATCHED_STATUS.

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS.

c(RS_CM_00204, RS_CM_00106)

[SWS_CM_11028]{DRAFT} Mapping of UnsetSubscriptionStateHandler method
dWhen instructed to unregister a SubscriptionStateChangeHandler, the binding
implementation shall perform the following operations:

• It shall get a reference to the DataReader’s listener using the get_listener()
method.

• It shall use the set_subscription_state_change_handler() method to
instruct the listener to unset the internal SubscriptionStateChangeHandler
that is called whenever there is a change in the SubscriptionMatchedSta-
tus.

• It shall update the DataReader’s listener by calling set_listener() with lis-
tener equal to the new listener object and StatusMask set as follows:

– If the original value of StatusMask was STATUS_MASK_NONE or SUB-
SCRIPTION_MATCHED_STATUS, set it to STATUS_MASK_NONE.

– If the original value of StatusMask was DATA_AVAILABLE_STATUS, set it
to DATA_AVAILABLE_STATUS.

107 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

– If the original value of StatusMask was
DATA_AVAILABLE_STATUS|SUBSCRIPTION_MATCHED_STATUS, set
it to DATA_AVAILABLE_STATUS.

c(RS_CM_00204, RS_CM_00106)

7.4.3.3 Handling Method Calls

The RPC over DDS Specification (DDS-RPC) [21] introduces the concept of DDS Ser-
vices. These Services provide the mechanisms required to define and implement
methods that can be invoked remotely by DDS “client” applications using the build-
ing blocks of the DDS data-centric publish-subscribe middleware [18]. In this section,
we specify how to handle ara::com method calls over DDS by defining the appropriate
mapping between ara::com service methods and DDS service methods.

[SWS_CM_11100]{DRAFT} Mapping Methods to DDS Service Methods and Top-
ics d Every ServiceInterface containing one or more ClientServerOpera-
tions defined in the role method shall have an associated DDS Service to enable
ara::com Service Instances to offer those operations, and to enable client applications
to invoke them. The equivalent DDS Service shall provide all of the methods of the
corresponding ServiceInterface.

DDS Services shall be constructed according to the Basic Service Mapping Profile of
the RPC over DDS specification [21], which assigns two DDS Topics to every DDS Ser-
vice: a Request Topic and a Reply Topic. Thus, every ServiceInterface containing
one or more ClientServerOperations defined in the role method shall trigger the
creation of two equivalent DDS Topics.

The equivalent DDS Request Topic shall be configured as follows:

• The Request Topic Name shall be derived from the Manifest, where the DdsR-
pcServiceDeployment element associated with the methods defines the re-
questTopicName.

• The Request Topic Data Type shall be defined as specified in [SWS_CM_11101],
and shall be registered under the equivalent data type’s name.

The equivalent DDS Reply Topic shall be configured as follows:

• The Reply Topic Name shall be derived from the Manifest, where the DdsRpc-
ServiceDeployment element associated with the methods defines the reply-
TopicName.

• The Reply Topic Data Type shall be defined as specified in [SWS_CM_11102],
and shall be registered under the equivalent data type’s name.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

108 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11101]{DRAFT} DDS Service Request Topic data type definition d As
specified in section 7.5.1.1.6 of [21], the Request Topic data type is a structure com-
posed of a Request Header with metadata a Call Structure with data. The IDL definition
of the Request Topic data type is the following:

1 struct <svcId>Method_Request {
2 dds::rpc::RequestHeader header;
3 <svcId>Method_Call data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

dds::rpc::RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [21].

<svcId>Method_Call is the union that holds the value of the input parameters of
the corresponding methods, according to the rules specified in section 7.5.1.1.6
of [21].

dds::rpc::RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [21]. On top of that, the binding implementation shall set instanceName (a mem-
ber of the RequestHeader structure that specifies the DDS Service instance name)
to a string representation of the serviceInstanceId of the service instance that
provides the methods.

<svcId>Method_Call shall be constructed as specified in section 7.5.1.1.6 of [21]:

• The name of the union shall be <svcId>Method_Call.

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each ClientServerOperation defined
in the ServiceInterface with the role method, where:

– The integer value of the case label shall be a 32-bit hash of
the ClientServerOperation’s shortName. The binding imple-
mentation shall compute the hash as specified in section 7.5.1.1.2
of [21]. Representations of the service interface in OMG IDL
[23] shall define 32-bit signed integer constants (i.e., const int32
<svcId>Method_<methodName>_Hash; where <methodName> is the
shortName of the ClientServerOperation) to simplify the represen-
tation of the union cases (see below).

– The member name for the case label shall be the shortName of the
ClientServerOperation.

109 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

– The type for each case label shall be <sv-
cId>Method_<methodName>_In, which shall be constructed as specified
in section 7.5.1.1.4 of [21] (see below).

The IDL definition of the <svcId>Method_Call union is the following:
1 union <svcId>Method_Call switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;
4 case <svcId>Method_<method0Name>_Hash:
5 <svcId>Method_<method0Name>_In <method0Name>;
6 case <svcId>Method_<method1Name>_Hash:
7 <svcId>Method_<method1Name>_In <method1Name>;
8 // ...
9 case <svcId>Method_<methodNName>_Hash:

10 <svcId>Method_<methodNName>_In <methodNName>;
11 };

As defined in section 7.5.1.1.4 of [21], the <svcId>Method_<methodName>_In
structure shall contain as members all the ArgumentDataPrototypes of the
ClientServerOperation with direction set to in or inout. The IDL repre-
sentation of <svcId>Method_<methodName>_In is the following:

1 struct <svcId>Method_<methodName>_In {
2 <ArgumentDataPrototype[0]>;
3 <ArgumentDataPrototype[1]>;
4 // ...
5 <ArgumentDataPrototype[n]>;
6 };

In accordance with [21], for methods with no input parameters, the DDS binding shall
generate a <svcId>Method_<methodName>_In structure with a single member
named dummy of type dds::rpc::UnusedMember (see section 7.5.1.1.1 of [21]).

The resulting Request Topic data type shall be encoded according to the DDS serial-
ization rules. Unions, such as the <svcId>Method_Call union, shall be serialized as
specified in section 7.4.3.5 of [20]. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00200)

[SWS_CM_11102]{DRAFT} DDS Service Reply Topic data type definition d As
specified in section 7.5.1.1.7 of [21], the Reply Topic data type is a structure com-
posed of a Reply Header with metadata and a Return Structure with data. The IDL
definition of the Reply Topic data type is the following:

1 struct <svcId>Method_Reply {
2 dds::rpc::ReplyHeader header;
3 <svcId>Method_Return data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

dds::rpc::ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [21].

110 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

<svcId>Method_Return is the union that holds the return values (i.e., return values,
output parameter values, and/or errors) of the corresponding response, according
to the rules specified in section 7.5.1.1.7 of [21].

dds::rpc::ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[21].

<svcId>Method_Return shall be constructed as specified in section 7.5.1.1.7 of
[21]:

• The name of the union shall be <svcId>Method_Return.

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each ClientServerOperation defined
in the ServiceInterface with the role method, where:

– The integer value of the case label shall be a 32-bit hash of
the ClientServerOperation’s shortName. The binding imple-
mentation shall compute the hash as specified in section 7.5.1.1.2
of [21]. Representations of the service interface in OMG IDL
[23] shall define 32-bit signed integer constants (i.e., const int32
<svcId>Method_<methodName>_Hash; where <methodName> is the
shortName of the ClientServerOperation) to simplify the represen-
tation of the union cases (see below).

– The member name for the case label shall be the shortName of the
ClientServerOperation.

– The type for each case label shall be <sv-
cId>Method_<methodName>_Result, which shall be constructed
as specified in section 7.5.1.1.4 of [21] (see below).

The IDL definition of <svcId>Method_Return is the following:
1 union <svcId>Method_Return switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;
4 case <svcId>Method_<method0Name>_Hash:
5 <svcId>Method_<method0Name>_Result <method0Name>;
6 case <svcId>Method_<method1Name>_Hash:
7 <svcId>Method_<method1Name>_Result <method1Name>;
8 // ...
9 case <svcId>Method_<methodNName>_Hash:

10 <svcId>Method_<methodNName>_Result <methodNName>
11 };

As defined in section 7.5.1.1.5 of [21], the <sv-
cId>Method_<methodName>_Result union shall be constructed as follows:

• The union discriminator shall be a 32-bit signed integer.

111 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The union shall have a case with label dds::RETCODE_OK to represent a suc-
cessful return:

– The value of RETCODE_OK shall be 0x00, as specified in section 2.3.3 of
[18].

– The successful case shall have a single member named result of type
<svcId>Method_<methodName>_Out (see below).

• The union shall also have a case with label dds::RETCODE_ERROR to represent
the ApApplicationError the method may return:

– The value of RETCODE_ERROR shall be 0x01, as specified in section 2.3.3
of [18].

– The error case shall have a single member named [error] of type
ara::core::ErrorCode (see [SWS_CM_10428]).

The IDL representation of <svcId>Method_<methodName>_Result is the follow-
ing:

1 union <svcId>Method_<methodName>_Result switch(int32) {
2 case dds::RETCODE_OK:
3 <svcId>Method_<methodName>_Out result;
4 case dds::RETCODE_ERROR:
5 ara::core::ErrorCode error;
6 };

Lastly, as defined in section 7.5.1.1.5 of [21], the <sv-
cId>Method_<methodName>_Out structure be constructed as follows:

• The structure shall contain as members all the ArgumentDataPrototypes of
the ClientServerOperation with direction set to out or inout.

• The members of the structure representing out and inout arguments shall ap-
pear in the structure in the same order as they were declared.

• For non-void methods, the structure shall include a last member named
return_ of the method’s return type. If the method has an argument
named return_, the member shall be renamed according to the rules spec-
ified in section 7.5.1.1.5 of [21]. If the return type of the method is of
ara::core::Result<ValueType,ErrorType> then the ValueType is con-
sidered as <ReturnType>.

• If the method has no return value, no out, and no inout argu-
ments, the structure shall contain a single member named dummy of type
dds::rpc::UnusedMember (in accordance with section 7.5.1.1.1 of [21]).

The IDL representation of <svcId>Method_<methodName>_Out is the following:
1 struct <svcId>Method_<methodName>_Out {
2 <ArgumentDataPrototype[0]>;
3 <ArgumentDataPrototype[1]>;
4 // ...
5 <ArgumentDataPrototype[n]>;

112 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

6 [<ReturnType> return_;]
7 };

The resulting Reply Topic data type shall be encoded according to the DDS se-
rialization rules. Unions, such as the <svcId>Method_<methodName>_Result
union, shall be serialized as specified in section 7.4.3.5 of [20]. c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_CM_00200)

[SWS_CM_10431]{DRAFT} Mapping of ara::core::ErrorCode d A ApApplica-
tionError shall be represented according to the following IDL [23]:

1 module ara { module core {
2

3 struct ErrorCode {
4 uint64 error_domain_value;
5 int32 error_code;
6 int32 support_data;
7 string user_message;
8 };
9

10 };}; // module ara::core

Where:

error_domain_value is a 64-bit unsigned integer representing the ApApplica-
tionErrorDomain. value, to which the raised ApApplicationError be-
longs.

error_code is a 32-bit signed integer representing the ApApplica-
tionError. errorCode, which is represented on binding level as
ara::core::ErrorCode::Value().

support_data is a 32-bit signed integer representing additional (ven-
dor specific) support data, which is represented on binding level as
ara::core::ErrorCode::SupportData().

user_message is a variable length string representing a user message, which is rep-
resented on binding level as ara::core::ErrorCode::UserMessage().

ara::core::ErrorCode shall be serialized according to the DDS serialization rules.
c(RS_CM_00204)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11103]{DRAFT} Creating a DataWriter to handle method requests on
the client side d The DDS binding shall create a DDS DataWriter for the Request Topic
associated with the methods of the ServiceInterface (see [SWS_CM_11101])
upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Publisher created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<reqSvcInId>") to
create the DataWriter.

113 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11104]{DRAFT} Creating a DataReader to handle method responses
on the client side d The DDS binding shall create a DDS DataReader for
the Reply Topic associated with the methods of the ServiceInterface (see
[SWS_CM_11102]) upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Subscriber created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<reqSvcInId>") to
create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215)

[SWS_CM_11105]{DRAFT} Creating a DataReader to handle method requests
on the server side d The DDS binding shall create a DDS DataReader
for the Request Topic associated with the methods of the ServiceInter-
face (see [SWS_CM_11101]) as part of the OfferService() operation (see
[SWS_CM_11001]).

The binding shall use the DDS Subscriber created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the qosProfile that shall be used.

• Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the Ser-
viceSkeleton class:

– For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11110], and StatusMask shall
be set to DATA_AVAILABLE_STATUS.

– For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

114 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11106]{DRAFT} Creating a DataWriter to handle method responses
on the server side d The DDS binding shall create a DDS DataWriter
for the Reply Topic associated with the methods of the ServiceInter-
face (see [SWS_CM_11102]) as part of the OfferService() operation (see
[SWS_CM_11101]).

The binding implementation shall use the DDS Publisher created in [SWS_CM_11002]
(whose partition name is "ara.com://services/<svcId>_<svcInId>") to cre-
ate the DataWriter.

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the
DdsMethodQosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11107]{DRAFT} Calling a service method from the client side d When
instructed to call a method from the client side, the DDS binding shall construct a new
sample of the Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11101])—as follows:

• To initialize the RequestHeader object,

– requestId shall be set by the underlying DDS implementation according
to the rules specified in [21].

– instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

• To initialize the <svcId>Method_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11101], the
hash of the method’s name is the union discriminator that selects the union case),
and then set accordingly the structure containing all the in and inout argu-
ments.

That sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11103] to handle method requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and publish
it over DDS. c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11108]{DRAFT}Notifying the client of a response to a method call d To
notify the client application of a response as a result of a method call, the DDS binding
implementation shall invoke either the set_value() operation or the SetError()
operation of the ara::core::Promise corresponding to the ara::core::Future
that is returned to the caller.

If the discriminator of the <svcId>Method_<methodName>_Result union holding
the response for the specific method call in the received DDS Reply Topic sample is
dds::RETCODE_OK (i.e., 0 as defined in [18]), the binding implementation shall call the

115 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

ara::core::Promise’s set_value() operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) using the members representing the out and inout argu-
ments in the corresponding <svcId>Method_<methodName>_Out result (see
[SWS_CM_11102]).

Else, for any other discriminator value, the binding implementation shall call the
ara::core::Promise’s SetError() operation (see [SWS_CORE_00347]) with
the corresponding ara::core::ErrorCode, which is based on the corresponding
ApApplicationError (see [SWS_CM_11102]).

In either case, the associated set operation shall be performed upon the recep-
tion of a new Reply Topic sample by the corresponding DDS DataReader (see
[SWS_CM_11104]). The DDS binding shall use the DataReader’s take() to pro-
cess the sample. Moreover, to correlate a request with a response, the binding shall
compare the header.relatedRequestId of the received sample with the original
requestId that was set and sent in [SWS_CM_11107]9. If a received relate-
dRequestId does not correspond to a requestId that has been sent by the client,
the response shall be discarded. c(RS_CM_00204, RS_CM_00212, RS_CM_002013,
RS_CM_00215)

[SWS_CM_11109]{DRAFT} Processing a method call on the server side (event
driven) d In case a MethodCallProcessingMode of either kEvent or kEventS-
ingleThread has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the binding implementation shall create a DataReaderLis-
tener to process the requests asynchronously—as described in [SWS_CM_11110]—
and attach an instance of it to the DataReader processing the requests in accordance
with [SWS_CM_11105]. The listener is responsible for identifying the method that
shall process the request and dispatch it (see [SWS_CM_11110]). c(RS_CM_00204,
RS_CM_00212, RS_CM_00213)

[SWS_CM_11110]{DRAFT} Creating a DataReaderListener to process asyn-
chronous requests on the server side d According to [SWS_CM_11105], a Method-
CallProcessingMode of either kEvent or kEventSingleThread requires the in-
stantiation of a DataReaderListener to process asynchronously requests on the server
side. The resulting listener shall derive from the standard DataReaderListener
class [18], specifying that the data type of the samples to be handled is the Request
Topic data type defined in [SWS_CM_11101].

The DataReaderListener shall implement the following methods according to the
specified instructions:

9 The RPC over DDS specification [21] does not mandate a specific mechanism or context to in-
voke the take() operation on the DataReader that subscribes to method replies. Implementers of
this specification may therefore follow different approaches to address this issue. For instance, a proxy
could provide a ara::core::Map<dds::SampleIdentity,ara::core::Promise<T> > to hold
the ara::core::Promises assigned to every request (identified by their dds::SampleIdentity
requestId), and install a DataReaderListener (on the DataReader created in [SWS_CM_11104])
with an on_data_available() method that could call the setter of the corresponding
ara::core::Promise using the relatedRequestId of the received Reply Topic sample to address
it. Alternatively, a compliant solution could also call take() in the context of a std::async using a
dds::core::Waitset [18] to block until the reception of the expected sample.

116 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• An on_data_available() method responsible for reading the received
requests from the DataReader’s cache—using the take() operation—and
dispatching them to the appropriate methods for processing. To identify
the method of the ServiceSkeleton class that shall process each re-
quest, on_data_available() shall use the union discriminator of the <sv-
cId>Method_Call and provide the destination method with the specific Argu-
mentDataPrototypes in the union case.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11111]{DRAFT} Processing a method call on the server side (polling)
d In case a MethodCallProcessingMode of kPoll has been passed to the
constructor of the ServiceSkeleton (see [SWS_CM_00130]), the Process-
NextMethodCall method is be responsible for calling take() on the DataReader
processing the Request Topic associated with the service (see [SWS_CM_11105]).
ProcessNextMethodCall, shall take only the first sample from the DataReader’s
cache and dispatch the call the appropriate service method (see [SWS_CM_00191])
of the ServiceSkeleton class according to the value of the of the discriminator of
the <svcId>Method_Call union and provide the destination method with the specific
ArgumentDataPrototypes in the union case. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213)

[SWS_CM_11112]{DRAFT} Sending a method call response from the server side
d The binding implementation shall send a response upon the return (either as a re-
sult of a normal return or through one of the possible ApApplicationErrors ref-
erenced by the ClientServerOperation in the role possibleApError) of the
service method (see [SWS_CM_10306] and [SWS_CM_10307]).

To send the response, the DDS binding shall construct a new sample of the Reply Topic
—an instance of the Reply Topic data type defined in [SWS_CM_11102])—as follows:

• To initialize the ReplyHeader object,

– relatedRequestId shall be set to the value of the header.requestId
attribute of the request that triggered the method call (see
[SWS_CM_11107]).

• To initialize the <svcId>Method_Return object, the binding implementation
shall:

– Select the appropriate union case (as specified in [SWS_CM_11102], the
hash of the method’s name is the union discriminator that selects the union
case).

– Set the <svcId>Method_<methodName>_Result union selecting its
union discriminator based on whether the operation generated the correct
result or raised an ApApplicationError:

117 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

∗ If operation generated the correct result, the binding shall se-
lect the union case for dds::RETCODE_OK and set the <sv-
cId>Method_<methodName>_Out structure with all the out and in-
out arguments.

∗ Otherwise, if the operation raised an ApApplicationError, the bind-
ing shall select the union case 0x01 and construct the corresponding
ara::core::ErrorCode (see [SWS_CM_11102]).

The sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11105] to handle method responses on the server
side, which shall serialize the sample according to the DDS serialization rules, and
publish it over DDS. c(RS_CM_00204, RS_CM_200, RS_CM_00212, RS_CM_00213)

The DDS serialization rules are defined in section 7.4.3.5.

7.4.3.4 Handling Fields

[SWS_CM_11130]{DRAFT}Mapping Fields with hasNotifier attribute to DDS Top-
ics d The DDS binding shall assign a DDS Topic to every Field defined in the Servi-
ceInterface in the role field with hasNotifier = true to enable its notification
semantics over DDS. The equivalent DDS Topic shall be configured as follows:

• The Topic Name shall be derived from the Manifest, where the DdsEventDe-
ployment element defined in the DdsFieldDeployment in the role notifier
defines the topicName.

• The Topic Data Type shall be defined as specified in [SWS_CM_11131], and shall
be registered under the equivalent data type’s name.

c(RS_CM_00204, RS_CM_00201)

[SWS_CM_11131]{DRAFT} Field Notifier DDS Topic data type definition d The
data type of a DDS Topic representing a Field Notifier shall be constructed according
to the following IDL definition:

1 struct <fieldTypeName>FieldNotifierType {
2 @key uint16 instance_id;
3 @external <fieldTypeName> data;
4 };

Where:

<fieldTypeName> is the Cpp Implementation Data Type symbol (see sec-
tion 8.1.2.5.2).

instance_id is a @key member of the type, which identifies all samples with the
same instance_id as samples of the same Topic Instance.

118 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

data is a reference (per language mapping of the @external annotation) to the ac-
tual value of the field, which shall be constructed and encoded according to
the DDS serialization rules.

c(RS_CM_00204, RS_CM_00201)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11132]{DRAFT} Mapping of Update method dWhen instructed to trans-
mit a field notification message, the DDS binding shall construct a new sample of the
equivalent DDS Topic data type (see [SWS_CM_11131]) as follows:

• The Instance Id field (instance_id) shall be derived from the Manifest, where
the DdsProvidedServiceInstance element defines the serviceInstan-
ceId.

• The Data field (data) shall point to the data input parameter of the Update()
method.

That sample shall be then passed as a parameter to the write() method of the DDS
DataWriter associated with the field, which shall serialize the sample according
to the DDS serialization rules specified, and publish it over DDS. c(RS_CM_00204,
RS_CM_00201)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11133]{DRAFT} Mapping of Subscribe method d When instructed to
subscribe to a field, the DDS binding shall create a DDS DataReader to handle the
subscription using the DDS Subscriber created for the proxy in [SWS_CM_11009]. The
rules to create the DataReader are specified in [SWS_CM_11134]. c(RS_CM_00204,
RS_CM_00103)

[SWS_CM_11134]{DRAFT} Creating a DDS DataReader for field subscription
d The DDS binding shall create a DDS DataReader for the Topic associated
with the field (see [SWS_CM_11130]). To ensure the proxy communicates
only with the service intsance it is bound to, the binding implementation shall
use the DDS Subscriber created in [SWS_CM_11009] (whose partition name is
"ara.com://services/<svcId>_<reqSvcInId>") to create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used. To configure
the DataReader’s cache size according to the field subscription semantics, the
maxSampleCount specified in the Subscribe() method call, the value of the
DataReader’s HISTORY QoS specified in qosProfile shall be overridden as
follows:

– history.kind = KEEP_LAST_HISTORY_QOS

– history.depth = <maxSampleCount>

119 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Moreover, to ensure that the proxy received the current value of the field as soon
as it creates the subscription, the DataReaders’s DURABILITY QoS shall be over-
ridden as follows:

– durability.kind = TRANSIENT_LOCAL_DURABILITY_QOS

Likewise, the RELIABILITY QoS shall be overridden as follows:

– reliability.kind = RELIABLE_RELIABILITY_QOS

• Listener shall be an instance of the DataReaderListener class specified in
[SWS_CM_11135].

• StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11135]{DRAFT} Creating a DDS DataReaderListener for field sub-
scription d The DDS implementation shall define a DataReaderListener class to
handle field notifications when a new sample is received and/or the matched status of
the subscription changes following the instructions specified in [SWS_CM_11020].

The DataReaderListener class shall specify that the samples to be handled are of
the Topic data type specified in [SWS_CM_11131]. c(RS_CM_00204, RS_CM_00103)

[SWS_CM_11136]{DRAFT} Mapping of Unsubscribe method dWhen instructed to
unsubscribe from a field event, the DDS binding shall delete the DataReader associ-
ated with the field notifier. c(RS_CM_00204, RS_CM_00104)

[SWS_CM_11137]{DRAFT} Mapping of GetSubscriptionState method d The Get-
SubscriptionState method shall be mapped as specified in [SWS_CM_11022] using
the DataReader created in [SWS_CM_11134]. c(RS_CM_00204, RS_CM_00106)

[SWS_CM_11138]{DRAFT} Mapping of GetNewSamples method d The Get-
NewSamples method shall be mapped as specified in [SWS_CM_11023] using the
DataReader created in [SWS_CM_11134]. c(RS_CM_00204, RS_CM_00202)

[SWS_CM_11139]{DRAFT} Mapping of GetFreeSampleCount method d The Get-
FreeSampleCount method shall be mapped as specified in [SWS_CM_11024] using
the DataReader created in [SWS_CM_11134]. c(RS_CM_00204, RS_CM_00202)

[SWS_CM_11140]{DRAFT} Mapping of SetReceiveHandler method d The SetRe-
ceiveHandler method shall be mapped as specified in [SWS_CM_11025] using the
DataReader created in [SWS_CM_11134]. c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11141]{DRAFT} Mapping of UnsetReceiveHandler method d The Un-
setReceiveHandler method shall be mapped as specified in [SWS_CM_11026] using
the DataReader created in [SWS_CM_11134]. c(RS_CM_00204, RS_CM_00203)

[SWS_CM_11142]{DRAFT} Mapping of SetSubscriptionStateHandler method
d The SetSubscriptionStateHandler method shall be mapped as specified in
[SWS_CM_11027] using the DataReader created in [SWS_CM_11134]. c
(RS_CM_00204, RS_CM_00106)

120 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11143]{DRAFT} Mapping of UnsetSubscriptionStateHandler method
d The UnsetSubscriptionStateHandler method shall be mapped as specified
in [SWS_CM_11028] using the DataReader created in [SWS_CM_11134]. c
(RS_CM_00204, RS_CM_00106)

[SWS_CM_11144]{DRAFT} Mapping of Field Get/Set methods to DDS Service
Methods and Topics d Every ServiceInterface containing one or more Fields
defined in the role field with hasGetter or hasSetter attributes set to true shall
have an associated DDS Service to enable ara::com Service Instances to offer those
operations, and to enable client applications to invoke them. The equivalent DDS Ser-
vice shall provide the getter and setter methods for all the fields in the corresponding
ServiceInterface.

In compliance with [SWS_CM_11100], these DDS Services shall be constructed ac-
cording to the Basic Service Mapping Profile of the RPC over DDS specification [21].
Thus, every ServiceInterface containing one or more fields with the hasGet-
ter or hasSetter attributes enabled shall trigger the creation of a pair of DDS Topics:
a Request Topic and a Reply Topic.

The equivalent DDS Request Topic shall be configured as follows:

• The Request Topic Name shall be derived from the Manifest, where the DdsR-
pcServiceDeployment element in the role ddsRpcService of the field’s get
and set methods defines the requestTopicName.

• The Request Topic Data Type shall be defined as specified in [SWS_CM_11145].

The equivalent DDS Reply Topic shall be configured as follows:

• The Reply Topic Name shall be derived from the Manifest, where the DdsRpc-
ServiceDeployment element in the role ddsRpcService of the field’s get
and set methods defines the replyTopicName.

• The Reply Topic Data Type shall be defined as specified in [SWS_CM_11146].

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11145]{DRAFT} DDS Service Request Topic data type definition for
Field getter and setter operations d As specified in section 7.5.1.1.6 of [21], the
Request Topic data type is a structure composed of a Request Header with metadata
and a Call Structure with data. The IDL definition of the Request Topic data type for
the DDS Service handling field getters and setters is the following:

1 struct <svcId>Field_Request {
2 dds::rpc::RequestHeader header;
3 <svcId>Field_Call data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

121 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

dds::rpc::RequestHeader is the standard Request Header defined in section
7.5.1.1.1 of [21].

<svcId>Field_Call is the union that holds the value of the input parameters of the
corresponding methods, according to the rules specified in section 7.5.1.1.6 of
[21].

dds::rpc::RequestHeader shall be constructed as specified in section 7.5.1.1.1
of [21]. On top of that, the binding implementation shall set the instanceName (a
member of the RequestHeader structure that specifies the DDS service instance
name) to a string representation of the serviceInstanceId of the service instance
that provides the fields (which have getters or setters).

<svcId>Field_Call shall be constructed as specified in section 7.5.1.1.6 of [21].

• The name of the union shall be <svcId>Field_Call.

• The union discriminator shall be a 32-bit signed integer.

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role
field, where:

– The integer value of the case label shall be a 32-bit hash of
the field getter or setter name. That is, "Get<fieldName>" and
"Set<fieldName>"; where <fieldName> is the shortName of the
Field. The binding implementation shall compute the hash as spec-
ified in section 7.5.1.1.2 of [21]. Representations of the service in-
terface in OMG IDL [23] shall define 32-bit signed integer constants
(i.e., const int32 <svcId>Field_Get<fieldName>_Hash or const
int32 <svcId>Field_Set<fieldName>_Hash) to simplify the repre-
sentation of the union cases (see below).

– The member name for the case label shall be get<FieldName> for getter
methods and set<FieldName> for setter methods.

– The type for each case level shall be <sv-
cId>Field_Get<fieldName>_In for getter methods, and <sv-
cId>Field_Set<fieldName>_In for setter methods, which shall be
constructed as specified in section 7.5.1.1.4 of [21] (see below).

The IDL definition of the <svcId>Field_Call union is the following:
1 union <svcId>Field_Call switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;
4 case <svcId>Field_Get<Field0Name>_Hash:
5 <svcId>Field_Get<Field0Name>_In get<Field0Name>;
6 case <svcId>Field_Set<Field0Name>_Hash:
7 <svcId>Field_Set<Field0Name>_In set<Field0Name>;

122 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8 case <svcId>Field_Get<Field1Name>_Hash:
9 <svcId>Field_Get<Field1Name>_In get<Field1Name>;

10 case <svcId>Field_Set<Field1Name>_Hash:
11 <svcId>Field_Set<Field1Name>_In set<Field1Name>;
12 // ...
13 case <svcId>Field_Get<FieldNName>_Hash:
14 <svcId>Field_Get<FieldNName>_In get<FieldNName>;
15 case <svcId>Field_Set<FieldNName>_Hash:
16 <svcId>Field_Set<FieldNName>_In set<FieldNName>;
17 };

According to 7.5.1.1.4 of [21], <svcId>Field_Set<FieldName>_In struc-
tures shall contain as member, the corresponding StdCppImplementation-
DataType representing the value of Field to be set. Conversely, <sv-
cId>Field_Get<FieldName>_In shall contain a single member named dummy of
type dds::rpc::UnusedMember (see section 7.5.1.1.1 of [21]) to indicate that the
method has no input parameters.

The resulting Request Topic data type shall be encoded according to the DDS se-
rialization rules. Unions, such as the <svcId>Field_Call union, shall be se-
rialized as specified in section 7.4.3.5 of [20]. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213))

[SWS_CM_11146]{DRAFT} DDS Service Reply Topic data type definition for Field
getter and setter operations d As specified in section 7.5.1.1.7 of [21], the Reply
Topic data type is a structure composed of a Reply Header with metadata and a Return
Structure with data. The IDL definition of the Reply Topic data type for the DDS Service
handling field getters and setters is the following:

1 struct <svcId>Field_Reply {
2 dds::rpc::ReplyHeader header;
3 <svcId>Field_Return data;
4 };

Where:

<svcId> is the corresponding serviceInterfaceId.

dds::rpc::ReplyHeader is the standard Reply Header defined in section 7.5.1.1.1
of [21].

<svcId>Field_Return is the union that holds the return values of the correspond-
ing response, according to the rules specified in section 7.5.1.1.7 of [21].

dds::rpc::ReplyHeader shall be constructed as specified in section 7.5.1.1.1 of
[21].

<svcId>Field_Return shall be constructed as specified in section 7.5.1.1.7 of [21]:

• The name of the union shall be <svcId>Field_Return.

• The union discriminator shall be a 32-bit signed integer.

123 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The union shall have a default case of type dds::rpc::UnknownOperation
(defined in section 7.5.1.1.1 of [21]) for unsupported and unknown operations.

• The union shall have a case label for each hasGetter and hasSetter attribute
equal to true in the Fields defined in the ServiceInterface with the role
field, where:

– The integer value of the case label shall be a 32-bit hash of
the field getter or setter name. That is, "Get<FieldName>" and
"Set<FieldName>"; where <FieldName> is the shortName of the
Field. The binding implementation shall compute the hash as spec-
ified in section 7.5.1.1.2 of [21]. Representations of the service in-
terface in OMG IDL [23] shall define 32-bit signed integer constants
(i.e., const int32 <svcId>Field_Get<FieldName>_Hash or const
int32 <svcId>Field_Set<FieldName>_Hash) to simplify the repre-
sentation of the union cases (see below).

– The member name of the case label shall be get<FieldName> for getter
methods and set<FieldName> for setter methods.

– The type for each case label shall be <sv-
cId>Field_Get<FieldName>_Result for getter methods and <sv-
cId>Field_Set<FieldName>_Result for setter methods, which shall
be constructed as specified in section 7.5.1.1.4 of [21] (see below).

The IDL definition of <svcId>Field_Return is the following:
1 union <svcId>Field_Return switch(int32) {
2 default:
3 dds::rpc::UnknownOperation unknownOp;
4 case <svcId>Field_Get<Field0Name>_Hash:
5 <svcId>Field_Get<Field0Name>_Result get<Field0Name>;
6 case <svcId>Field_Set<Field0Name>_Hash:
7 <svcId>Field_Set<Field0Name>_Result set<Field0Name>;
8 case <svcId>Field_Get<Field1Name>_Hash:
9 <svcId>Field_Get<Field1Name>_Result get<Field1Name>;

10 case <svcId>Field_Set<Field1Name>_Hash:
11 <svcId>Field_Set<Field1Name>_Result set<Field1Name>;
12 // ...
13 case <svcId>Field_Get<FieldNName>_Hash:
14 <svcId>Field_Get<FieldNName>_Result get<FieldNName>;
15 case <svcId>Field_Set<FieldNName>_Hash:
16 <svcId>Field_Set<FieldNName>_Result set<FieldNName>;
17 };

According with [SWS_CM_00112] and [SWS_CM_00113], both getters and set-
ters have the same output parameter. Therefore, in accordance with section
7.5.1.1.5 of [21], both the <svcId>Field_Get<FieldName>_Result and <sv-
cId>Field_Set<FieldName>_Result unions shall be constructed as follows:

• The union discriminator shall be a 32-bit signed integer.

124 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• The union shall have a case with label dds::RETCODE_OK to represent a suc-
cessful return:

– The value of RETCODE_OK shall be 0, as specified in section 2.3.3 of [18].

– The successful case shall have a single member named result_ of type
<svcId>Field_Get<FieldName>_Out to hold the value to be returned
to the getter, or type <svcId>Field_Set<FieldName>_Out to hold the
value to be returned to the setter (see below).

The IDL representation of <svcId>Field_Get<FieldName>_Result is the follow-
ing:

1 union <svcId>Field_Get<FieldName>_Result switch(int32) {
2 case dds::RETCODE_OK:
3 <svcId>Field_Get<FieldName>_Out result_;
4 };

Likewise, the IDL representation of <svcId>Field_Set<FieldName>_Result is
the following:

1 union <svcId>Field_Set<FieldName>_Result switch(int32) {
2 case dds::RETCODE_OK:
3 <svcId>Field_Set<FieldName>_Out result_;
4 };

Both types <svcId>Field_Get<FieldName>_Out and its counterpart <sv-
cId>Field_Set<FieldName>_Out shall map to a structure with a single member
named return_ of the StdCppImplementationDataType representing the value
of the corresponding Field.

The resulting Reply Topic data type shall be encoded according to the DDS seri-
alization rules. Unions, such as the <svcId>Field_Return union, shall be se-
rialized as specified in section 7.4.3.5 of [20]. c(RS_CM_00204, RS_CM_00212,
RS_CM_00213))

[SWS_CM_11147]{DRAFT} Creating a DataWriter to handle get/set requests on
the client side d The DDS binding shall create a DDS DataWriter for the Request Topic
associated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11145]) upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Publisher created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<reqSvcInId>") to
create the DataWriter.

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

125 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11148]{DRAFT} Creating a DataReader to handle get/set responses
on the client side d The DDS binding shall create a DDS DataReader for the Reply
Topic associated with the getters and setters of the fields of the ServiceInter-
face (see [SWS_CM_11146]) upon proxy instantiation.

To ensure the proxy communicates only with the service instance it is bound to, the
binding implementation shall use the DDS Subscriber created in [SWS_CM_11009]
(whose partition name is "ara.com://services/<svcId>_<reqSvcInId>") to
create the DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00215)

[SWS_CM_11149]{DRAFT} Creating a DataReader to handle get/set requests on
the server side d The DDS binding shall create a DDS DataReader for the Request
Topic associated with the getters and setters of the fields of the ServiceInter-
face (see [SWS_CM_11145]).

The binding shall use the DDS Subscriber created in [SWS_CM_11002] (whose
partition name is "ara.com://services/<svcId>_<svcInId>") to create the
DataReader.

The DataReader shall be configured as follows:

• DataReaderQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

• Listener and StatusMask shall be set according to the value of Method-
CallProcessingMode that was selected in the constructor of the Ser-
viceSkeleton class:

– For MethodCallProcessingMode = kEvent or kEventSin-
gleThread, Listener shall be set to an instance of the DataRead-
erListener class specified in [SWS_CM_11154], and StatusMask shall
be set to DATA_AVAILABLE_STATUS.

– For MethodCallProcessingMode = kPoll, Listener shall remain
unset, and StatusMask shall be set to STATUS_MASK_NONE.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11150]{DRAFT} Creating a DataWriter to handle get/set responses on
the server side d The DDS binding shall create a DDS DataWriter for the Reply Topic
associated with the getters and setters of the fields of the ServiceInterface (see
[SWS_CM_11146]).

126 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

The binding implementation shall use the DDS Publisher created in [SWS_CM_11002]
(whose partition name is "ara.com://services/<svcId>_<svcInId>") to cre-
ate the DataWriter.

The DataWriter shall be configured as follows:

• DataWriterQos shall be set as specified in the Manifest, where the DdsField-
QosProps element defines the qosProfile that shall be used.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213)

[SWS_CM_11151]{DRAFT} Calling get/set method associated with a field from
the client side dWhen instructed to call the Get() or Set() method associated with
a Field from the client side, the DDS binding shall construct a new sample of the
corresponding Request Topic—an instance of the Request Topic data type defined in
[SWS_CM_11145]—as follows:

• To initialize the RequestHeader object,

– requestId shall be set by the underlying DDS implementation according
to the rules specified in [21].

– instanceName shall be set by the binding implementation to the servi-
ceInstanceId of the remote service instance.

• To initialize the <svcId>Field_Call object, the binding implementation shall
first select the appropriate union case (as specified in [SWS_CM_11145], the
hash of the field getter/setter’s name is the union discriminator that selects the
union case). Then,

– If the call corresponds to a getter, the binding shall leave the dummy member
of the <svcId>Field_Get<FieldName>_In structure unset.

– Else, if the call corresponds to a setter, the binding shall set accordingly the
only member of the <svcId>Field_Set<FieldName>_In structure with
the new value for the field.

That sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11147] to handle get/set requests on the client side,
which shall serialize the sample according to the DDS serialization rules, and pub-
lish it over DDS. c(RS_CM_00204, RS_CM_00200, RS_CM_00212, RS_CM_00213,
RS_CM_00217, RS_CM_00218)

The DDS serialization rules are defined in section 7.4.3.5.

[SWS_CM_11152]{DRAFT} Notifying the client of the response to the get/set
method call d To notify the client application of a response as a result of call
to a Get() or Set() method associated with a Field, the DDS binding imple-
mentation shall invoke the set_value() operation (see [SWS_CORE_00345] and
[SWS_CORE_00346]) with the value of the corresponding result_ member of ei-
ther the <svcId>Field_Get<FieldName>_Result structure, for get operations; or
<svcId>Field_Set<FieldName>_Out, for set operations.

127 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

The associated set operation shall be performed upon the reception of a new Re-
ply Topic sample by the corresponding DDS DataReader (see [SWS_CM_11148]).
The DDS binding shall use the DataReader’s take() method to process the sam-
ple. Moreover, to correlate a request with a response, the binding shall compare the
header.relatedRequestsId of the received sample with the original requestId
that was sent in [SWS_CM_11151]10. If the relatedRequestId does not correspond
to a requestId that has been sent by the client, the response shall be discarded. c
(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00217, RS_CM_00218)

[SWS_CM_11153]{DRAFT} Processing a get/set method call associated with a
field on the server side (event driven) d In case a MethodCallProcessingMode
of either kEvent or kEventSingleThread has been passed to the constructor of the
ServiceSkeleton (see [SWS_CM_00130]), the binding implementation shall create
a DataReaderListener to process the requests asynchronously—as described in
[SWS_CM_11154]—and attach an instance of it to the DataReader processing the re-
quests for the getters and setters of the ServiceInterface’s fields in accordance
with [SWS_CM_11149]. The listener is responsible for identifying the method that
shall process the request and dispatch it (see [SWS_CM_11154]). c(RS_CM_00204,
RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221)

[SWS_CM_11154]{DRAFT} Creating a DataReaderListener to process asyn-
chronous requests for field getters and setters on the server side d According to
[SWS_CM_11149], a MethodCallProcessingMode of either kEvent or kEventS-
ingleThread requires the instantiation of a DataReaderListener to process asyn-
chronously requests on the server side. The resulting listener shall derive from the
standard DataReaderListener class [18], specifying that the type of the samples to
be handled is the Request Topic data type defined in [SWS_CM_11145].

The DataReaderListener shall implement the following method according to the
specified instructions:

• An on_data_available() method responsible for reading the received re-
quests from the DataReader’s cache—using the take() operation—and dis-
patching it to the corresponding registered SetHandler or—if it applies—
GetHandler (see [SWS_CM_00114] and [SWS_CM_00116]). To identify
the field of the ServiceSkeleton class, the operation (i.e., Set() or
Get()), and therefore the corresponding handler; on_data_available()
shall use the union discriminator of the <svcId>Field_Call union (see
[SWS_CM_11145]). In the case of a Set() operation, the method shall pro-
vide the corresponding SetHandler with the only member of the received <sv-
cId>Field_<FieldName>_In structure, which contains the new value to be
set. In the case of a Get() operation, the binding shall dispatch to the corre-
sponding GetHandler—if it was registered—or to an internal lookup operation
for the current value of the field if it was not.

c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220, RS_CM_00221)

10See footnote 9.

128 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_11155]{DRAFT} Processing a get/set method call associated with
a field on the server side (polling) d In case a MethodCallProcessingMode
of kPoll has been passed to the constructor of the ServiceSkeleton (see
[SWS_CM_00130]), the ProcessNextMethodCall method is responsible for call-
ing take() on the DataReader processing the Request Topic associated with the
service (see [SWS_CM_11145]). ProcessNextMethodCall shall take only the
first sample from the DataReader’s cache and dispatch it to the corresponding reg-
istered SetHandler or—if it applies—GetHandler (see [SWS_CM_00114] and
[SWS_CM_00116]).

To identify the field of the ServiceSkeleton class, the operation (i.e., Set()
or Get()), and therefore the corresponding handler, the binding implementa-
tion shall use the union discriminator of the <svcId>Field_Call union (see
[SWS_CM_11145]). In the case of a Set() operation, the binding shall pro-
vide the corresponding SetHandler with the only member of the received <sv-
cId>Field_<FieldName>_In structure, which contains the new value to be set.
In the case of a Get() operation, the binding shall call the corresponding GetH-
andler—if it was registered—or dispatch to an internal lookup operation for the cur-
rent value of the field if it was not. c(RS_CM_00204, RS_CM_00212, RS_CM_00213,
RS_CM_00220, RS_CM_00221)

[SWS_CM_11156]{DRAFT} Sending a response for a get/set method call asso-
ciated with a field from the server side d The binding implementation shall send a
response upon the return of (1) a SetHandler in the case of a Set() operation; (2) a
GetHandler in the case of a Get() operation where a GetHandler has previously
been registered; or (3) a lookup operation11 as a result of a Get() operation where no
GetHandler was previously registered.

To send the response, the DDS binding shall construct a new sample of the Reply
Topic—an instance of the Reply Topic data type defined in [SWS_CM_11146]—as
follows:

• To initialize the ReplyHeader object,

– relatedRequestId shall be set to the value of the header.requestId
attribute of the request that triggered the method call (see
[SWS_CM_11151]).

• To initialize the <svcId>Field_Return object, the binding implementation
shall:

– Select the appropriate union case (as specified in [SWS_CM_11146]), the
hash of the field’s getter/setter method is the union discriminator that selects
the union case).

– Set the appropriate <svcId>Field_Get<FieldName>_Result—for
Get() operations—or <svcId>Field_Set<FieldName>_Result—for
Set() operations. In both cases, the binding shall select the union case

11An internal lookup operation to retrieve the current value of a field.

129 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

for dds::RETCODE_OK and set the corresponding structure with the value
retrieved upon the return of (1), (2), or (3).

The sample shall then be passed as a parameter to the write() method of the DDS
DataWriter created in [SWS_CM_11150] to handle method responses on the server
side, which shall serialize the sample according to the DDS serialization rules, an pub-
lish it over DDS. c(RS_CM_00204, RS_CM_00212, RS_CM_00213, RS_CM_00220,
RS_CM_00221)

The DDS serialization rules are defined in section 7.4.3.5.

7.4.3.5 Serialization of Payload

[SWS_CM_11040]{DRAFT} DDS standard serialization rules d The serialization of
the payload shall be done according to the DDS standard serialization rules defined in
section 7.4.3.5 of [20]. c(RS_CM_00204, RS_CM_00201)

7.4.3.5.1 Basic Data Types

[SWS_CM_11041]{DRAFT} DDS serialization of StdCppImplementation-
DataType of category VALUE d StdCppImplementationDataType of category
VALUE shall be serialized according to the standard serialization rules for the equiva-
lent DDS PRIMITIVE_TYPE defined in section 7.4.3.5 of [20]. Table 7.5 provides
the equivalent DDS PRIMITIVE_TYPEs for the primitive StdCppImplementation-
DataTypes with category VALUE defined in [13]. c(RS_CM_00204, RS_CM_00200,
RS_CM_00102)

Type DDS Type Remark
boolean Boolean
uint8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).
uint16_t UInt16
uint32_t UInt32
uint64_t UInt64
int8_t Byte Shall be encoded as a Byte type (opaque 8-bit type).
int16_t Int16
int32_t Int32
int64_t Int64
float Float32
double Float64

Table 7.5: StdCppImplementationDataTypes with categoy VALUE supported for seri-
alization

130 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7.4.3.5.2 Enumeration Data Types

[SWS_CM_11042]{DRAFT} DDS serialization of enumeration data types d Enu-
meration data types shall be serialized according to the standard serialization rules for
DDS ENUM_TYPE defined in section 7.4.3.5 of [20].

The bit bound of the ENUM_TYPE shall be set to the size of the enumeration’s underlying
basic data type (i.e., the Primitive Cpp Implementation Data Type accord-
ing to [SWS_CM_00424]) in bits. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.4.3.5.3 Structured Data Types (structs)

[SWS_CM_11043]{DRAFT} DDS serialization of StdCppImplementation-
DataType of category STRUCTURE d StdCppImplementationDataType of cat-
egory STRUCTURE shall be serialized according to the standard serialization rules for
DDS STRUCT_TYPE defined in section 7.4.3.5 of [20].

Optional members of the structure shall be marked as optional as specified in
section 7.2.2.4.4.5 of [20]. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.4.3.5.4 Strings

[SWS_CM_11044]{DRAFT} DDS serialization of StdCppImplementation-
DataType of category STRING with string shortName d An StdCppImplemen-
tationDataType of category STRING shall be serialized according to the stan-
dard serialization rules for DDS STRING_TYPE defined in section 7.4.3.5 of [20]. c
(RS_CM_00204, RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_11046]{DRAFT} Encoding Format and Endianness of Strings in DDS
d Section 7.4.1.1.2 of [20] specifies the standard character encoding format for
STRING_TYPE: UTF-8. The serialized version shall not include a Byte Order Mark
(BOM), as byte order information is already available in the RTPS Encapsulation
Identifier and the XCDR serialization format [20]. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

7.4.3.5.5 Vectors and Arrays

[SWS_CM_11047]{DRAFT} DDS serialization of CppImplementationDataType
of category VECTOR d A CppImplementationDataType of category VEC-
TOR shall be serialized according to the standard serialization rules for DDS SE-
QUENCE_TYPE defined in section 7.4.3.5 of [20].

131 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Binding implementations shall serialize VECTOR CppImplementationDataTypes
with more than one dimension, as nested DDS sequences. c(RS_CM_00204,
RS_CM_00201, RS_CM_00202, RS_CM_00211)

[SWS_CM_11048]{DRAFT} DDS serialization of CppImplementationDataType
of category ARRAY d A CppImplementationDataType of category ARRAY shall
be serialized according to the standard serialization rules for DDS ARRAY_TYPE de-
fined in section 7.4.3.5 of [20]. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.4.3.5.6 Associative Maps

[SWS_CM_11049]{DRAFT} DDS serialization of CppImplementationDataType
of category ASSOCIATIVE_MAP d CppImplementationDataType of category
ASSOCIATIVE_MAP shall be serialized according to the standard serialization rules for
DDS MAP_TYPE defined in section 7.4.3.5 of [20]. c(RS_CM_00204, RS_CM_00201,
RS_CM_00202, RS_CM_00211)

7.4.3.5.7 Variant

[SWS_CM_11050]{DRAFT} DDS serialization of CppImplementationDataType
of category VARIANT d CppImplementationDataType of category VARIANT
shall be serialized according to the standard serialization rules for DDS UNION_TYPE
defined in section 7.4.3.5 of [20]. c(RS_CM_00204, RS_CM_00201, RS_CM_00202,
RS_CM_00211)

7.5 Security

In the following chapter the behavior according to the meta model of access control
and secure communication shall be described.

7.5.1 Access Control

The following assumptions have to be held true to realize access control:

1. Communication between two applications must be realized by using ara::com
interfaces Communication Management to enable access control.

2. Process separation as defined in [SWS_CM_90004]

[SWS_CM_90004]{DRAFT} Process separation of network and language bind-
ing for access control d The application with the language binding part of proxies

132 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

and the network binding part of proxies shall be located in different processes. c
(RS_SEC_03003, RS_SEC_03005, RS_SEC_05019)

[SWS_CM_90001]{DRAFT} Restrictions on executing methods d The invocation of
a method by an application shall be executed depending the existence of ComMethod-
Grant, ComFieldGrant with the role attribute set to FieldAccessEnum.getter or
FieldAccessEnum.setter. From a temporal perspective the enforcement of the ca-
pability shall take place between the invocation of one of the following methods and
invocation of the continuation registered with then() (see [SWS_CORE_00331]) or
the access to result of the Future (via the get() method (see [SWS_CORE_00326]))
returned by these methods:

• the function call operator (operator()) of the respective Method class (see
[SWS_CM_00196])

• the Set() method of the respective Field class (see [SWS_CM_00113])

• the Get() method of the respective Field class (see [SWS_CM_00112])

A failure of the capability enforcement (i.e., an invocation without appropriate capability
modeling) shall be handled according to [SWS_CORE_00001]. c(RS_SEC_03002,
RS_SEC_03008, RS_SEC_03010)

[SWS_CM_90002]{DRAFT} Restrictions on sending events d Sending an event by
an application shall be enabled depending on the existence of ComEventGrant or
ComFieldGrant with the role attribute set to FieldAccessEnum.setter. From a
temporal perspective the enforcement of the capability shall take place after the invo-
cation of the following method:

• the Send() method of the respective Event class (see [SWS_CM_00162])

• the Update() method of the respective Field class (see [SWS_CM_00119])

A failure of the capability enforcement (i.e., the triggering of an event without ap-
propriate capability modeling) shall cause the event to be dropped silently. c
(RS_SEC_03002, RS_SEC_03008, RS_SEC_03010)

[SWS_CM_90003]{DRAFT} Restrictions on receiving events d Subscribing to event
notifications shall be enabled depending on the existence of ComEventGrant or Com-
FieldGrant with the role attribute set to FieldAccessEnum.getter. From a tem-
poral perspective the enforcement of the capability shall take place after the invocation
of the following method:

• the Subscribe() method of the respective Event class (see
[SWS_CM_00141])

A failure of the capability enforcement (i.e., the subscription to an event without ap-
propriate capability modeling) shall cause the subscription to the event to be dropped
silently. c(RS_SEC_03002, RS_SEC_03008, RS_SEC_03010)

[SWS_CM_90005]{DRAFT} Restrictions on offering services d Offering a service
instance shall be enabled depending on the presence of a ComOfferServiceGrant.

133 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

From a temporal perspective the enforcement of the capability shall take place after
the invocation of the following method:

• the constructor of the respective ServiceSkeleton class (see
[SWS_CM_00130])

A failure of the capability enforcement (i.e., an invocation without appropriate mod-
eling) shall be handled according to [SWS_CORE_00001]. c(RS_SEC_03002,
RS_SEC_03008, RS_SEC_03010)

[SWS_CM_90006]{DRAFT} Restrictions on using services d Using a service in-
stance shall be enabled depending on the presence of a ComFindServiceGrant.
From a temporal perspective the enforcement of the capability shall take place after
the invocation of the following method:

• the constructor of the respective ServiceProxy class (see [SWS_CM_00131])

A failure of the capability enforcement (i.e., an invocation without appropriate mod-
eling) shall be handled according to [SWS_CORE_00001]. c(RS_SEC_03002,
RS_SEC_03008, RS_SEC_03010)

Note:
In case of [SWS_CM_90002] and [SWS_CM_90003] dropping data, the application
will not be notified.

A logging facility for security events is currently not defined in the AUTOSAR Adaptive
Platform. Logging violations of access restrictions according to [SWS_CM_90001],
[SWS_CM_90002], [SWS_CM_90003], [SWS_CM_90005] and [SWS_CM_90006] is
up to the implementation or specific ECU projects.

7.5.2 Secure Communication

7.5.2.1 SOME/IP Network binding

SOME/IP communication can be transported via TCP and UDP. Therefore different
security mechanism have to be available to secure the SOME/IP communication. The
following security protocols are currently supported:

• TLS

• DTLS

• SecOC

• IPSec

SOME/IP supports one-to-many (unicast) and many-to-many (multicast) communica-
tion paradigms. These paradigms may switch at runtime for events (see multicast-
Threshold).

It is therefore important to be aware of the limitations of the secure channel approach:

134 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• Confidentiality of events
If events are transported using UDP and may be sent using multicast, they cannot
be guaranteed confidential due to the fact that only SecOC can be used to secure
multicast communication and SecOC does not offer confidentiality.

[SWS_CM_90101]{DRAFT} Secure UDP and TCP channel creation for TLS, DTLS
and SecOC d The Communication Management software shall create secure UDP
channels according to the input for all SecureComProps referenced by ServiceIn-
stanceToMachineMapping in the role secureComPropsForUdp. The Communi-
cation Management software shall create secure TCP channels according to the in-
put for all SecureComProps referenced by ServiceInstanceToMachineMapping
in the role secureComPropsForTcp. Secure channels may be shared by multiple
AdaptivePlatformServiceInstances by multiplexing the communication, i.e. by
referencing the same SecureComProps in the same role. c(RS_SEC_04001)

[SWS_CM_90102]{DRAFT} Using secure TLS, DTLS and SecOC channels d All
communication triggered by a Skeleton or Proxy shall be sent via the respective se-
cure channel according to the input. The appropriate secure channel is identified by ex-
amining the references to SecureComProps of ServiceInstanceToMachineMap-
ping for the AdaptivePlatformServiceInstance that is mapped to an Eth-
ernetCommunicationConnector of a Machine by this ServiceInstanceToMa-
chineMapping.

In addition it is possible to define which elements of the ServiceInterface of the
particular AdaptivePlatformServiceInstance needs to go via the secured chan-
nel. The selection of ServiceInterface elements is done by the ServiceInter-
faceElementSecureComConfigthat is aggregated by AdaptivePlatformSer-
viceInstance.

The following configuration in the ServiceInterfaceElementSecureComConfig
is applicable:

• Methods
The roles methodCall and methodReturn identify the method(s) that shall
be sent using the referenced secure channel.

• Events
The role event identifies the event(s) that shall be sent using the referenced
secure channel.

• Fields
The roles fieldNotifier, getterCall, getterReturn, setterCall and
setterReturn identify the event and method(s) that shall be sent using the
referenced secure channel.

c(RS_SEC_04001, RS_SEC_04003)

The actual secure channel to be created is determined by the concrete sub-class of
the SecureComProps base-class.

A (D)TLS secure channel may provide authenticity, integrity and confidentiality.

135 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90103]{DRAFT} TLS secure channel for methods using reliable trans-
port d A TLS secure channel shall be created and used if

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “tcp” by transportProtocol
in the associated SomeipMethodDeployment.

c(RS_SEC_04001)

[SWS_CM_90104]{DRAFT} DTLS secure channel for methods using unreliable
transport d A DTLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “udp” by transportProtocol
in the associated SomeipMethodDeployment.

c(RS_SEC_04001)

[SWS_CM_90105]{DRAFT} TLS secure channel for events using reliable trans-
port d A TLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “tcp” by transportProtocol in
the associated SomeipEventDeployment.

c(RS_SEC_04001)

[SWS_CM_90106]{DRAFT} DTLS secure channel for events using unreliable
transport d A DTLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “udp” by transportProtocol in
the associated SomeipEventDeployment.

c(RS_SEC_04001)

[SWS_CM_90107]{DRAFT} TLS secure channel for fields d The requirements
[SWS_CM_90103], [SWS_CM_90104], [SWS_CM_90105] and [SWS_CM_90106] ap-
ply to fields in the same manner, since fields are a composition of methods and
events. c(RS_SEC_04001)

136 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90120]{DRAFT} TLS client role of a Proxy d The TLS secure channel
shall be associated with the respective Proxy and the implementation shall act as a
TLS client, if the AdaptivePlatformServiceInstance referenced in

• [SWS_CM_90103]

• [SWS_CM_90104]

• [SWS_CM_90105]

• [SWS_CM_90106]

• [SWS_CM_90107]

is a RequiredApServiceInstance. c(RS_SEC_04001)

[SWS_CM_90121]{DRAFT} TLS server role of a Skeleton d The TLS secure chan-
nel shall be associated with the respective Skeleton and the implementation shall act
as a TLS server, if the AdaptivePlatformServiceInstance referenced in

• [SWS_CM_90103]

• [SWS_CM_90104]

• [SWS_CM_90105]

• [SWS_CM_90106]

• [SWS_CM_90107]

is a ProvidedApServiceInstance. c(RS_SEC_04001)

According to the constraints [constr_3485] and [constr_3486] a Proxy and Skeleton
cannot be bound to the identical local endpoint (IP address and port). Hence, a local
endpoint can either act as a TLS client or as a TLS server exclusively. However, if mul-
tiple Proxys are bound to the same endpoint, their common channel shall be shared
in the middleware. Likewise, if multiple Skeletons are bound to the same endpoint,
their common channel shall be shared in the middleware.

[SWS_CM_90119]{DRAFT} Behavior of a creating ServiceProxy over TLS or
DTLS d The instantiation according to [SWS_CM_00131] shall trigger the asyn-
chronous handshake. c(RS_SEC_04004)

[SWS_CM_90111]{DRAFT} Behavior of a ServiceProxy over TLS before success-
ful completion of the handshake d The communication channel is ready as soon as
the TLS handshake is completed.

Therefore, the future returned by the following methods shall only be satisfied after the
handshake has finished and once the communication was successful:

• the function call operator (operator()) of the respective Method class (see
[SWS_CM_00196])

• the Set() method of the respective Field class (see [SWS_CM_00113])

137 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• the Get() method of the respective Field class (see [SWS_CM_00112])

If the handshake fails, error handling according to [SWS_CORE_00001] shall be done
as if the peer was unreachable. c(RS_SEC_04004)

[SWS_CM_90112]{DRAFT} Behavior of a ServiceProxy over DTLS before suc-
cessful completion of the handshake d The communication channel is ready as
soon as the DTLS handshake is completed. Before completion the middleware shall
drop all requests as if the remote peer is unreachable. c(RS_SEC_04004)

The rationale for choosing different behavior in [SWS_CM_90111] and
[SWS_CM_90112] is to reflect the nature of the underlying transport. E.g. plain
UDP would also silently discard packets that cannot be sent, where TCP would report
an error.

[SWS_CM_90113]{DRAFT} Behavior of a ServiceSkeleton over TLS before suc-
cessful completion of the handshake d The communication channel is ready
as soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

• the Send() method of the respective Event class (see [SWS_CM_00162])

• the Update() method of the respective Field class (see [SWS_CM_00119])

c(RS_SEC_04004)

[SWS_CM_90114]{DRAFT} Behavior of a ServiceSkeleton over DTLS before
successful completion of the handshake d The communication channel is ready
as soon as the TLS handshake is completed. Therefore, [SWS_CM_10287] and
[SWS_CM_10319] shall be extended to checking whether the TLS handshake did suc-
cessfully finish.

Therefore, as if the proxy was not connected, the invocation of the following methods
shall not result in sending any data:

• the Send() method of the respective Event class (see [SWS_CM_00162])

• the Update() method of the respective Field class (see [SWS_CM_00119])

c(RS_SEC_04004)

A SecOC secure channel may provide authenticity and integrity.

[SWS_CM_90108]{DRAFT} SecOC secure channel for methods using reliable
transport d A SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureComPro-
psForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the

138 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

secured channel by the ServiceInterfaceElementSecureComConfig and
this method of the AdaptivePlatformServiceInstance is configured for
transmission over “tcp” by transportProtocol in the associated Someip-
MethodDeployment.

c(RS_SEC_04001)

[SWS_CM_90115]{DRAFT} SecOC secure channel for methods using unreliable
transport d A SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureComPro-
psForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method of the AdaptivePlatformServiceInstance is configured for
transmission over “tcp” by transportProtocol in the associated Someip-
MethodDeployment.

c(RS_SEC_04001)

[SWS_CM_90109]{DRAFT} SecOC secure channel for events using reliable
transport d A SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForTcp by a ServiceInstanceToMachineMapping and an event
of the AdaptivePlatformServiceInstance is selected for transmission
over the secured channel by the ServiceInterfaceElementSecureCom-
Config and this event of the AdaptivePlatformServiceInstance is con-
figured for transmission over “tcp” by transportProtocol in the associated
SomeipEventDeployment.

c(RS_SEC_04001)

[SWS_CM_90116]{DRAFT} SecOC secure channel for events using unreliable
transport d A SecOC secure channel shall be created and used if:

• A SecOcSecureComProps instance is referenced in the role secureCom-
PropsForUdp by a ServiceInstanceToMachineMapping and an event
of the AdaptivePlatformServiceInstance is selected for transmission
over the secured channel by the ServiceInterfaceElementSecureCom-
Config and this event of the AdaptivePlatformServiceInstance is con-
figured for transmission over “udp” by transportProtocol in the associated
SomeipEventDeployment.

c(RS_SEC_04001)

[SWS_CM_90110]{DRAFT} SecOC secure channel for fields d The requirements
[SWS_CM_90108], [SWS_CM_90109], [SWS_CM_90115], [SWS_CM_90116] apply
to fields in the same manner, since fields are a composition of methods and events.
c(RS_SEC_04001)

139 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

IPsec provides cryptographic protection for IP datagrams in IPv4 and IPv6 network
packets.

[SWS_CM_90117]{DRAFT} IPsec secure channel between communication nodes
d An IPsec secure channel shall be created and used if an AdaptivePlatform-
ServiceInstance is mapped by ServiceInstanceToMachineMapping to an
EthernetCommunicationConnector that points with the unicastNetworkEnd-
point to a NetworkEndpoint that aggregates an IPSecConfig.

The IPSecRules in the IPSecConfig define security associations between the Net-
workEndpoint that aggregates this IPSecConfig and remote nodes that are de-
fined by the referenced remoteIpAddress. c(RS_SEC_04001)

[SWS_CM_90118]{DRAFT} Transport of Service communication over an IPsec
security association d If a communication connection is established between a Ser-
vice Provider and Service Requester and the configured transport layer connection
matches the defined security association then the IP packets exchanged between the
Service Provider and Service Requester will be protected by IPsec.

In other words it means that if the IPsec security association defined by

• the local Address (IP Address defined by the networkEndpointAddress, Port
and Protocol defined by udpLocalPort or tcpLocalPort) and

• the remote Address (IP Address defined by the remoteIpAddress, Port and
Protocol defined by udpRemotePort or tcpRemotePort)

equals the settings defined by

• the ServiceInstanceToMachineMapping for the ProvidedApServiceIn-
stance and

• the ServiceInstanceToMachineMapping for the RequiredApServiceIn-
stance and

• this network connection is established

then the IP packets between the two nodes will be protected according to the configu-
ration that is also defined in the IPSecRule. c(RS_SEC_04001)

7.5.2.2 DDS

DDS is built upon the Real-Time Publish-Subscribe (RTPS) wire protocol, which allows
different implementations of the standard to interoperate at the wire level. The DDS-
RTPS specification [19] defines the wire protocol using a Model Driven Architecture;
i.e., in terms of a Platform-Independent Model (PIM), which can be mapped to Platform
Specific Models (PSM) targeting different transport protocols. In particular, [19] defines

140 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

a UDP PSM, and different DDS vendors have implemented TCP PSMs12, and Shared
Memory PSMs for Inter-Process Communication (IPC).

For consistency with the secure channel modeling and secure communication mech-
anisms specified in 7.5.2.1, this section defines support for communication over the
following security protocols:

• DTLS, for secure communication over UDP.

• TLS, for secure communication over TCP.

• IPSec, for secure communication over IP.

Implementers of the DDS Network Binding who may want to provide transport-
independent secure communication and fine-grained access control at the DDS
Domain- and Topic-level may use the mechanisms defined in the DDS Security speci-
fication [24] in accordance with [SWS_CM_90210].

[SWS_CM_90201]{DRAFT} Secure channel creation d Secure channels shall be
created as specified in [SWS_CM_90101]. c(RS_SEC_04001)

[SWS_CM_90202]{DRAFT}Using secure channels d Secure channels shall be used
as specified in [SWS_CM_90102]. c(RS_SEC_04001, RS_SEC_04003)

[SWS_CM_90203]{DRAFT} TLS secure channel for methods using reliable trans-
port d A TLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secure channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “tcp” by transportProtocol
in the associated DdsMethodDeployment.

The DataReaders and DataWriters associated with the method shall be configured to
operate over TLS. c(RS_SEC_04001)

[SWS_CM_90204]{DRAFT} DTLS secure channel for methods using unreliable
transport d A DTLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and a method of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this method is configured for transmission over “udp” by transportProtocol
in the associated DdsMethodDeployment.

The DataReaders and DataWriters associated with the method shall be configured to
operate over DTLS. c(RS_SEC_04001)

12A standard TCP PSM for DDS-RTPS is under development, the RFP document is publicly avail-
able at the Object Management Group website: https://www.omg.org/cgi-bin/doc.cgi?mars/
2017-9-24.

141 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24
https://www.omg.org/cgi-bin/doc.cgi?mars/2017-9-24

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90205]{DRAFT} TLS secure channel for events using reliable trans-
port d A TLS secure channel shall be created and used if:

• A TlsSecureComProps instance is referenced in the role secureComProps-
ForTcp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “tcp” by transportProtocol in
the associated DdsEventDeployment.

The DataReaders and DataWriters associated with the event shall be configured to
operate over TLS. c(RS_SEC_04001)

[SWS_CM_90206]{DRAFT} DTLS secure channel for events using unreliable
transport d A DTLS secure channel shall be created and used if:

• a TlsSecureComProps instance is referenced in the role secureComProps-
ForUdp by a ServiceInstanceToMachineMapping and an event of the
AdaptivePlatformServiceInstance is selected for transmission over the
secured channel by the ServiceInterfaceElementSecureComConfig and
this event is configured for transmission over “udp” by transportProtocol in
the associated DdsEventDeployment.

The DataReaders and DataWriters associated with the event shall be configured to
operate over DTLS. c(RS_SEC_04001)

[SWS_CM_90207]{DRAFT} TLS secure channel for fields d The requirements
[SWS_CM_90203], [SWS_CM_90204], [SWS_CM_90205] and [SWS_CM_90206] ap-
ply to fields in the same manner, since fields are a composition of methods and
events. c(RS_SEC_04001)

[SWS_CM_90209]{DRAFT} IPsec secure channel between communication nodes
and Transport of Service communication over an IPsec security association d An
IPsec secure channel shall be created and used according to the requirements and
constraints specified in [SWS_CM_90117] and [SWS_CM_90118]. c(RS_SEC_04001)

[SWS_CM_90210]{DRAFT} Using the DDS Security standard plug-ins in the
Adaptive Platform d Implementers of the DDS binding may use the standard DDS
Security plug-ins specified in [24] instead of the security mechanisms defined in this
document. The DDS Security plug-ins enable transport-independent secure commu-
nication and fine-grained access control on the DDS Domains and Topics that are cre-
ated as a result of the DDS network binding. These mechanisms shall be configured
using the standard Governance and Permission files specified in [24].

When using DDS Security instead of the mechanisms specified in this docu-
ment, DdsProvidedServiceInstances and DdsRequiredServiceInstances
shall contain no secureComConfig properties to ensure that the secure communi-
cation relies solely on DDS Security mechanisms. c(RS_SEC_04001)

142 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7.6 Communication API

In the following chapter the functional API specification shall be described.

7.6.1 Offer service

For the service offering C++ API reference, see chapter 8.1.3.2.

[SWS_CM_00102]{DRAFT} Uniqueness of offered service d The Communication
Management shall check the offered service for uniqueness. If the implementation
detects a duplication (i.e., a service with the same ServiceIdentifier and In-
stanceIdentifier is already registered), it shall perform error handling according
to [SWS_CORE_00001]. c(RS_CM_00200, RS_CM_00101)

[SWS_CM_00103]{DRAFT} Protocol where a service is offered dWhen a new ser-
vice is offered by the application, the Communication Management shall check over
which protocols this service shall be offered. This information is configured in the class
of ServiceInterfaceDeployment referencing the offered ServiceInterface in
the role serviceInterface. According of the type of the ServiceInterfaceDe-
ployment the Communication Management shall trigger the service offering over re-
spective protocol. c(RS_CM_00101)

7.6.2 Service skeleton creation

For the service skeleton creation C++ API reference, see chapter 8.1.3.3.

[SWS_CM_10410]{DRAFT} InstanceIdentifier check during the creation of
service skeleton d The Communication Management shall check the value of the In-
stanceIdentifier argument: the identifier shall be unique, using the same instance
identifier for the creation of more than one skeleton instance of the same service shall
cause error handling according to [SWS_CORE_00001]. c(RS_CM_00101)

[SWS_CM_10450]{DRAFT} InstanceSpecifier check during the creation of
service skeleton d The Communication Management shall check the value of the In-
stanceSpecifier argument: the specifier shall be unique, using the same instance
specifier for the creation of more than one skeleton instance of the same service shall
be handled according to [SWS_CORE_00001]. c(RS_CM_00101)

[SWS_CM_10451]{DRAFT} InstanceIdentifierContainer check during the
creation of service skeleton d The Communication Management shall check the
value of the InstanceIdentifierContainer argument: the container size shall
be bigger than zero and the identifiers of the container shall be unique, having co-
tainer size of zero and using the same instance specifier for the creation of more
than one skeleton instance of the same service shall be handled according to
[SWS_CORE_00001]. c(RS_CM_00101)

143 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

7.6.3 Processing of service methods

For the processing of service methods C++ API reference, see chapter 8.1.3.6.

[SWS_CM_10411]{DRAFT} Service method processing modes d The following ser-
vice method processing modes shall be supported:

• Polling: Instead of calling a provided service method, the Communication Man-
agement software collects incoming service method invocations. The processing
of each invocation is explicitly triggered by the implementation providing the ser-
vice method using the mechanism defined in [SWS_CM_00199].

• Event-driven, concurrent: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed and will be processed concurrently on provider side by using
different threads.
This is the default mode.

• Event-driven, sequential: The Communication Management software activates
the invoked service method when the invocation arrives. Consumer concurrent
calls are allowed, but will not be processed concurrently on provider side, by
instead executing them one after the other to avoid the need of synchronization
mechanisms in the implementation providing the service method.

c(RS_CM_00211)

7.6.4 Registering get handlers for fields

For the registering get handlers for fields C++ API reference, see chapter 8.1.3.7.

[SWS_CM_10412]{DRAFT} Invoking GetHandlers d The registered GetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a Get. c(RS_CM_00218)

7.6.5 Registering set handlers for fields

For the registering set handlers for fields C++ API reference, see chapter 8.1.3.8.

[SWS_CM_10413]{DRAFT} Invoking SetHandlers d The registered SetHandler
shall be called by the implementation whenever the Communication Management re-
ceives a Set. c(RS_CM_00218)

Note: Upon a call to the SetHandler, the Service Provider has to validate the received
field value (it can accept, modify or reject it). After that, it sets the new value in the
future object (see [SWS_CM_00116]).

[SWS_CM_10415]{DRAFT} Notify the Field value after a call to the SetHandler
function d The Communication Management implementation shall take the effective

144 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

field value returned by the SetHandler function, and send it back to the requester
as return value of the set function (see [SWS_CM_00113]), and to all the other sub-
scribed entities via notification (see [SWS_CM_00119]). c(RS_CM_00218)

[SWS_CM_00128]{DRAFT} Ensuring the existence of valid Field values d To en-
sure the existence of a valid field values upon a call to the Subscribe() method (see
[SWS_CM_00141]) or to the Get() method (see [SWS_CM_00112]) the ara::com
implementation shall do the following: If a service containing a Field is offered
via a call to OfferService() (see [SWS_CM_00101]), error handling according to
[SWS_CORE_00001] shall be performed, if Update() has not been called yet and
one or more of the following applies:

• hasNotifier = true

• hasGetter = true and a GetHandler (eee [SWS_CM_00114]) has not yet
been registered.

c(RS_CM_00218)

[SWS_CM_00129]{DRAFT} Ensuring the existence of SetHandler d Upon a call
to OfferService() in a skeleton implementation for a given service, error handling
according to [SWS_CORE_00001] shall be performed, if for at least one contained
Field having hasSetter = true no SetHandler (see [SWS_CM_00116]) has been
registered yet. c(RS_CM_00218)

7.6.6 Find service

For the find service C++ API reference, see chapter 8.1.3.9.

[SWS_CM_00124]{DRAFT} Find service handler behavior d After calling the
StartFindService method, the FindServiceHandler shall be called by the
Communication Management software to receive the found services. By the first call,
the FindServiceHandler shall receive the initially known matches, if there are any.
In following, the FindServiceHandler shall be called every time a new matching
service instance is found. c(RS_CM_00102)

[SWS_CM_10382]{DRAFT} Calling stop find service for already stopped finds
d Calls to the StopFindService method using a FindServiceHandle obtained
from a StartFindService that already has been stopped shall be silently ignored. c
(RS_CM_00102)

7.6.7 Receive events

For the event data access C++ API reference, see chapter 8.1.3.13.

145 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00709]{DRAFT} FIFO semantics d The Communication Management
shall provide buffering with FIFO semantics between sender and receiver of events.
c(RS_CM_00203)

[SWS_CM_00710]{DRAFT} No implicit context switches d The sending of an
event on sender side shall not lead to an implicit context switch to the receiver pro-
cess, unless the receiver explicitly enabled it by following [SWS_CM_00182] and
[SWS_CM_00711]. c(RS_CM_00203)

7.6.7.1 Receive event by polling

For the polling access no additional APIs on top of 8.1.3.13 are needed.

7.6.7.2 Receive event by getting triggered

For the receive event by getting triggered C++ API reference, see chapter 8.1.3.14.

[SWS_CM_00182]{DRAFT} Event Receive Handler call serialization d The Com-
munication Management shall serialize calls to the registered EventReceiveHan-
dler function as it is not guaranteed that the callback function is re-entrant. c
(RS_CM_00203)

[SWS_CM_00711]{DRAFT} d After the Communication Management has called
the registered EventReceiveHandler function for a specific Event class in-
stance, the next call to GetNewSamples on the same instance shall provide at
least one data sample as long as GetFreeSampleCount is not already returning
max_samples_exceeded at the point in time of the call. c(RS_CM_00203)

7.6.8 Call a service method

For the call a service method C++ API reference, see chapter 8.1.3.15.

[SWS_CM_10414]{DRAFT} Initiate a method call d At the point of time when the
caller calls the method (see [SWS_CM_00196]), the Communication Management
software does not know yet if the result shall be returned with synchronous or asyn-
chronous behavior. Therefore the Communication Management software shall instan-
tiate the ara::core::Future object to be returned to the caller, but shall not per-
form actions which lead to uncontrolled context switches from the caller point of view,
e.g. an asynchronous event-style mechanism for a wait-on-event. c(RS_CM_00212,
RS_CM_00213)

[SWS_CM_10371]{DRAFT} Context of return checked errors d If during process-
ing of a method call one of the checked errors (see subsubsection 8.1.2.6) oc-
curs, the corresponding ara::core::ErrorCode shall be returned in the context

146 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

of the ara::core::Future::GetResult()/ara::core::Future::get() call.
c(RS_CM_00211, RS_CM_00212, RS_CM_00213, RS_CM_00214)

[SWS_CM_90436]{DRAFT} No checked errors for Fire and Forget method
calls d There shall be no checked errors returned for Fire and Forget method
calls. c(RS_CM_00225)

7.6.9 Update notification events for fields

[SWS_CM_00120]{DRAFT} Provision of an update notification event for a Field d
If hasNotifier is true, update notification events for the Field shall be provided as
of the following requirements:

• [SWS_CM_00141] Method to subscribe to a service event. This subscribe leads
immediately to a service event that contains the initial field value send from
provider side to the consumer.

• [SWS_CM_00151] Method to unsubscribe from a service event.

• [SWS_CM_00316] Method to query the subscription state.

• [SWS_CM_00701] Method to receive a service event using polling.

• [SWS_CM_00181] Method to enable service event trigger.

• [SWS_CM_00182] Event Receive Handler call serialization.

• [SWS_CM_00183] Method to disable service event trigger.

• [SWS_CM_00333] Method to set a subscription state change handler.

• [SWS_CM_00334] Method to unset a subscription state change handler.

Except that the corresponding methods reside in the Field class instead of the Event
class. c(RS_CM_00218)

7.6.10 Instance Specifier Translation

For the instance specifier translation C++ API reference, see chapter 8.1.3.18.

[SWS_CM_10452]{DRAFT} InstanceSpecifier translation to InstanceIdentifiers d
The Communication Management shall translate an InstancSpecifier to Instan-
ceIdentifiers. Based on the match there shall be zero, 1 or multiple InstanceI-
dentifiers . c(RS_CM_00207)

147 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8 Communication API specification

The adaptive platform supports multiple language bindings. At the current state only
the C++ language binding is implemented.

8.1 C++ language binding

8.1.1 API Header files

This chapter describes the header files of the ara::com API.

The so-called input for the header files are the AUTOSAR metamodel classes within
the ServiceInterface description, as defined in the AUTOSAR Adaptive Method-
ology Specification [25].

The following requirements are applicable for all header files; requirements which are
specific for a header file are described in own sub-chapters.

The required folder structure for the ARA public header files is defined by
[SWS_AP_00001] in AUTOSAR SWS General [26]. This applies to the Types header
file, but the folder structure for the Service header files, Common header files, and the
Implementation Types header files is derived from the namespace hierarchy.

[SWS_CM_01020]{DRAFT} Folder structure d The Service header files defined
by [SWS_CM_01002], the Common header files defined by [SWS_CM_01012], and
the Implementation Types header files defined by [SWS_CM_10373] shall be located
within the folder:

<namespace[0]>/<namespace[1]>/.../<namespace[n]>/

where:
<namespace[0]> ... <namespace[n]> are the namespace names as defined
in [SWS_CM_01005] and [SWS_CM_10375]. c(RS_CM_00001)

8.1.1.1 Service header files

The Service header files are the central definition of the ara::com API and any associ-
ated data structures that are required by the AdaptiveApplication software components
to use the communication management.

[SWS_CM_01002]{DRAFT} Service header files existence d The communication
management shall provide one Proxy header file and one Skeleton header file for each
ServiceInterface defined in the input by using the file name <name>_proxy.h for
the Proxy header file and <name>_skeleton.h for the Skeleton header file, where
<name> is the ServiceInterface.shortName converted to lower-case letters. c
(RS_CM_00001)

148 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_01004]{DRAFT} Inclusion of common header file d The Proxy and
Skeleton header file shall include the Common header file:

1 #include "<namespace[0]>/<namespace[1]>/.../<namespace[n]>/<name>
_common.h"

where:
<namespace[0]> ... <namespace[n]> are the namespace names as defined
in [SWS_CM_01005] and [SWS_CM_10375]. <name> is the the ServiceInter-
face.shortName converted to lower-case letters. c(RS_CM_00001)

Namespaces are used to separate the definition of services from each other to prevent
name conflicts and they allow to use reasonably short names.

[SWS_CM_01005]{DRAFT} Namespace of Service header files d Based on the
symbol attributes of the ordered SymbolProps aggregated by PortInterface in
role namespace, the C++ namespace of the Service header file shall be:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 ...
6 } // namespace <ServiceInterface.namespace[n].symbol>
7 } // namespace <...>
8 } // namespace <ServiceInterface.namespace[1].symbol>
9 } // namespace <ServiceInterface.namespace[0].symbol>

with all namespace names converted to lower-case letters. c(RS_CM_00002)

Starting from the innermost namespace as defined by [SWS_CM_01005], there are
additional C++ namespaces for the proxy or the skeleton and for the events and meth-
ods. These namespaces are used for the declarations and definitions as described in
chapter 8.1.3.

[SWS_CM_01006]{DRAFT} Service skeleton namespace d The C++ namespace
for a specific service skeleton class shall be:

1 namespace skeleton {
2 ...
3 } // namespace skeleton

c(RS_CM_00002)

[SWS_CM_01007]{DRAFT} Service proxy namespace d The C++ namespace for a
specific service proxy class shall be:

1 namespace proxy {
2 ...
3 } // namespace proxy

c(RS_CM_00002)

149 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_01009]{DRAFT} Service events namespace d The Proxy and Skeleton
header file shall provide a C++ namespace for the definition of events within the name-
space defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace events {
2 ...
3 } // namespace events

c(RS_CM_00002)

[SWS_CM_01015]{DRAFT} Service methods namespace d The Proxy and Skeleton
header file shall provide a C++ namespace for the definition of methods within the
namespace defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace methods {
2 ...
3 } // namespace methods

c(RS_CM_00002)

[SWS_CM_01031]{DRAFT} Service fields namespace d The Proxy and Skeleton
header file shall provide a C++ namespace for the definition of fields within the name-
space defined by [SWS_CM_01006] and [SWS_CM_01007] respectively:

1 namespace fields {
2 ...
3 } // namespace fields

c(RS_CM_00002, RS_CM_00216)

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01006], and [SWS_CM_01009], the namespace hierarchy in the Skeleton
header file looks like:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 namespace skeleton {
6

7 namespace events {
8 ...
9 } // namespace events

10

11 namespace methods {
12 ...
13 } // namespace methods
14

15 namespace fields {
16 ...
17 } // namespace fields
18

19 ...
20 } // namespace skeleton
21 } // namespace <ServiceInterface.namespace[n].symbol>
22 } // namespace <...>

150 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

23 } // namespace <ServiceInterface.namespace[1].symbol>
24 } // namespace <ServiceInterface.namespace[0].symbol>

As a summary of the C++ namespace requirements [SWS_CM_01005],
[SWS_CM_01007], [SWS_CM_01009], and [SWS_CM_01015], the namespace
hierarchy in the Proxy header file looks like:

1 namespace <ServiceInterface.namespace[0].symbol> {
2 namespace <ServiceInterface.namespace[1].symbol> {
3 namespace <...> {
4 namespace <ServiceInterface.namespace[n].symbol> {
5 namespace proxy {
6

7 namespace events {
8 ...
9 } // namespace events

10

11 namespace methods {
12 ...
13 } // namespace methods
14

15 namespace fields {
16 ...
17 } // namespace fields
18

19 ...
20 } // namespace proxy
21 } // namespace <ServiceInterface.namespace[n].symbol>
22 } // namespace <...>
23 } // namespace <ServiceInterface.namespace[1].symbol>
24 } // namespace <ServiceInterface.namespace[0].symbol>

8.1.1.2 Common header file

The Common header file includes the ara::com specific type declarations derived from
the ApApplicationErrors composed by a particular ServiceInterface as well
Service Identifier type declarations related to a particular ServiceInterface.

[SWS_CM_01012]{DRAFT} Common header file existence d The communication
management shall provide a Common header file for each ServiceInterface de-
fined in the input by using the file name <name>_common.h, where <name> is the
ServiceInterface.shortName converted to lower-case letters. c(RS_CM_00001)

As a minimal requirement, the Types header file and the Implementation Types header
files need to be included.

[SWS_CM_01001]{DRAFT} Inclusion of Types header file d The Common header
file shall include the Types header file:

1 #include "ara/com/types.h"

c(RS_CM_00001)

151 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10372]{DRAFT} Inclusion of Implementation Types header files d The
Common header file shall include the Implementation Types header files of those Cp-
pImplementationDataTypes that are actually used by the particular ServiceIn-
terface:

1 #include "<namespace[0]>/<namespace[1]>/.../<namespace[n]>/impl_type_<
symbol>.h"

where <namespace[0..n]> is the namespace hierarchy defined in
[SWS_CM_10375], and <symbol> is the Cpp Implementation Data Type
symbol according to section 8.1.2.5.2 converted to lower-case letters. c
(RS_CM_00001)

It is not mandatory that all declarations and definitions are located directly in the Com-
mon header file. A Communication Management implementation might also distribute
the declarations and definitions into different header files, but at least all those header
files need to be included into the Common header file.

[SWS_CM_10370]{DRAFT} Common header file for Application Errors d The
Common header file shall include the class definitions for all ApApplicationError-
Domains for the ApApplicationErrors of a ServiceInterface according to
[SWS_CM_11266]. c(RS_CM_00001)

[SWS_CM_01017]{DRAFT} Service Identifier Type definitions in Common header
file d The Common header file shall include the information to identify the service type
according to the requirement [SWS_CM_01010]. c(RS_CM_00001)

[SWS_CM_01008]{DRAFT} Namespace for Service Identifier Type definitions d
The declarations and definitions according to [SWS_CM_01017] shall be located in
the C++ namespace as defined by [SWS_CM_01005] to match to the namespace of
the related skeleton and proxy header file. c(RS_CM_00002)

8.1.1.3 Types header file

The Types header file includes the data type definitions which are specific for the
ara::com API. Such data type definitions are used in the standardized proxy and skele-
ton interfaces defined in chapter 8.1.3.

[SWS_CM_01013]{DRAFT} Types header file existence d The communication man-
agement shall provide a Types header file by using the file name types.h. c
(RS_CM_00001)

[SWS_CM_01018]{DRAFT} Types header file namespace d The C++ namespace
for the data type definitions included by the Types header file shall be:

1 namespace ara {
2 namespace com {
3 ...
4 } // namespace com
5 } // namespace ara

152 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00002)

It is not mandatory that all data type definitions are located directly in the Types header
file. A Communication Management implementation might also distribute the defini-
tions into different header files, but at least all those header files need to be included
into the Types header file.

[SWS_CM_01019]{DRAFT} Data Type declarations in Types header file
d The Types header file shall include the data type definitions according to
[SWS_CM_00301], [SWS_CM_00302], [SWS_CM_00303], [SWS_CM_00304],
[SWS_CM_00383], [SWS_CM_00306], [SWS_CM_00308], [SWS_CM_00309],
[SWS_CM_00310], and [SWS_CM_00311]. c(RS_CM_00001)

8.1.1.4 Implementation Types header files

The Implementation Types header files include the ara::com specific type declara-
tions derived from the CppImplementationDataTypes created from the definitions
of AUTOSAR meta model classes within the ServiceInterface description. Such
data type declarations are described in detail in chapter 8.1.2.5.

[SWS_CM_10373]{DRAFT} Implementation Types header files existence d The
communication management shall provide an Implementation Types header file for
each CppImplementationDataType defined in the input by using the file name
impl_type_<symbol>.h, where <symbol> is the Cpp Implementation Data
Type symbol according to section 8.1.2.5.2 converted to lower-case letters. c
(RS_CM_00001)

The Implementation Types header files might need to include other header files, e.g.
for ara::core::String or ara::core::Vector.

[SWS_CM_10374]{DRAFT} Data Type definitions for AUTOSAR Data Types in
Implementation Types header files d The Implementation Types header files shall
include the type definitions and structure and class definitions for all the AUTOSAR
Data Types according to [SWS_CM_00402], [SWS_CM_00403], [SWS_CM_00404],
[SWS_CM_00405], [SWS_CM_00406], [SWS_CM_00407], [SWS_CM_00408],
[SWS_CM_00409], [SWS_CM_00410] and [SWS_CM_00424]. c(RS_CM_00001)

[SWS_CM_10375]{DRAFT} Implementation Types header file namespace d The
C++ namespace of the Implementation Types header file for a given CppImplemen-
tationDataType is defined via the aggregated namespace. Based on the sym-
bol attributes of the ordered SymbolProps aggregated by CppImplementation-
DataType in role namespace, the C++ namespace of the Implementation Types
header file shall be:

1 namespace <CppImplementationDataType.namespace[0].symbol> {
2 namespace <CppImplementationDataType.namespace[1].symbol> {
3 namespace <...> {
4 namespace <CppImplementationDataType.namespace[n].symbol> {
5 ...

153 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

6 } // namespace <CppImplementationDataType.namespace[n].symbol>
7 } // namespace <...>
8 } // namespace <CppImplementationDataType.namespace[1].symbol>
9 } // namespace <CppImplementationDataType.namespace[0].symbol>

with all namespace names converted to lower-case letters. c(RS_CM_00002)

154 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8.1.2 API Data Types

This chapter describes the data types used by the ara::com API, both the specific ones
which are part of the standardized proxy and skeleton interfaces, and the ones derived
from the description based on the AUTOSAR Metamodel.

8.1.2.1 Service Identifier Data Types

The data types described in this chapter are derived from the ara::com API design and
as a part of the API, they are used to identify a specific service or service instance.

A service can be identified at least by a fully qualified name and a version. The Servi-
ceIdentifier is not visible in the ara::com API, as the specific service skeleton and
proxy class itself represent the service type, but the ServiceIdentifier is needed
for the implementation of the Communication Management software. It is defined here
to guarantee a minimum amount of information.

[SWS_CM_01010]{DRAFT} Service Identifier and Service Version Classes d The
Communication Management shall provide a C++ class named ServiceInter-
face.shortName. The class contains at least a fully qualified name identifier
(ServiceIdentifier) and a service version (ServiceVersion). The exact types
of ServiceIdentifier and ServiceVersion are specific to the Communication
Management software provider. Their concrete realization is implementation defined.
To allow for logging and for storing and managing in C++ container classes by the using
application, however, the types of both classes shall satisfy the EqualityCompara-
ble requirements according to table 17, the LessThanComparable requirements ac-
cording to table 18, and the CopyAssignable requirements according to table 23 of
section 17.6.3.1 of [27]. These requirements are fulfilled if the operators operator==,
operator<, and operator= as well as a toString() method is provided.

1 class <ServiceInterface.shortName> {
2 public:
3 static constexpr ServiceIdentifierType ServiceIdentifier;
4 static constexpr ServiceVersionType ServiceVersion;
5 };
6

7 class ServiceIdentifierType {
8 bool operator==(const ServiceIdentifierType& other) const;
9 bool operator<(const ServiceIdentifierType& other) const;

10 ServiceIdentifierType& operator=(const ServiceIdentifierType& other);
11 ara::core::string_view toString() const;
12 };
13

14 class ServiceVersionType {
15 bool operator==(const ServiceVersionType& other) const;
16 bool operator<(const ServiceVersionType& other) const;
17 ServiceVersionType& operator=(const ServiceVersionType& other);
18 ara::core::string_view toString() const;
19 };

155 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00200)

There might exist different instances of exactly the same service in the system. To han-
dle this, an InstanceIdentifier or an InstanceSpecifier are used to identify
a specific instance of a service. These are a necessary parameter of the API defined
for both the skeleton and proxy side:

• on service skeleton side, it types the parameter needed to
identify the service instance when creating an instance by
[SWS_CM_00130],[SWS_CM_00152],[SWS_CM_00153].

• on service proxy side, it types the parameter needed to identify the ser-
vice instance when searching for a specific instance by [SWS_CM_00122] or
[SWS_CM_00123].

[SWS_CM_00350]{DRAFT} Instance Specifier Class d The InstanceSpecifier
class is specified in [16]. c(RS_CM_00101)

[SWS_CM_00302]{DRAFT} Instance Identifier Class d The Communication Man-
agement shall provide a class InstanceIdentifier. It only contains instance infor-
mation, but does not contain a fully qualified name, which would also have service type
information.
The definition of the InstanceIdentifier can be extended by the Communica-
tion Management software provider, but at least the given class constructor, the class
method signatures, and the static member Any must be preserved. InstanceI-
dentifier shall further satisfy the EqualityComparable requirements according
to table 17, the LessThanComparable requirements according to table 18, and the
CopyAssignable requirements according to table 23 of section 17.6.3.1 of [27] to
allow for logging of InstanceIdentifiers as well as storing and managing In-
stanceIdentifiers in C++ container classes by the using application. These re-
quirements are fulfilled if the operators operator==, operator<, and operator=
as well as a toString() method is provided.

1 class InstanceIdentifier {
2 public:
3 static const InstanceIdentifier Any;
4

5 explicit InstanceIdentifier(ara::core::string_view value);
6 ara::core::string_view toString() const;
7 bool operator==(const InstanceIdentifier& other) const;
8 bool operator<(const InstanceIdentifier& other) const;
9 InstanceIdentifier& operator=(const InstanceIdentifier& other);

10 };

c(RS_CM_00101, RS_CM_00102)

[SWS_CM_00319]{DRAFT} Instance Identifier Container Class d The Communica-
tion Management shall provide the definition of a InstanceIdentifierContainer.
The container holds a list of InstanceIdentifier. The assigned data type is al-
lowed to be changed by the Communication Management software provider, but must
adhere to the general container requirements according to table 96 of section 23.2.1

156 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

and the sequence container requirements according to table 100 of section 23.2.3 of
[27]. A ara::core::Vector for example fulfills these requirements.

1 using InstanceIdentifierContainer = ara::core::Vector<InstanceIdentifier>;

c(RS_CM_00101, RS_CM_00102)

The following data types are used for the handling of services on the service consumer
side, therefore they are part of the API defined for the proxy side.

To identify a triggered request to find a service, the StartFindService method of
[SWS_CM_00123] returns a FindServiceHandle which is used as parameter to
cancel this request with StopFindService as described in [SWS_CM_00125].

[SWS_CM_00303]{DRAFT} Find Service Handle d The Communication Manage-
ment shall provide the definition of an opaque FindServiceHandle with exactly this
name. FindServiceHandle shall satisfy the EqualityComparable requirements
according to table 17, the LessThanComparable requirements according to table 18,
and the CopyAssignable requirements according to table 23 of section 17.6.3.1 of
[27] to allow storing and managing FindServiceHandles in C++ container classes
by the using application. These requirements are fulfilled if the following operators
are provided: operator==, operator<, and operator=. The exact definition
of FindServiceHandle is communication management implementation specific. c
(RS_CM_00102)

For example, a definition of FindServiceHandle could look like this:
1 struct FindServiceHandle {
2 internal::ServiceId service_id;
3 internal::InstanceId instance_id;
4 std::uint32_t uid;
5

6 bool operator==(const FindServiceHandle& other) const;
7 bool operator<(const FindServiceHandle& other) const;
8 FindServiceHandle& operator=(const FindServiceHandle& other);
9 ...

10 };

The usage of the API to find service instances, as defined in [SWS_CM_00122] and
[SWS_CM_00123], provides a handle container holding a list of handles. Each handle
represents an existing service instance and by passing the handle as parameter to the
proxy constructor [SWS_CM_00131], it allows the ara::com API user to create a proxy
instance to access this service instance.

[SWS_CM_00312]{DRAFT} Handle Type Class d The Communication Management
shall provide the definition of HandleType. It types the handle for a specific service
instance and shall contain the information that is needed to create a ServiceProxy.
The definition of the HandleType can be extended by the Communication Manage-
ment software provider, but at least the given class and class method signatures must
be preserved.

157 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

HandleType shall satisfy the EqualityComparable requirements according to ta-
ble 17 and the LessThanComparable requirements according to table 18 of sec-
tion 17.6.3.1 of [27]. These requirements are fulfilled if the following operators are
provided: operator== and operator<. This, together with [SWS_CM_00317]
and [SWS_CM_00318], allows storing and managing HandleTypes in C++ container
classes by the using application.
The definition of the HandleType class shall be located inside the ServiceProxy
class defined by [SWS_CM_00004]. This allows the Communication Management
software to provide handles with different implementation dependent on the binding
to the represented service.

1 class HandleType {
2 public:
3 bool operator==(const HandleType& other) const;
4 bool operator<(const HandleType& other) const;
5 const ara::com::InstanceIdentifier& GetInstanceId() const;
6 };

c(RS_CM_00102)

Since the Communication Management software is responsible for creation of handles
and the application just uses instances of it, the constructor signature is not part of the
HandleType specification.

[SWS_CM_00317]{DRAFT} Copy semantics of handle Type Class d The Commu-
nication Management shall provide the possibility to copy construct and copy assign a
HandleType instance from another instance.

HandleType(const HandleType&);
HandleType& operator=(const HandleType&);

c(RS_CM_00102)

[SWS_CM_00318]{DRAFT} Move semantics of handle Type Class d The Commu-
nication Management shall provide the possibility to move construct and move assign
a HandleType instance from another instance.

HandleType(HandleType &&);
HandleType& operator=(HandleType &&);

c(RS_CM_00102)

[SWS_CM_00304]{DRAFT} Service Handle Container d The Communication Man-
agement shall provide the definition of a ServiceHandleContainer. The container
holds a list of service handles and is used as a return value of the FindService
methods. The assigned data type is allowed to be changed by the Communication
Management software provider, but must adhere to the general container requirements
according to table 96 of section 23.2.1 and the sequence container requirements ac-
cording to table 100 of section 23.2.3 of [27]. A ara::core::Vector for example
fulfills these requirements.

1 template <typename T>
2 using ServiceHandleContainer = ara::core::Vector<T>;

158 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00102)

The possibility to continuously find services by registering a handler function as defined
in [SWS_CM_00123] requires a definition of such a handler function. The function
implementation itself must be provided by the proxy user.

[SWS_CM_00383]{DRAFT} Find Service Handler d The Communication Manage-
ment shall provide the definition of FindServiceHandler as a function wrapper for
the handler function that gets called by the Communication Management software in
case the service availability changes. It takes as input parameter a handle container
containing handles for all matching service instances and a FindServiceHandle
which can be used to invoke StopFindService (see [SWS_CM_00125]) from within
the FindServiceHandler.

1 template <typename T>
2 using FindServiceHandler =
3 std::function<void(ServiceHandleContainer<T>, FindServiceHandle)>;

c(RS_CM_00102)

See [SWS_CM_00304] for the type definition of ServiceHandleContainer.

8.1.2.2 Event Related Data Types

Event handling on receiver side is based on queued communication with config-
urable cache sizes. The cache size for a specific event of a proxy instance is de-
termined by the Communication Management, when subscribing to a specific event by
[SWS_CM_00141].

After the receiver subscribed to an event, the method GetNewSamples as defined in
[SWS_CM_00701] is used to retrieve the data samples of that event. In the context
of GetNewSamples application provided callback functions are called by the Commu-
nication Management, where Sample Pointers to the data samples retrieved from un-
derlying queues are passed in. A Sample Pointer is an alias for an event data type
pointer.

SamplePtr behaves similar to std::unique_ptr but it may be implemented with a
subset of features. It also contains an additional method GetProfileCheckStatus
to access the E2E results provided by ProfileCheckStatus of the referred sample.

[SWS_CM_00306]{DRAFT} Sample Pointer d The Communication Management
shall provide a SamplePtr template which provides a pointer to a managed data
object. The implementation shall at least contain the following constructors, assign
operators and methods:

template< typename T >
class SamplePtr {

// Default constructor
constexpr SamplePtr() noexcept;

159 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

// semantically equivalent to Default constructor
constexpr SamplePtr(nullptr_t) noexcept;

// Copy constructor is deleted
SamplePtr (const SamplePtr&) = delete;

// Move constructor
SamplePtr(SamplePtr&&) noexcept;

// Default copy assignment operator is deleted
SamplePtr& operator=(const SamplePtr&) = delete;
// Assignment of nullptr_t
SamplePtr& operator=(nullptr_t) noexcept;
// Move assignment operator
SamplePtr& operator=(SamplePtr&&) noexcept;

// Dereferences the stored pointer
T& operator*() const noexcept;
T* operator->() const noexcept;

//Checks if the stored pointer is null
explicit operator bool () const noexept;

// Swaps the managed object
void Swap (SamplePtr&) noexcept;
//Replaces the managed object
void Reset (nullptr_t) ;

//Returns the stored object
T* Get () const noexcept;

// Returns the end 2 end protection check result
ProfileCheckStatus GetProfileCheckStatus() const noexcept;

};

c(RS_CM_00202, RS_CM_00203)

[SWS_CM_90420]{DRAFT} E2E ProfileCheckStatus of a sample d The Sam-
plePtr shall provide the access to the ProfileCheckStatus of each sample by
means of the method GetProfileCheckStatus:

1 ara::com::e2e::ProfileCheckStatus GetProfileCheckStatus() const noexcept;
2

c(RS_E2E_08534)

On the event provider side, it is possible to let the Communication Management
allocate the memory for the storage of the data before sending it as defined in

160 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_90438]. A Sample Allocatee Pointer is an alias for an event data type
pointer used both for allocation and data sending.

[SWS_CM_00308]{DRAFT} Sample Allocatee Pointer d The Communication Man-
agement shall provide the definition of SampleAllocateePtr as a pointer to a data
sample allocated by the Communication Management implementation. The implemen-
tation is allowed to be changed by the Communication Management software provider.

1 template <typename T>
2 using SampleAllocateePtr = std::unique_ptr<T>;

c(RS_CM_00201)

The event receiver can register an Event Receive Handler as a callback to get no-
tified if new event data has arrived. The callback function itself is defined in the
event consumer implementation; the Event Receive Handler type is just an general
purpose function alias for the use in the method SetReceiveHandler as defined by
[SWS_CM_00181].

[SWS_CM_00309]{DRAFT} Event Receive Handler d The Communication Manage-
ment shall provide the definition of EventReceiveHandler as a function wrapper
without parameters for the handler function that gets called by the Communication
Management software in case new event data arrives for an event. The event receiver
must provide the function implementation which is not required to be re-entrant.
The symbolic name is set; for the alias it is recommended to use the C++ general-
purpose polymorphic function wrapper std::function, but this is not mandatory and
is allowed to be changed by the Communication Management software provider.

1 using EventReceiveHandler = std::function<void()>;

c(RS_CM_00203)

The event receiver can monitor the state of a service event subscription by request-
ing or getting a notification of the Subscription State (see [SWS_CM_00316] and
[SWS_CM_00311]), as the real process of subscription might happen at a later point
in time than the return of the call to Subscribe. The Subscription State related
ara::com API methods require the definitions of a Subscription State enumeration
([SWS_CM_00310]) and a Subscription State Changed Handler function wrapper.

[SWS_CM_00310]{DRAFT} Subscription State d The Communication Management
shall provide an enumeration SubscriptionState which defines the subscription
state of an event.

1 enum class SubscriptionState : uint8_t {
2 kSubscribed,
3 kNotSubscribed,
4 kSubscriptionPending
5 };

c(RS_CM_00103, RS_CM_00104, RS_CM_00106)

161 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00311]{DRAFT} Subscription State Changed Handler d The Communi-
cation Management shall provide the definition of SubscriptionStateChangeHan-
dler as a function wrapper for the handler function that gets called by the Communi-
cation Management software in case the subscription state of an event has changed.

1 using SubscriptionStateChangeHandler =
2 std::function<void(SubscriptionState)>;

c(RS_CM_00103, RS_CM_00104, RS_CM_00106)

8.1.2.3 Method Related Data Types

Service method invocation on provider side can be executed in different processing
modes, where the Method Call Processing Mode is set as a parameter of the Ser-
viceSkeleton constructor defined by [SWS_CM_00130].

[SWS_CM_00301]{DRAFT} Method Call Processing Mode d The Communication
Management shall provide an enumeration MethodCallProcessingMode which de-
fines the processing modes for the service implementation side.

1 enum class MethodCallProcessingMode : uint8_t {
2 kPoll,
3 kEvent,
4 kEventSingleThread
5 };

c(RS_CM_00211)

The expected behavior of each processing mode is described in [SWS_CM_00198].

8.1.2.4 Generic Data Types

8.1.2.4.1 Future and Promise

The Future and Promise class templates are described in [16].

8.1.2.4.2 Optional Data Types

The Optional class template ara::core::Optional used in ara::com to provide
access to optional record elements of a Structure Cpp Implementation Data
Type is described in [16].

162 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8.1.2.4.3 Variant Data Types

The class template ara::core::Variant is used to provide a type-save union rep-
resentation is described in [16]. Whenever there is a mention of the standard C++17
Item std::variant, the implied source material is [28].

The class template std::variant at a given time either holds a value of one of its alter-
native types, or in the case of an error, no value.

[SWS_CM_01050]{DRAFT} Variant Class Template d The Communication Man-
agement shall at least provide an Variant class template which provides a type-save
union representation.

template< class... Types >
class Variant {

// Default constructor
Variant() noexcept;
// Move constructor
Variant(Variant&&) noexcept;
// Copy constructor
Variant(const Variant&);

// Converting constructor
template< class T >
Variant (T&&) noexcept;
// Explicit converting constructors
template< class T, class... Args >
explicit Variant (std::in_place_type_t<T> , Arg&&...);
template< class T, class U, class... Args >
explicit Variant (std::in_place_type_t<T> , std::initializer_list<U> ,

Arg&&...);
template< std::size_t I, class... Args >
explicit Variant (std::in_place_index_t<I> , Arg&&...);
template< std::size_t I, class U, class... Args >
explicit Variant (std::in_place_index_t<I> , std::initializer_list<U> ,

Arg&&...);

// Destructor
~Variant();

// Move assignment operator
Variant& operator=(Variant&&) noexcept;
// Default copy assignment operator
Variant& operator=(const Variant&);
// Converting assignment operator
template < class T >
Variant& operator=(T&&) noexcept;

// Returns the zero-based index of the alternative

163 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

std::size_t index();
// Checks if the Variant is an invalid state
bool valueless_by_exception() const noexcept;

// Modifiers
template < class T, class... Args >
void emplace(Args&&...);
template < class T, class U, class... Args >
void emplace(std::initializer_list<U> , Args&&...);
template < std::size_t I, class... Args >
void emplace(Args&&...);
template <std::size_t I, class U, class... Args>
void emplace(initializer_list<U> , Args&&...);

// Swap
void swap(Variant&) noexcept;

};

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01051]{DRAFT} Variant default constructor d The Variant construc-
tor

1 Variant();

behaves as the std::variant constructor
1 variant();

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01052]{DRAFT} Variant move constructor d The Variant move con-
structor

1 Variant(Variant&&) noexcept;

behaves as the std::variant move constructor
1 constexpr variant(variant&& other) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01053]{DRAFT} Variant copy constructor d The Variant copy con-
structor

1 Variant(const Variant&);

behaves as the std::variant copy constructor
1 constexpr variant(const variant& other);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01054]{DRAFT} Variant converting constructor d The Variant con-
verting constructor

164 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

1 template< class T >
2 Variant (T&&) noexcept;

behaves as the std::variant converting constructor
1 template< class T >
2 constexpr variant(TT& t) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01055]{DRAFT} Variant explicit converting constructor with speci-
fied alternative d The Variant explicit converting constructor with specified alterna-
tive

1 template< class T, class... Args >
2 explicit Variant (std::in_place_type_t<T> , Arg&&...);

behaves as the std::variant explicit converting constructor with specified alterna-
tive

1 template< class T, class... Args >
2 constexpr explicit variant (std::in_place_type_t<T> , Arg&&... args);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01056]{DRAFT} Variant explicit converting constructor with speci-
fied alternative and initializer list d The Variant explicit converting constructor with
specified alternative and initializer list

1 template< class T, class U, class... Args >
2 explicit Variant (std::in_place_type_t<T> , std::initializer_list<U> ,

Arg&&...);

behaves as the std::variant explicit converting constructor with specified alterna-
tive and initializer list

1 template< class T, class U, class... Args >
2 constexpr explicit variant (std::in_place_type_t<T> , std::

initializer_list<U> il, Arg&&... args);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01057]{DRAFT} Variant explicit converting constructor with alterna-
tive specified by index d The Variant explicit converting constructor with alternative
specified by index

1 template< std::size_t I, class... Args >
2 explicit Variant (std::in_place_index_t<I> , Arg&&...);

behaves as the std::variant with alternative specified by index
1 template< std::size_t I, class... Args >
2 constexpr explicit variant (std::in_place_index_t<I> , Arg&&... args)

;

165 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01058]{DRAFT} Variant explicit converting constructor with alter-
native specified by index and initializer list d The Variant explicit converting con-
structor with alternative specified by index and initializer list

1 template< std::size_t I, class U, class... Args >
2 explicit Variant (std::in_place_index_t<I> , std::initializer_list<U>

, Arg&&...);

behaves as the std::variant with alternative specified by index and initializer list
1 template< std::size_t I, class U, class... Args >
2 constexpr explicit variant (std::in_place_index_t<I> , std::

initializer_list<U> il, Arg&&... args);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01059]{DRAFT} Variant destructor d The Variant destructor
1 ~Variant();

behaves as the std::variant destructor
1 ~variant();

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01060]{DRAFT} Variant move assignment operator d The Variant
move assignment operator

1 Variant& operator=(Variant&&) noexcept;

behaves as the std::variant move assignment operator
1 constexpr variant(variant&& rhs) noexcept

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01061]{DRAFT} Variant default copy assignment operator d The
Variant default copy assignment operator

1 Variant& operator=(const Variant&);

behaves as the std::variant default copy assignment operator
1 variant& operator=(const variant& rhs);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01062]{DRAFT} Variant converting assignment operator d The
Variant converting assignment operator

1 template < class T >
2 Variant& operator=(T&&) noexcept;

behaves as the std::variant converting assignment operator

166 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

1 template < class T >
2 variant& operator=(T&& t) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01063]{DRAFT} Variant function to return the zero-based index of
the alternative d The Variant function returns the zero-based index of the alternative

1 std::size_t index();

behaves as the std::variant function to return the zero-based index of the alterna-
tive

1 constexpr std::size_t index();

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01064]{DRAFT} Variant function to check if the Variant is in invalid
state d The Variant function checks if the Variant is in invalid state

1 bool valueless_by_exception() const noexcept;

behaves as the std::variant function to return false if the variant holds a value,
else true

1 constexpr bool valueless_by_exception() const noexcept;

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01066]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object d The Variant creates a new value in-place, in an existing
Variant object

1 template < class T, class... Args >
2 void emplace(Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in an
existing Variant object

1 template < class T, class... Args >
2 void emplace(Args&&... args);

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01067]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object using an initializer list d The Variant creates a new
value in-place, in an existing Variant object using initializer list

1 template < class T, class U, class... Args >
2 void emplace(std::initializer_list<U> , Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in an
existing Variant object using an initializer list

1 template < class T, class U, class... Args >
2 void emplace(std::initializer_list<U> il , Args&&... args);

167 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00205, RS_SOMEIP_00050)

[SWS_CM_01068]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value d The
Variant creates a new value in-place, in an existing Variant object by destoying and
initializing the contained value

1 template < std::size_t I, class... Args >
2 void emplace(Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in an
existing Variant object by destoying and initializing the contained value

1 template < std::size_t I, class... Args >
2 void emplace(Args&&... args);

The behavior is undefined if I is not less than sizeof...(Types) c(RS_CM_00205,
RS_SOMEIP_00050)

[SWS_CM_01069]{DRAFT} Variant function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value using
an initializer list d The Variant creates a new value in-place, in an existing Variant
object by destoying and initializing the contained value using an initializer list

1 template <size_t I, class U, class... Args>
2 void emplace(initializer_list<U> , Args&&...);

behaves as the std::variant emplace function to create a new value in-place, in
an existing Variant object by destoying and initializing the contained value using an
initializer list

1 template <size_t I, class U, class... Args>
2 void emplace(initializer_list<U> il , Args&&... args);

The behavior is undefined if I is not less than sizeof...(Types) c(RS_CM_00205,
RS_SOMEIP_00050)

[SWS_CM_01065]{DRAFT} Variant function to swap two Variants d The Vari-
ant function swaps two Variants

1 void swap(Variant&) noexcept;

behaves as the std::variant function to swap two Variants
1 void swap(Variant& rhs) noexcept;

c(RS_CM_00205, RS_SOMEIP_00050)

8.1.2.4.4 Scale Linear And Texttable Data Types

The following section describes the ScaleLinearAndTexttable class template
used in ara::com. The objects of this class at a given time either hold the value of

168 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

an enumerator of a specific enum class or other values of the underlying type of this.
The used enum class is specified through a template argument.

[SWS_CM_10392]{DRAFT} ScaleLinearAndTexttable Class Template d The
Communication Management shall at least provide an ScaleLinearAndTexttable
class template that as described below:

template <typename T>
class ScaleLinearAndTexttable
{
public:

// Declaration of the underlying_type
static_assert(std::is_enum<T>::value, "Type T has to be an enum");
using underlying_type = typename std::underlying_type<T>::type;

// Default constructor
explicit ScaleLinearAndTexttable();
// Copy constructor
explicit ScaleLinearAndTexttable(const ScaleLinearAndTexttable &v);
// Constructing an object from an enum
explicit ScaleLinearAndTexttable(const T &v);
// Constructing an object from the underlying type of an enum
explicit ScaleLinearAndTexttable(const underlying_type &v);

// Copy assignment operator
ScaleLinearAndTexttable& operator=(const ScaleLinearAndTexttable &v);
// Assignment operator from an enum
ScaleLinearAndTexttable& operator=(const T &v);
// Assignment operator from the underlying type of an enum
ScaleLinearAndTexttable& operator=(const underlying_type &v);
// Casting operator to the underlying_type
explicit operator underlying_type() const;

// Equal to operator to another ScaleLinearAndTexttable<T>
friend bool operator==(const ScaleLinearAndTexttable<T> &lhs,

const ScaleLinearAndTexttable<T> &rhs);
// Equal to operator to the underlying_type
friend bool operator==(const ScaleLinearAndTexttable<T> &lhs,

const underlying_type &rhs);
// Equal to operator to the underlying_type
friend bool operator==(const underlying_type &lhs,

const ScaleLinearAndTexttable<T> &rhs);
// Equal to operator to the enum
friend bool operator==(const ScaleLinearAndTexttable<T> &lhs,

const T &rhs);
// Equal to operator to the enum
friend bool operator==(const T &lhs,

const ScaleLinearAndTexttable<T> &rhs);

// Not-equal to operator to another ScaleLinearAndTexttable<T>

169 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

friend bool operator!=(const ScaleLinearAndTexttable<T> &lhs,
const ScaleLinearAndTexttable<T> &rhs);

// Not-equal to operator to the underlying_type
friend bool operator!=(const ScaleLinearAndTexttable<T> &lhs,

const underlying_type &rhs);
// Not-equal to operator to the underlying_type
friend bool operator!=(const underlying_type &lhs,

const ScaleLinearAndTexttable<T> &rhs);
// Not-equal to operator to the enum
friend bool operator!=(const ScaleLinearAndTexttable<T> &lhs,

const T &rhs);
// Not-equal to operator to the enum
friend bool operator!=(const T &lhs,

const ScaleLinearAndTexttable<T> &rhs);
};

c(RS_CM_00003)

[SWS_CM_10393]{DRAFT} ScaleLinearAndTexttable static assertion d The
ScaleLinearAndTexttable shall check whether the T template argument is an
enum type.

1 static_assert(std::is_enum<T>::value, "Type T has to be an enum");

Rationale: The std::underlying_type<T> in [SWS_CM_10394] has an undefined
behavior for non-enum inputs. c(RS_CM_00003)

[SWS_CM_10394]{DRAFT} ScaleLinearAndTexttable underlying type deduc-
tion d The ScaleLinearAndTexttable shall deduct and store the underlying type
of the enum it was defined with.

1 using underlying_type = typename std::underlying_type<T>::type;

Rationale: The ScaleLinearAndTexttable is designed to hold values of this type.
c(RS_CM_00003)

[SWS_CM_10395]{DRAFT} ScaleLinearAndTexttable default constructor d
The ScaleLinearAndTexttable shall have a default constructor with the following
declaration:

1 explicit ScaleLinearAndTexttable();

c(RS_CM_00003)

[SWS_CM_10396]{DRAFT} ScaleLinearAndTexttable copy constructor d The
ScaleLinearAndTexttable shall have a copy constructor with the following decla-
ration:

1 explicit ScaleLinearAndTexttable(const ScaleLinearAndTexttable &v);

c(RS_CM_00003)

[SWS_CM_10397]{DRAFT} ScaleLinearAndTexttable constructor with enum
class argument d The ScaleLinearAndTexttable shall have a constructor with

170 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

the same argument as the enum class that was given as the T template parameter
with the following declaration:

1 explicit ScaleLinearAndTexttable(const T &v);

c(RS_CM_00003)

[SWS_CM_10398]{DRAFT} ScaleLinearAndTexttable constructor with un-
derlying type argument d The ScaleLinearAndTexttable shall have a construc-
tor with the same argument that was deducted from the T template parameter with the
following declaration:

1 explicit ScaleLinearAndTexttable(const underlying_type &v);

c(RS_CM_00003)

[SWS_CM_10399]{DRAFT} ScaleLinearAndTexttable copy assignment oper-
ator d The ScaleLinearAndTexttable shall have a copy assignment operator with
the following declaration:

1 ScaleLinearAndTexttable& operator=(const ScaleLinearAndTexttable &v);

c(RS_CM_00003)

[SWS_CM_10400]{DRAFT} ScaleLinearAndTexttable assignment operator
with enum class argurment d The ScaleLinearAndTexttable shall have an as-
sigment operator with the same argument as the enum class that was given as the T
template parameter with the following declaration:

1 ScaleLinearAndTexttable& operator=(const T &v);

c(RS_CM_00003)

[SWS_CM_10401]{DRAFT} ScaleLinearAndTexttable assignment operator
with underlying type argument d The ScaleLinearAndTexttable shall have an
assignment operator with the same argument that was deducted from the T template
parameter with the following declaration:

1 ScaleLinearAndTexttable& operator=(const underlying_type &v);

c(RS_CM_00003)

[SWS_CM_10402]{DRAFT} ScaleLinearAndTexttable cast operator to the un-
derlying type d The ScaleLinearAndTexttable shall have a cast operator to the
underlying type that was deducted from the T template parameter with the following
declaration:

1 explicit operator underlying_type() const;

c(RS_CM_00003)

[SWS_CM_10403]{DRAFT} Equal to operator between two ScaleLinearAnd-
Texttable objects d The ScaleLinearAndTexttable shall have an equal to op-
erator to compare two ScaleLinearAndTexttable objects with the following decla-
ration:

171 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

1 friend bool operator==(const ScaleLinearAndTexttable<T> &lhs,
2 const ScaleLinearAndTexttable<T> &rhs);

c(RS_CM_00003)

[SWS_CM_10404]{DRAFT} Equal to operators between ScaleLinearAndText-
table and an underlying type d The ScaleLinearAndTexttable shall have equal
to operators to compare a ScaleLinearAndTexttable object to the the underlying
type that was deducted from the T template parameter with the following declarations:

1 friend bool operator==(const ScaleLinearAndTexttable<T> &lhs,
2 const underlying_type &rhs);
3 friend bool operator==(const underlying_type &lhs,
4 const ScaleLinearAndTexttable<T> &rhs);

c(RS_CM_00003)

[SWS_CM_10405]{DRAFT} Equal to operators between ScaleLinearAndText-
tables and an enum class d The ScaleLinearAndTexttable shall have equal to
operators to compare a ScaleLinearAndTexttable object to the same enum class
that was given as the T template parameter with the following declarations:

1 friend bool operator==(const ScaleLinearAndTexttable<T> &lhs,
2 const T &rhs);
3 friend bool operator==(const T &lhs,
4 const ScaleLinearAndTexttable<T> &rhs);

c(RS_CM_00003)

[SWS_CM_10406]{DRAFT} Not equal to operator between two ScaleLin-
earAndTexttable objects d The ScaleLinearAndTexttable shall have a not
equal to operator to compare two ScaleLinearAndTexttable objects with the fol-
lowing declaration:

1 friend bool operator!=(const ScaleLinearAndTexttable<T> &lhs,
2 const ScaleLinearAndTexttable<T> &rhs);

c(RS_CM_00003)

[SWS_CM_10407]{DRAFT} Not equal to operators between ScaleLinearAnd-
Texttable and an underlying type d The ScaleLinearAndTexttable shall have
not equal to operators to compare an ScaleLinearAndTexttable object to the un-
derlying type that was deducted from the T template parameter with the following dec-
larations:

1 friend bool operator!=(const ScaleLinearAndTexttable<T> &lhs,
2 const underlying_type &rhs);
3 friend bool operator!=(const underlying_type &lhs,
4 const ScaleLinearAndTexttable<T> &rhs);

c(RS_CM_00003)

[SWS_CM_10408]{DRAFT} Not equal to operators between ScaleLinearAnd-
Texttables and an enum class d The ScaleLinearAndTexttable shall have

172 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

not equal to operators to compare a ScaleLinearAndTexttable object to the same
enum class that was given as the T template parameter with the following declarations:

1 friend bool operator!=(const ScaleLinearAndTexttable<T> &lhs,
2 const T &rhs);
3 friend bool operator!=(const T &lhs,
4 const ScaleLinearAndTexttable<T> &rhs);

c(RS_CM_00003)

8.1.2.5 Communication Payload Data Types

The data types described in the previous chapters are derived from the ara::com API
design and as an integral part of the API, they explicitly need to exist to make use of
ara::com API.

In contrast to this, the types described in this chapter will exist only if there is a re-
lated AutosarDataType configured by the user, i.e. they are fully dependent to the
data type related input configuration. These data types are intended to be used for
the definition of the "payload" of events, operations, fields, and errors but also for the
implementation of the ara::com API and the functionality of the Adaptive Applications.

The parameters used in the event, method signatures, and errors of the ara::com API
are depending on the design of the service. So they are usually generated based on
the DataPrototypes of the ServiceInterface description. Their mapping to C++
data types is described in following.

The AUTOSAR Meta Model defines the AutosarDataPrototype which can be typed
by an ApplicationDataType or an CppImplementationDataType, but the Com-
munication Management maps only CppImplementationDataTypes to C++ data
types. Therefore it is required in the input configuration that every Application-
DataType used for the typing of a DataPrototype is mapped by a DataTypeMap
to an CppImplementationDataType.

The PortInterfaceToDataTypeMapping associates a particular ServiceIn-
terface with a DataTypeMappingSet and defines thus the applicable
DataTypeMaps.

[SWS_CM_00423]{DRAFT} Data Type Mapping d The ARA generator shall reject
input configurations containing a AutosarDataPrototype which is typed by an Ap-
plicationDataType, but not mapped to an CppImplementationDataType. c
(RS_CM_00211, RS_CM_00003)

The Implementation Types header files as defined in [SWS_CM_10373] includes
the type declarations derived from the CppImplementationDataTypes of the
AUTOSAR Adaptive Platform meta-model classes, depending on the value of the
typeEmitter attribute (see [TPS_MANI_01176] and [TPS_MANI_01177] of the
AUTOSAR Manifest Specification [6]).

173 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00421]{DRAFT} Provide data type definitions d The ARA generator
shall provide the corresponding data type definition according to the rules defined
in [TPS_MANI_01176] and [TPS_MANI_01177] of the AUTOSAR Manifest Specifica-
tion [6]. c(RS_CM_00211, RS_CM_00003)

The redeclaration of C++ types due to the multiple descriptions of equivalent CppIm-
plementationDataTypes in the ServiceInterface description shall be avoided.

[SWS_CM_00411]{DRAFT} Avoid Data Type redeclaration d If there are sev-
eral data types with equal Cpp Implementation Data Type symbols defined
which are referring to compatible CppImplementationDataTypes with identical Cpp
Implementation Data Type symbols, there shall exist only one correspond-
ing type declaration as described in the following sub chapters. c(RS_CM_00211,
RS_CM_00003)

The available meta-model classes are described in detail in the AUTOSAR Manifest
Specification [6].

8.1.2.5.1 Classification of Cpp Implementation Data Types

The type model CppImplementationDataType is able to express following kinds of
data types:

• Primitive Cpp Implementation Data Type

• Array Cpp Implementation Data Type

• Structure Cpp Implementation Data Type

• Variant Cpp Implementation Data Type

• String Cpp Implementation Data Type

• Vector Cpp Implementation Data Type

• Associative Map Cpp Implementation Data Type

• Redefinition Cpp Implementation Data Type

• Enumeration Data Type

• Scale Linear And Texttable Data Type

A Primitive Cpp Implementation Data Type is classified by the category
attribute set to VALUE. Please note that the usage of the category VALUE is restricted
to StdCppImplementationDataTypes according to [constr_1578] defined in [6].

An Array Cpp Implementation Data Type is classified by the category at-
tribute set to ARRAY. If the subclass StdCppImplementationDataType is used
the array will be implemented as a ara::core::Array. The StdCppImplemen-
tationDataType of category ARRAY has one templateArgument that points
with the templateType reference to the data type of elements that are contained

174 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

in the array. The referenced CppImplementationDataType itself can be one of the
listed kinds again. The array size is specified with the arraySize. If the subclass
CustomCppImplementationDataType is used the array will be implemented as a
custom array that is declared in the headerFile of the CustomCppImplementa-
tionDataType.

A Structure Cpp Implementation Data Type is classified by the category
attribute of the StdCppImplementationDataType set to STRUCTURE that has ag-
gregated CppImplementationDataTypeElements in the role subElement.

A Variant Cpp Implementation Data Type is classified by the category at-
tribute of the CppImplementationDataType set to VARIANT. A type alternative that
is stored in a CppImplementationDataType of category VARIANT is defined by an
aggregated templateArgument that points with the templateType reference to the
data type of the type alternative. If the subclass StdCppImplementationDataType
is used the variant will be implemented as ara::core::Variant. This template
class is specified in [16]. If the subclass CustomCppImplementationDataType is
used the variant will be implemented as a custom variant that is declared in the head-
erFile of the CustomCppImplementationDataType.

A String Cpp Implementation Data Type is classified by the category at-
tribute of the CppImplementationDataType set to STRING. Please note that the us-
age of the category STRING is restricted to StdCppImplementationDataTypes
according to [constr_1578] defined in [6].

A Vector Cpp Implementation Data Type is classified by the category at-
tribute of the CppImplementationDataType set to VECTOR. If the subclass
StdCppImplementationDataType is used the vector will be implemented as a
ara::core::Vector. The StdCppImplementationDataType of category VECTOR is
allowed to have one templateArgument that points with the templateType refer-
ence to the data type of elements that are contained in the vector. The referenced
CppImplementationDataTypeElement itself can be one of the listed kinds again.
Optionally the StdCppImplementationDataType of category VECTOR may have
an additional templateArgument that defines the used Allocator with the allo-
cator reference. If the subclass CustomCppImplementationDataType is used
the vector will be implemented as a custom vector that is declared in the headerFile
of the CustomCppImplementationDataType.

An Associative Map Cpp Implementation Data Type is classified by the
category attribute of the CppImplementationDataType set to ASSOCIA-
TIVE_MAP. If the subclass StdCppImplementationDataType is used the map will
be implemented as a ara::core::Map. The StdCppImplementationDataType of
category ASSOCIATIVE_MAP may have two or three templateArguments. The first
templateArguments defines the key with the templateType reference, the second
defines the value and the third defines the optional Allocator with the allocator
reference. If the subclass CustomCppImplementationDataType is used the map
will be implemented as a custom map that is declared in the headerFile of the Cus-
tomCppImplementationDataType.

175 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

A Redefinition Cpp Implementation Data Type is classified by the cat-
egory attribute of the referring StdCppImplementationDataType set to
TYPE_REFERENCE. The StdCppImplementationDataType with the category
TYPE_REFERENCE points to an another CppImplementationDataType with the
typeReference and defines a type alias in this way.

An Enumeration Data Type is classified by a Redefinition Cpp Imple-
mentation Data Type that boils down to a Primitive Cpp Implementation
Data Type having a SwDataDefProps referencing a CompuMethod, where the
CompuMethod has:

• the category attribute set to TEXTTABLE,

• and has a CompuScales container located in the compuInternalToPhys con-
tainer,

• and the CompuScales container has CompuScales in role compuScale with
point ranges only (i. e. lower and upper limit of a CompuScale are identical).

A Scale Linear And Texttable Data Type is classified by a Redefinition
Cpp Implementation Data Type that boils down to a Primitive Cpp Imple-
mentation Data Type having a SwDataDefProps referencing a CompuMethod,
where the CompuMethod has:

• the category attribute set to SCALE_LINEAR_AND_TEXTTABLE,

• and has a CompuScales container located in the compuInternalToPhys con-
tainer,

• and the CompuScales container has CompuScales in role compuScale with
point ranges (i. e. lower and upper limit of a CompuScale are identical) and non-
point ranges where the CompuRationalCoeffs define a linear function

Please note that the usage of the different kinds of CppImplementationDataTypes
is described in more detail in the AUTOSAR Manifest Specification [6].

8.1.2.5.2 Naming of Implementation Data Types

The data type name is defined by the Cpp Implementation Data Type symbol,
which is the shortName of the CppImplementationDataType.

[SWS_CM_00400]{DRAFT} Naming of data types by short name d The Cpp Im-
plementation Data Type symbol shall be the shortName of the CppImple-
mentationDataType. c(RS_CM_00211, RS_CM_00003)

176 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8.1.2.5.3 Primitive Implementation Data Type

The Communication Management declares C++ types for all Primitive Cpp Im-
plementation Data Types defined in the ServiceInterface that are classified
by the category attribute set to VALUE. Please note that only StdCppImplementa-
tionDataType are allowed to have the category attribute set to VALUE.

[SWS_CM_00504]{DRAFT} Supported Primitive Cpp Implementation
Data Typess d The StdCppImplementationDataType with the category
attribute set to VALUE is allowed to have one of the following shortNames:

• int8_t

• int16_t

• int32_t

• int64_t

• uint8_t

• uint16_t

• uint32_t

• uint64_t

• bool

• float

• double

c(RS_CM_00211, RS_CM_00003)

Since only a defined set of StdCppImplementationDataTypes with category
VALUE is supported the primitive C++ datatypes float, bool and double are sup-
ported in addition to chosen fixed width integer types defined in the standard library
header <cstint>.

[SWS_CM_00402]{DRAFT} Primitive fixed width integer types d If a StdCppIm-
plementationDataType with the category VALUE is defined in the ServiceIn-
terface the standard library header <cstdint> shall be included if the StdCppImple-
mentationDataType has one of the following Cpp Implementation Data Type
symbols:

• int8_t

• int16_t

• int32_t

• int64_t

• uint8_t

177 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• uint16_t

• uint32_t

• uint64_t

c(RS_CM_00211, RS_CM_00003)

8.1.2.5.4 Array Implementation Data Type

The Communication Management declares C++ types for all Array Cpp Implemen-
tation Data Types defined in the ServiceInterface. In AUTOSAR Adaptive
Platform, the C++ binding of an Array Cpp Implementation Data Type could
either be implemented as an ara::core::Array or as a custom array.

An array definition is based on the following information:

• the array type,

• the number of dimensions,

• the number of elements for each dimension.

An Array Cpp Implementation Data Type can have one or multiple dimen-
sions.

In the context of the definitions given in this chapter, the term dimension is not related
to the real physical dimensions in the memory, but to the ostensible dimensions visible
directly at the declaration of the data type. This means, that e.g. even if an Array
Cpp Implementation Data Type holds elements of types different from Array
Cpp Implementation Data Type which itself has array or vector elements, the
term one-dimensional applies for the definition of the data type.

A one-dimensional StdCppImplementationDataType of category ARRAY ag-
gregates exactly one templateArgument that defines the type of elements that
are contained in the array with the templateType reference, e.g. in case of an
one-dimensional array of uint16 elements the templateType reference will point to
a Primitive Cpp Implementation Data Type that represents the uint16 ele-
ment. The array size is defined with the arraySize attribute.

[SWS_CM_00403]{DRAFT} StdCppImplementationDataType of category AR-
RAY with one dimension d For each StdCppImplementationDataType of cate-
gory ARRAY with one dimension, there shall exist the corresponding type declaration
as:

1 using <name> ara::core::Array<<element>, <size>>;

where:

<name> is the Cpp Implementation Data Type symbol of the Array Cpp
Implementation Data Type,

178 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

<element> is the array element specification. It is defined by the templateArgu-
ment that refers to a CppImplementationDataType with the templateType
reference.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the array.

• If the CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as value type of the array and
the shortName of the referenced CppImplementationDataType is ig-
nored.

<size> is the defined arraySize.

c(RS_CM_00211, RS_CM_00003)

In case that a StdCppImplementationDataType with category ARRAY and the
shortName MyArray has a CppTemplateArgument that points with the template-
Type reference to a StdCppImplementationDataType with category ARRAY and
the CppTemplateArgument is marked with inplace = true this will result in the fol-
lowing code:

1 using MyArray = ara::core::Array<ara::core::Array<uint16_t, 10>, 5>>;

If the CppTemplateArgument is marked with inplace = false this will result in the
following code:

1 using MyInsideArray = ara::core::Array<uint16_t, 10>;
2 using MyArray = ara::core::Array<MyInsideArray, 5>;

A multidimensional CppImplementationDataType of category ARRAY contains
nested CppImplementationDataTypes of category ARRAY. This means, that the
CppImplementationDataType of category ARRAY will refer to a CppImplementa-
tionDataType of category ARRAY via the aggregated templateArgument. Such a
definition describes a two-dimensional Array Cpp Implementation Data Type;
consequently a type with more dimensions is described by just nesting more Cp-
pImplementationDataTypes of category ARRAY. The innermost CppImplemen-
tationDataType of category ARRAY has the reference to the type of elements that
are contained in the array.

[SWS_CM_00404]{DRAFT} Array Data Type with more than one dimension d For
each Array Cpp Implementation Data Type having more than one dimension,
there shall exist the corresponding type declaration according to [SWS_CM_00403]
as base where <element> has a nested array for each additional dimension. The
total number of dimensions is equal to the number of nested CppImplementation-
DataTypes with category ARRAY plus one for the top level Array Cpp Implemen-
tation Data Type. The array element itself is specified by the innermost CppIm-
plementationDataType with category different from ARRAY. c(RS_CM_00211,
RS_CM_00003)

179 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Please note that [SWS_CM_00404] and a StdCppImplementationDataType with
category ARRAY leads to an ara::core::Array type definition where the <size>
definitions for each dimension are ordered from the leaf to the root Implementation-
DataTypeElement, like e.g.:

1 using My2DimArray = <ara::core::Array<ara::core::Array<uint16, 3>, 2>;

which is the same layout as the corresponding C-style array type definition where the
<size> definitions for each dimension are ordered from the root to the leaf, like:

1 typedef uint16 My2DimArray[2][3];

With the usage of CustomCppImplementationDataType it is possible to specify a
data type definition that is taken as the basis for a C++ language binding to a custom
implementation that is declared in the configured headerFile. In case of a Custom-
CppImplementationDataType the model defines the following:

• Class-Name of the custom implementation (CustomCppImplementation-
DataType.shortName)

• Namespace of the custom implementation (CustomCppImplementation-
DataType.namespace)

• Header File that contains the custom class declaration (CustomCppImplemen-
tationDataType.headerFile).

[SWS_CM_00502]{DRAFT} CustomCppImplementationDataType of category
ARRAY d If a CustomCppImplementationDataType of category ARRAY is used
that contains a single templateArgument that refers to a CppImplementation-
DataType with the templateType reference and has the arraySize attribute set to
a value the following type declaration shall be available in the included headerFile:

1 <ClassName><<element>, <size>>;

where:

<ClassName> is the Cpp Implementation Data Type symbol of the Cus-
tomCppImplementationDataType of category ARRAY. Please note that the
namespace that is defined with an ordered list of defined symbol is already
handled by [SWS_CM_10375],

<element> is the array element specification. It is defined by the templateArgu-
ment that refers to the array element with the templateType reference.

<size> is the defined arraySize.

c()

Please note that multidimensional CustomCppImplementationDataTypes of cat-
egory ARRAY are handled in the same way as StdCppImplementationDataTypes
of category ARRAY. [SWS_CM_00404] is also valid for CustomCppImplementa-
tionDataTypes of category ARRAY.

180 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8.1.2.5.5 Structure Implementation Data Type

The Communication Management declares C++ types for all Structure Cpp Im-
plementation Data Types defined in the ServiceInterface.

[SWS_CM_00405]{DRAFT} Structure Data Type d For each Structure Cpp Im-
plementation Data Type, there shall exist the corresponding type declaration as:

struct <name> {<elements>};

where:

<name> is the Cpp Implementation Data Type symbol of the Structure
Cpp Implementation Data Type,

<elements> are record element specifications defined in Structure Cpp Im-
plementation Data Type by ordered CppImplementationDataType-
Elements. For each record element defined by one CppImplementation-
DataTypeElement one record element specification <elements> is defined.
The record element specifications shall be ordered according to the order of
the related CppImplementationDataTypeElements in the input configura-
tion. Sequent record elements are separated with a semicolon.

c(RS_CM_00211, RS_CM_00003)

[SWS_CM_00414]{DRAFT} Element specification typed by CppImplementa-
tionDataType d Record element specifications <elements> of [SWS_CM_00405]
shall exist as

<type> <name>;

where:

<type>

• is the Cpp Implementation Data Type symbol of the referred Cp-
pImplementationDataType if the typeReference is marked with in-
place = false. In this case the type declaration of the referenced CppIm-
plementationDataType is defined outside of the struct.

• is the type declaration of the referenced CppImplementationDataType if
the typeReference is marked with inplace = true. In this case the type
declaration is defined inside of the struct.

<name> is the shortName of the ImplementationDataTypeElement.

c(RS_CM_00211, RS_CM_00003)

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType with category ARRAY and the inplace flag
is set to false for the typeReference a using-declaration shall exist outside of the
structure according to the rules defined in chapter 8.1.2.5.4.

1 struct foo {

181 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

2 myArray element_X;
3 };
4

5 using myArray = ara::core::Array<uint8_t, 5>;

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType with category ARRAY and the inplace flag
is set to true for the typeReference an unnamed array shall be defined as member
type of the struct and the shortName of the referenced StdCppImplementation-
DataType is ignored.

1 struct foo {
2 ara::core::Array<uint8_t, 5> element_X;
3 };

If the CppImplementationDataTypeElement points with the typeReference to a
StdCppImplementationDataType with category VECTOR and the inplace flag
is set to false for the typeReference a using-declaration shall exist outside of the
structure according to the rules defined in chapter 8.1.2.5.8.

If the CppImplementationDataTypeElement points with the typeReference to a
StdCppImplementationDataType with category VECTOR and the inplace flag
is set to true for the typeReference an unnamed vector shall be defined as member
type of the struct and the shortName of the referenced StdCppImplementation-
DataType is ignored.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType with category VARIANT and the inplace
flag is set to false for the typeReference a using-declaration shall exist outside of
the structure according to the rules defined in chapter 8.1.2.5.6.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType with category VARIANT and the inplace
flag is set to true for the typeReference an unnamed variant shall be defined as
member type of the struct and the shortName of the referenced StdCppImplemen-
tationDataType is ignored.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType with category ASSOCIATIVE_MAP and the
inplace flag is set to false for the typeReference a using-declaration shall exist
outside of the structure according to the rules defined in chapter 8.1.2.5.9.

If the CppImplementationDataTypeElement points with the typeReference to
a StdCppImplementationDataType with category ASSOCIATIVE_MAP and the
inplace flag is set to true for the typeReference an unnamed map shall be defined
as member type of the struct and the shortName of the referenced StdCppImple-
mentationDataType is ignored.

If the CppImplementationDataTypeElement points with the typeReference to a
StdCppImplementationDataType with category STRUCTURE and the inplace

182 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

flag is set to false for the typeReference a struct-declaration shall exist outside of
the structure according to the rule defined in [SWS_CM_00405].

1 struct foo {
2 bar element_X;
3 };
4

5 struct bar {
6 ...
7 };

If the CppImplementationDataTypeElement points with the typeReference to a
StdCppImplementationDataType with category STRUCTURE and the inplace
flag is set to true for the typeReference an unnamed struct shall be defined as
member type of the struct and the shortName of the referenced StdCppImplemen-
tationDataType is ignored.

1 struct foo {
2 struct {
3 ...
4 } element_X;
5 };

[SWS_CM_01032]{DRAFT} Accessing optional record elements inside a Struc-
ture Cpp Implementation Data Type that are serialized with the Tag-
Length-Value principle. d For each record element inside a Structure
Cpp Implementation Data Type which is marked as optional according to
[TPS_MANI_01083], [TPS_MANI_01085] and [TPS_MANI_01084], there shall exist
the corresponding type declaration as:

struct <struct name>{
ara::core::Optional<element datatype> <name>;

}
e.g.
struct my_struct {

ara::core::Optional<bool> my_bool;
}

where:

<name> is the shortName of the optional CppImplementationDataTypeEle-
ment,

<element datatype>

• is the shortName of the referred CppImplementationDataType if the
typeReference is marked with inplace = false. In this case the type
declaration of the referenced CppImplementationDataType is defined
outside of the struct.

• is the type declaration of the referenced CppImplementationDataType if
the typeReference is marked with inplace = true. In this case the type
declaration is defined inside of the struct.

183 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00205, RS_SOMEIP_00050, RS_CM_00003) The template class
ara::core::Optional is specified in [16].

8.1.2.5.6 Variant Implementation Data Type

The Communication Management declares C++ types for all Variant Cpp Imple-
mentation Data Types defined in the ServiceInterface.

[SWS_CM_00449]{DRAFT} Variant Data Type d For each Variant Cpp Imple-
mentation Data Type, there shall exist the corresponding type declaration as:

using <name> = ara::core::Variant< <elements> >;

where:

<name> is the Cpp Implementation Data Type symbol of the Variant Cpp
Implementation Data Type,

<elements> is the Variant element specification.

Each type alternative in a StdCppImplementationDataType of category VARI-
ANT is defined with a CppTemplateArgument that points with the templateType
reference to the StdCppImplementationDataType that represents the alternative.
For each CppTemplateArgument one element specification <elements> is defined.
The Variant element specifications are ordered according the order of the related
CppTemplateArguments in the input configuration. Sequent Variants elements are
separated with a semicolon.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the decla-
ration of the referenced CppImplementationDataType is defined outside of
the variant.

• If the CppTemplateArgument is marked with inplace = true an unnamed Cp-
pImplementationDataType is defined as type that may be stored in this vari-
ant and the shortName of the referenced CppImplementationDataType is
ignored.

c(RS_CM_00211)

A Variant data type describes a kind of structural overlay. Defining only one element in
a VARIANT is therefore not reasonable and indicates an error.

This template class is specified in paragraph 8.1.2.4.3.

[SWS_CM_00508]{DRAFT} CustomCppImplementationDataType of category
VARIANT d If a CustomCppImplementationDataType of category VARIANT is
used the following type declaration shall be available in the included headerFile:

1 <ClassName><<elements>>;

where:

184 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

<ClassName> is the Cpp Implementation Data Type symbol of the Custom-
CppImplementationDataType of category VARIANT. Please note that the
namespace that is defined with an ordered list of defined symbol is already
handled by [SWS_CM_10375],

<elements> is the variant element specification. Each type alternative in a Cus-
tomCppImplementationDataType of category VARIANT is defined with a
CppTemplateArgument that points with the templateType reference to the
CustomCppImplementationDataType that represents the alternative. For
each CppTemplateArgument one element specification <elements> is de-
fined. The Variant element specifications are ordered according the order of the
related CppTemplateArguments in the input configuration. Sequent Variants
elements are separated with a semicolon.

c()

8.1.2.5.7 String Implementation Data Type

The Communication Management declares C++ types for all String Cpp Imple-
mentation Data Types defined in the ServiceInterface.

[SWS_CM_00406]{DRAFT} StdCppImplementationDataType with the cate-
gory STRING d For each StdCppImplementationDataType of category STRING
there shall exist the corresponding type declaration as:

using <name> = ara::core::String;

where:

<name> is the Cpp Implementation Data Type symbol of the String Cpp
Implementation Data Type.

c(RS_CM_00211, RS_CM_00003)

Please note that for the moment the C++ binding of a String Cpp Implementa-
tion Data Type is restricted to ara::core::String that is defined in [16].

Please note that optionally a custom Allocator is allowed to be defined as tem-
plateArgument for a String Cpp Implementation Data Type.

[SWS_CM_00509]{DRAFT} StdCppImplementationDataType with the cate-
gory STRING with a defined Allocator d If a StdCppImplementationDataType
with the category STRING contains a templateArgument that points with the allo-
cator reference to a custom Allocator the following type is declared:

using <name> = ara::core::String<<char>, char_traits<char>, <allocator>>

where:

<name> is the Cpp Implementation Data Type symbol of the String Cpp
Implementation Data Type.

185 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

<allocator> is the <allocator namespace>::<allocator shortname> of the defined
Allocator that is referenced by a CppTemplateArgument of String Cpp
Implementation Data Type with the allocator reference,

c(RS_CM_00211, RS_CM_00003)

8.1.2.5.8 Vector Implementation Data Type

The Communication Management declares C++ types for all Vector Cpp Imple-
mentation Data Types defined in the ServiceInterface. In AUTOSAR Adap-
tive Platform, the C++ binding of a Vector Cpp Implementation Data Type
could either be implemented as an ara::core::Vector or as a custom vector.

A vector definition is based on the following information:

• the data type the vector consists of,

• the number of dimensions,

• optionally an Allocator that is used to acquire/release memory and to con-
struct/destroy the elements in that memory.

A Vector Cpp Implementation Data Type can have one or multiple dimen-
sions.

In the context of the definitions given in this chapter, the term dimension is used with
the same sense as described in chapter 8.1.2.5.4.

A CppImplementationDataType of category VECTOR aggregates one tem-
plateArgument that defines the type of elements that are contained in the vector
with the templateType reference, e.g. in case of an one-dimensional vector of uint16
elements the templateType reference will point to a Primitive Cpp Implemen-
tation Data Type that represents the uint16 element.

Optionally the CppImplementationDataType of category VECTOR may aggre-
gate a second templateArgument that defines the used Allocator with the al-
locator reference. The type of the Allocator is the same as the data type the
vector consists of.

If an Allocator is referenced then the attribute arraySize in the CppImplemen-
tationDataType of category VECTOR can be used to define the maximal size of
the vector.

[SWS_CM_00407]{DRAFT} StdCppImplementationDataType of category
VECTOR with one dimension defined without an Allocator d For each Std-
CppImplementationDataType of category VECTOR having only one dimension,
there shall exist the corresponding type declaration as:

using <name> = ara::core::Vector<<element>>;

where:

186 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

<name> is the Cpp Implementation Data Type symbol of the Vector Cpp
Implementation Data Type.

<element> is the vector element specification. It is defined by the templateArgu-
ment that refers to a CppImplementationDataType with the templateType
reference. The referenced CppImplementationDataType itself can be one of
the data types allowed for the Adaptive Platform.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the vector.

• If the CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as value type of the vector and
the shortName of the referenced CppImplementationDataType is ig-
nored.

c(RS_CM_00211, RS_CM_00003)

In case that a StdCppImplementationDataType with category VECTOR and
the shortName MyVector has a CppTemplateArgument that points with the tem-
plateType reference to a StdCppImplementationDataType with category
VECTOR and the CppTemplateArgument is marked with inplace = true this will
result in the following code:

1 using MyVector = ara::core::Vector<ara::core::Vector<uint16_t>>;

If the CppTemplateArgument is marked with inplace = false this will result in the
following code:

1 using MyVector = ara::core::Vector<MyInsideVector>;
2 using MyInsideVector = ara::core::Vector<uint16_t>;

[SWS_CM_00503]{DRAFT} StdCppImplementationDataType of category
VECTOR with one dimension defined with an Allocator d For each Vector Cpp
Implementation Data Type having only one dimension and a defined Alloca-
tor without a defined arraySize, there shall exist the corresponding type declaration
as:

using <name> = ara::core::Vector<<element>,<allocator<element>>>.

If an arraySize is defined, the corresponding type declaration shall exist as:

using <name> = ara::core::Vector<<element>,<allocator<element>,<maxSize>>>;

where:

<name> is the Cpp Implementation Data Type symbol of the Vector Cpp
Implementation Data Type,

<element> is the vector element specification. It is defined by the templateArgu-
ment that refers to a CppImplementationDataType with the templateType

187 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

reference. The referenced CppImplementationDataType itself can be one of
the data types allowed for the Adaptive Platform.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the vector.

• If the CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as value type of the vector and
the shortName of the referenced CppImplementationDataType is ig-
nored.

<allocator> is the <allocator namespace>::<allocator shortname> of the defined
Allocator that is referenced by a CppTemplateArgument of Vector Cpp
Implementation Data Type with the allocator reference,

<maxSize> is the defined arraySize of the StdCppImplementationDataType
of category VECTOR.

c(RS_CM_00211, RS_CM_00003)

A multidimensional CppImplementationDataType of category VECTOR contains
nested CppImplementationDataTypes of category VECTOR. This means, that
the CppImplementationDataType of category VECTOR will refer to a CppIm-
plementationDataType of category VECTOR via the aggregated templateArgu-
ment. Such a definition describes a two-dimensional Vector Cpp Implementa-
tion Data Type; consequently a type with more dimensions is described by just
nesting more CppImplementationDataTypes of category VECTOR. The innermost
CppImplementationDataType of category VECTOR has the reference to the type of
elements that are contained in the vector.

[SWS_CM_00408]{DRAFT} Vector Data Type with more than one dimen-
sion d For each Vector Cpp Implementation Data Type having more than
one dimension, there shall exist the corresponding type declaration according to
[SWS_CM_00407] or [SWS_CM_00503] as base where <element> has a nested
vector for each additional dimension. The total number of dimensions is equal to
the number of nested CppImplementationDataTypes with category VECTOR plus
one for the top level Vector Cpp Implementation Data Type. The vector ele-
ment itself is specified by the innermost CppImplementationDataType with cate-
gory different from VECTOR. c(RS_CM_00211, RS_CM_00003)

For a two-dimensional Vector Implementation Data Type, as it is given as ex-
ample for the definition of a Rectangular Vector Data Type in [6], the corresponding
type declaration would look like this:

1 using DynamicDataArrayImplRectangular = ara::core::Vector<ara::core::Vector
<uint16_t>>;

188 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00452]{DRAFT} Usage of attribute arraySize of an CppImplemen-
tationDataType with category VECTOR d The size of an CppImplementa-
tionDataType of category VECTOR that is specified in CppImplementation-
DataType.arraySize will only be taken into account when the respective CppIm-
plementationDataType defines an Allocator as defined in [SWS_CM_00503]. c
(RS_CM_00211, RS_CM_00003)

[SWS_CM_00450]{DRAFT} Define the maximum size of allocated vector memory
d The maximum size of usable memory for an CppImplementationDataType of
category VECTOR can be limited using an Allocator as CppTemplateArgument
as defined in [SWS_CM_00503]. c(RS_CM_00211, RS_CM_00003)

For more details how to model Vector Cpp Implementation Data Type, see
the chapter Vector Data Type of AUTOSAR Manifest Specification document [6].

With the usage of CustomCppImplementationDataType it is possible to specify a
data type definition that is taken as the basis for a C++ language binding to a custom
implementation that is declared in the configured headerFile. In case of a Custom-
CppImplementationDataType the model defines the following:

• Class-Name of the custom implementation (CustomCppImplementation-
DataType.shortName)

• Namespace of the custom implementation (CustomCppImplementation-
DataType.namespace)

• Header File that contains the custom class declaration (CustomCppImplemen-
tationDataType.headerFile).

[SWS_CM_00507]{DRAFT} CustomCppImplementationDataType of category
VECTOR d If a CustomCppImplementationDataType of category VECTOR is used
that contains a single templateArgument that refers to a CppImplementation-
DataType with the templateType reference the following type declaration shall be
available in the included headerFile:

1 <ClassName><<element>>;

For each CustomCppImplementationDataType of category VECTOR and a defined
Allocator without a defined arraySize, there shall exist the corresponding type
declaration as:

<ClassName><<element>,<allocator<element>>>

If an arraySize is defined, the corresponding type declaration shall exist as:

<ClassName><<element>,<allocator<element>,<maxSize>>>

where:

<ClassName> is the Cpp Implementation Data Type symbol of the Custom-
CppImplementationDataType of category VECTOR. Please note that the
namespace that is defined with an ordered list of defined symbol is already
handled by [SWS_CM_10375],

189 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

<element> is the vector element specification. It is defined by the templateArgu-
ment that refers to the vector element with the templateType reference,

<allocator> is the <allocator namespace>::<allocator shortname> of the defined
Allocator that is referenced by a CppTemplateArgument of Vector Cpp
Implementation Data Type with the allocator reference,

<size> is the defined arraySize.

c()

Please note that multidimensional CustomCppImplementationDataTypes of cat-
egory VECTOR are handled in the same way as StdCppImplementation-
DataTypes of category VECTOR. [SWS_CM_00408] is also valid for CustomCp-
pImplementationDataTypes of category VECTOR.

8.1.2.5.9 Associative Map Implementation Data Type

The Communication Management declares C++ types for all Associative Map Cpp
Implementation Data Types defined in the ServiceInterface. In AUTOSAR
Adaptive Platform, the C++ binding of an Associative Map Cpp Implementa-
tion Data Type could either be implemented as an ara::core::Map or as a cus-
tom map.

[SWS_CM_00409]{DRAFT} StdCppImplementationDataType with category
ASSOCIATIVE_MAP defined without an Allocator d For each StdCppImplemen-
tationDataType with category ASSOCIATIVE_MAP , there shall exist the corre-
sponding type declaration as:

using <name> = ara::core::Map<<key>, <value>>;

where:

<name> is the Cpp Implementation Data Type symbol of the Associative
Map Cpp Implementation Data Type,

<key> is the map key type specification. It is defined by the first CppTemplateArgu-
ment which is aggregated by the Associative Map Cpp Implementation
Data Type and points to a CppImplementationDataType with the tem-
plateType reference. The referenced CppImplementationDataType itself
can be one of the data types allowed for the Adaptive Platform as long as the
requirements on the key data type imposed by the ara::core::Map implemen-
tation (namely the applicability of std::less<key>) are met.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

190 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• If the CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as key type and the short-
Name of the referenced CppImplementationDataType is ignored.

<value> is the mapped value type specification. It is defined by the second CppTem-
plateArgument which is aggregated by the Associative Map Cpp Imple-
mentation Data Type and points to a CppImplementationDataType with
the templateType reference. The CppImplementationDataType itself can
be one of the data types allowed for the Adaptive Platform.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

• If the CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as value type and the short-
Name of the referenced CppImplementationDataType is ignored.

c(RS_CM_00211, RS_CM_00003)

For an Associative Map Cpp Implementation Data Type as it is given as ex-
ample in chapter Associative Map Data Type of [6], the corresponding type declaration
would look like this:

1 using MyMap = ara::core::Map<uint16_t, uint8_t>;

[SWS_CM_00505]{DRAFT} StdCppImplementationDataType with category
ASSOCIATIVE_MAP defined with an Allocator d For each StdCppImplemen-
tationDataType with category ASSOCIATIVE_MAP with a defined Allocator,
there shall exist the corresponding type declaration as:

using <name> =
ara::core::Map<<key>, <value>, std::less<<key>>, <allocator>>;

where:

<name> is the Cpp Implementation Data Type symbol of the Associative
Map Cpp Implementation Data Type,

<key> is the map key type specification. It is defined by the first CppTemplateArgu-
ment which is aggregated by the Associative Map Cpp Implementation
Data Type and points to a CppImplementationDataType with the tem-
plateType reference. The referenced CppImplementationDataType itself
can be one of the data types allowed for the Adaptive Platform as long as the
requirements on the key data type imposed by the ara::core::Map implemen-
tation (namely the applicability of std::less<key>) are met.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

191 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• If the CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as key type and the short-
Name of the referenced CppImplementationDataType is ignored.

<value> is the mapped value type specification. It is defined by the second CppTem-
plateArgument which is aggregated by the Associative Map Cpp Imple-
mentation Data Type and points to a CppImplementationDataType with
the templateType reference. The CppImplementationDataType itself can
be one of the data types allowed for the Adaptive Platform.

• If the CppTemplateArgument is marked with inplace = false the short-
Name of the referenced CppImplementationDataType is used and the
declaration of the referenced CppImplementationDataType is defined
outside of the map.

• If the CppTemplateArgument is marked with inplace = true an unnamed
CppImplementationDataType is defined as value type and the short-
Name of the referenced CppImplementationDataType is ignored.

<allocator> is the defined Allocator that is referenced by the third CppTem-
plateArgument of Associative Map Cpp Implementation Data Type
with the allocator reference.

c(RS_CM_00211, RS_CM_00003)

With the usage of CustomCppImplementationDataType it is possible to specify a
data type definition that is taken as the basis for a C++ language binding to a custom
implementation that is declared in the configured headerFile. In case of a Custom-
CppImplementationDataType the model defines the following:

• Class-Name of the custom implementation (CustomCppImplementation-
DataType.shortName)

• Namespace of the custom implementation (CustomCppImplementation-
DataType.namespace)

• Header File that contains the custom class declaration (CustomCppImplemen-
tationDataType.headerFile).

[SWS_CM_00506]{DRAFT} CustomCppImplementationDataType of category
ASSOCIATIVE_MAP d If a CustomCppImplementationDataType of category AS-
SOCIATIVE_MAP is used that contains two templateArguments that both refer to
a CppImplementationDataType with the templateType reference the following
type declaration shall be available in the included headerFile:

1 <ClassName><<key>, <value>>;

For each CustomCppImplementationDataType of category ASSOCIATIVE_MAP
and a defined Allocator the following type declaration shall be available in the in-
cluded headerFile:

<ClassName><<key>, <value>, <compare>, <allocator>>

192 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

where:

<ClassName> is the Cpp Implementation Data Type symbol of the Custom-
CppImplementationDataType of category ASSOCIATIVE_MAP. Please note
that the namespace that is defined with an ordered list of defined symbol is
already handled by [SWS_CM_10375],

<key> is the map key type specification. It is defined by the first CppTemplateArgu-
ment which is aggregated by the Associative Map Cpp Implementation
Data Type and points to a CppImplementationDataType with the tem-
plateType reference. The referenced CppImplementationDataType itself
can be one of the data types allowed for the Adaptive Platform,

<value> is the mapped value type specification. It is defined by the second CppTem-
plateArgument which is aggregated by the Associative Map Cpp Imple-
mentation Data Type and points to a CppImplementationDataType with
the templateType reference. The CppImplementationDataType itself can
be one of the data types allowed for the Adaptive Platform,

<compare> is the comparison function used to sort the keys.

<allocator> is the defined Allocator that is referenced by the third CppTem-
plateArgument of Associative Map Cpp Implementation Data Type
with the allocator reference.

c()

For more details how to model Associative Map Cpp Implementation Data
Type, see the chapter Map Data Type of AUTOSAR Manifest Specification docu-
ment [6].

8.1.2.5.10 Redefinition of Implementation Data Type

[SWS_CM_00410]{DRAFT} Data Type redefinition d For each Redefinition Cpp
Implementation Data Type which is typed by an StdCppImplementation-
DataType, there shall exist the corresponding type declaration as:

using <name> = <type>;

where:

<name> is the Cpp Implementation Data Type symbol of the Redefinition
Cpp Implementation Data Type,

<type> is the Cpp Implementation Data Type symbol of the referred StdCp-
pImplementationDataType.

c(RS_CM_00211, RS_CM_00003)

193 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Please note that the usage of the category TYPE_REFERENCE is restricted to Std-
CppImplementationDataTypes according to [constr_1578] defined in [6] for simpli-
fication reasons.

8.1.2.5.11 Enumeration Data Types

An Enumeration is not a plain primitive data type, but a structural description defined
with a set of custom identifiers known as enumerators representing the possible values.
In C++, an Enumeration is a first-class object and can take any of these enumerators
as a value.

It is recommended that the underlying type of the enumeration should be explicitly de-
fined to achieve both type safety and a fixed, well-defined size. Additionally, declaring
enumerations as scoped enumeration classes avoids the need of unique enumerator
names.
Therefore enumerations being both typed and scoped are used instead of classic C++
enumerations; the underlying type must be provided by the input configuration by defin-
ing an Enumeration Data Type.

[SWS_CM_00424]{DRAFT} Enumeration Data Type d For each Enumeration
Data Type referenced by the ServiceInterface, there shall exist the correspond-
ing type declaration as:

enum class <name> : <type> {
<enumerator-list>

};

where:

<name> is the Cpp Implementation Data Type symbol of the Redefinition
Cpp Implementation Data Type that boils down to a Primitive Cpp
Implementation Data Type.

<type> is the Primitive Cpp Implementation Data Type that is referenced
by the Redefinition Cpp Implementation Data Type.

<enumerator-list> are the enumerators as defined by [SWS_CM_00425].

c(RS_CM_00211, RS_CM_00003)

The enumerator names base on the CompuScale code symbolic name as defined
in [TPS_SWCT_01569] of the AUTOSAR Software Component Template [29].

[SWS_CM_00425]{DRAFT} Definition of enumerators d For each CompuScale with
point range (i.e., lowerLimit equals upperLimit and both lowerLimit.inter-
valType and upperLimit.intervalType are either missing or set to CLOSED)
in the Enumeration Data Type, there shall exist the corresponding enumeration
nested in the declaration defined by [SWS_CM_00425] as:

<enumeratorLiteral> = <initializer><suffix>,

194 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

where:

<enumeratorLiteral> is the name of the enumerator according to the following
rule (lower values indicate higher priority):

1. the C++ compliant identifier specified by the symbol attribute of CompuS-
cale if this attribute is available and not empty,

2. the string specified by the value of vt element of the CompuConst of the
CompuScale if the value is a valid C++ identifier,

3. the string specified by the value of shortLabel attribute of CompuScale if
the attribute is available and not empty.

<initializer> is the CompuScale’s point range used as enumerator initializer,

<suffix> shall be "U" if <type> of [SWS_CM_00424] is an unsigned data type
(i.e. if the Redefinition Cpp Implementation Data Type boils down
to a Primitive Cpp Implementation Data Type where the Cpp Imple-
mentation Data Type symbol equals uint8_t, uint16_t, uint32_t or uint64_t.
<suffix> shall empty if it is a signed data type (i.e. if the Redefinition Cpp
Implementation Data Type boils down to a Primitive Cpp Implemen-
tation Data Type where the Cpp Implementation Data Type symbol
equals int8_t, int16_t, int32_t or int64_t.

c(RS_CM_00211, RS_CM_00003)

[SWS_CM_10376]{DRAFT} Skip CompuScales with non-point range d Any Com-
puScale with non-point range shall be simply skipped, i.e., no enumeration according
to [SWS_CM_00425] shall be generated for those CompuScales. c(RS_CM_00211,
RS_CM_00003)

[SWS_CM_00426]{DRAFT} Reject incomplete Enumeration Data Types d If the
input configuration contains an Enumeration Data Type and the name of an enu-
merator can not be determined according to [SWS_CM_00425], the ARA generator
shall reject this input as an invalid configuration. c(RS_CM_00211, RS_CM_00003)

8.1.2.5.12 Scale Linear And Texttable Data Types

A Scale Linear And Texttable Data Type is not a plain primitive data type,
but a structural description defined with an Enumeration Data Type. The Scale
Linear And Texttable Data Type can hold the values of the enumerators and
also the values of the underlying type of the Enumeration Data Type it was defined
with.

195 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

The Communication Management declares C++ types for all Scale Linear And
Texttable Data Types defined in the ServiceInterface. In AUTOSAR Adap-
tive Platform, the C++ binding of a Scale Linear And Texttable Data Type is
always implemented by an ara::com::ScaleLinearAndTexttable.

[SWS_CM_10409]{DRAFT} Scale Linear And Textable type definition d For each
Scale Linear And Texttable Data Type there shall exist the corresponding
type declaration as:

using <name> = ScaleLinearAndTexttable<enum_type>;

where:

<name> is the Cpp Implementation Data Type symbol of the Scale Linear
And Texttable Data Type,

<enum_type> is the generated Enumeration Data Type used to specify the
Scale Linear And Texttable Data Type.

c(RS_CM_00211, RS_CM_00003) For the specification of Enumeration Data
Type see section 8.1.2.5.11).

8.1.2.6 Error Types

[SWS_CM_11265]{DRAFT} Use of general ara::com errors d Any Checked Er-
ror of a service interface shall be reported via the return type as specified in [16]. c
(RS_CM_00211)

In ara::com, there are the following types of Checked Errors:

1. General ara::com errors: These errors can occur in a call of a service interface
method but are not specific to a certain service interface. They are defined in the
error domain ara::com::ComErrorDomain.

2. Application Errors: These errors specific to a certain service interface call. They
are defined as ApApplicationError in the meta-model.

[SWS_CM_11264]{DRAFT} Definition general ara::com errors d General ara::com
errors shall be defined in the error domain ara::com::ComErrorDomain in accor-
dance with [16]. c(RS_CM_00102)

[SWS_CM_10432]{DRAFT} d

Kind: enumeration

Symbol: ara::com::ComErrc

Scope: namespace ara::com

Values: service_not_available= 1 Service is not available.

5

196 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
max_samples_exceeded= 2 Application holds more SamplePtrs than commited

in Subscribe().

network_binding_failure= 3 Local failure has been detected by the network
binding.

Header file: #include "ara/com/com_error_domain.h"

Description: The {ComErrc} enumeration defines the error codes for the ComErrorDomain. .

c(RS_AP_00130)

[SWS_CM_11266]{DRAFT} Definition of Application Errors d Each ApApplica-
tionError references an ApApplicationErrorDomain. The error domain corre-
sponding ApApplicationErrorDomain shall be defined as specified in [16]. The
corresponding enumeration shall contain an entry for each ApApplicationError
referencing this ApApplicationErrorDomain using the shortName of the ApAp-
plicationError as symbol and the errorCode of the ApApplicationError as
value:

1

2 enum class <ApApplicationErrorDomain.SN>Errc : ara::core::ErrorDomain::
CodeType

3 {
4 <ApApplicationError.SN> = <ApApplicationError.errorCode>,
5

6 };

c(RS_CM_00211)

8.1.2.7 E2E Related Data Types

Some data types are used only in context of e2e-protected communication of events.

[SWS_CM_90421]{DRAFT} ara::com::e2e::ProfileCheckStatus d
The Communication Management shall provide an enumeration
ara::com::e2e::ProfileCheckStatus which represents the results of the
check of a single sample:

• Ok: OK: the checks of the sample in this cycle were successful (including counter
check).

• Repeated: sample has a repeated counter.

• WrongSequence: The checks of the sample in this cycle were successful, with
the exception of counter jump, which changed more than the allowed delta.

• Error: Error not related to counters occurred (e.g. wrong crc, wrong length,
wrong Data ID).

• NotAvailable: No value has been received yet (e.g. during initialization). This
is used as the initialization value for the buffer.

197 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• NoNewData: No new data is available (assuming a sample has already been
received since the initialization).

• CheckDisabled: No E2E check status available (no E2E protection is config-
ured).

1 enum class ProfileCheckStatus : uint8_t
2 {
3 Ok,
4 Repeated,
5 WrongSequence,
6 Error,
7 NotAvailable,
8 NoNewData,
9 CheckDisabled

10 };

c(RS_E2E_08534)

The E2E state machine SMState is determined by checking a history of Pro-
fileCheckStatuses. The current value of SMState mirrors the current state of
the E2E supervision, but is not neccessarly applicable to all samples recieved during
the last update.

[SWS_CM_90422]{DRAFT} ara::com:E2E_state_machine::E2EState d The Com-
munication Management shall provide an enumeration ara::com:e2e::SMState
which represents in what state is the E2E supervision after the most recent check
of the sample(s) of a received sample of the event. If SMState is Valid, and the
GetProfileCheckStatus did not result in Error then the last checked sample can
be used.

• Valid: Communication of the samples of this event functioning properly ac-
cording to E2E checks, sample(s) can be used.

• NoData: No data have been received from the publisher at all.

• Init: Not enough data where the E2E check yielded OK from the publisher is
available since the initialization, sample(s) cannot be used.

• Invalid: Too few data where the E2E check yielded OK or to many data where
the e2e check yielded ERROR were received within the E2E time window – com-
munication of the sample of this event not functioning properly, sample(s) can-
not be used.

• StateMDisabled: No E2E state machine available (no statemachine is config-
ured).

1 enum class SMState : uint8_t
2 {
3 Valid,
4 NoData,
5 Init,
6 Invalid,
7 StateMDisabled

198 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8 };

c(RS_E2E_08534)

The Result is a class providing ProfileCheckStatus and SMState.

[SWS_CM_90423]{DRAFT} Result d The Communication Management shall
provide a C++ class named ara::com::e2e::Result which provides
ara::com::e2e::SMState and ara::com::e2e::ProfileCheckStatus.

1 class Result {
2 public:
3 ara::com::e2e::ProfileCheckStatus GetCheckStatus() const noexcept;
4 ara::com::e2e::SMState GetSMState() const noexcept;
5 };

c(RS_E2E_08534)

199 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8.1.3 API Reference

The ServiceInterface description is the input for the generation of the service API
header files content.

The proxy and skeleton header files contain different classes representing the Servi-
ceInterface itself and its elements event, method and field.

[SWS_CM_00002]{DRAFT} Service skeleton class d The Communication Manage-
ment shall provide the definition of a C++ class named <name>Skeleton in the ser-
vice skeleton header file within the namespace defined by [SWS_CM_01006], where
<name> is the ServiceInterface.shortName.

1 class <ServiceInterface.shortName>Skeleton {
2 ...
3 };

c(RS_CM_00101)

[SWS_CM_00003]{DRAFT} Service skeleton Event class d For each Variable-
DataPrototype defined in the ServiceInterface in the role event the defini-
tion of a C++ class using the shortName of the VariableDataPrototype shall
be provided in the service skeleton header file within the namespace defined by
[SWS_CM_01009].

1 class <VariableDataPrototype.shortName> {
2 ...
3 };

c(RS_CM_00201)

[SWS_CM_00007]{DRAFT} Service skeleton Field class d For each Field defined
in the ServiceInterface in the role field the definition of a C++ class using the
shortName of the Field shall be provided in the service skeleton header file within
the namespace defined by [SWS_CM_01031].

1 class <Field.shortName> {
2 ...
3 };

c(RS_CM_00219)

[SWS_CM_00004]{DRAFT} Service proxy class d The Communication Management
shall provide the definition of a C++ class named <name>Proxy in the service proxy
header file within the namespace defined by [SWS_CM_01007], where <name> is the
ServiceInterface.shortName.

1 class <ServiceInterface.shortName>Proxy {
2 ...
3 };

c(RS_CM_00102)

[SWS_CM_00005]{DRAFT} Service proxy Event class d For each VariableDat-
aPrototype defined in the ServiceInterface in the role event the definition of a

200 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

C++ class using the shortName of the VariableDataPrototype shall be provided
in the service proxy header file within the namespace defined by [SWS_CM_01009].

1 class <VariableDataPrototype.shortName> {
2 ...
3 };

c(RS_CM_00103)

[SWS_CM_00006]{DRAFT} Service proxy Method class d For each
ClientServerOperation defined in the ServiceInterface in the role method
the definition of a C++ class using the shortName of the ClientServerOperation
shall be provided in the service proxy header file within the namespace defined by
[SWS_CM_01015].

1 class <ClientServerOperation.shortName> {
2 ...
3 };

c(RS_CM_00212, RS_CM_00213)

[SWS_CM_00008]{DRAFT} Service proxy Field class d For each Field defined in
the ServiceInterface in the role field the definition of a C++ class using the
shortName of the ServiceInterface shall be provided in the service proxy header
file within the namespace defined by [SWS_CM_01031].

1 class <Field.shortName> {
2 ...
3 };

c(RS_CM_00216)

The following sub-chapters describe the content of the previously defined classes.

8.1.3.1 Object Creation via Construction Token

The construction token approach enables exception-less error reporting for object con-
struction. Since service skeletons and service proxies can be created using a Con-
tructionToken, this section describes the general requirements of this approach.
For the service skeleton and service proxy creation C++ API reference, see chapter
8.1.3.3 and 8.1.3.10, respectively.

[SWS_CM_10433]{DRAFT} Declaration of Construction Token d The construction
token shall be declared within the namespace of the class to be created ClassTo-
BeCreated::ConstructionToken. The token must hold all members which are
necessary to instantiate a valid object of ClassToBeCreated. The Construction-
Token shall implement move-only semantics.

ConstructionToken(ConstructionToken &&);
ConstructionToken& operator=(ConstructionToken &&);
ConstructionToken(const ConstructionToken&) = delete;
ConstructionToken& operator=(const ConstructionToken&) = delete;

201 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00101)

[SWS_CM_10434]{DRAFT} Creation of a Construction Token d The ClassToBe-
Created shall provide a static member function Preconstruct returning the con-
struction token embedded in an ara::core::Result. This function performs all
operations for constructing an object of ClassToBeCreated which may fail or result
in an error, e.g. parameter checks and resource allocation. If an error occurs during
these operations, the error is returned as ara::core::ErrorCode. A non-throwing
constructor of ClassToBeCreated shall take the ConstructionToken as r-value
reference.

static ara::core::Result<ConstructionToken>
Preconstruct(/* construction arguments */);

ClassToBeCreated (ConstructionToken&&) noexcept;

c(RS_CM_00101)

8.1.3.2 Offer service

For the functional description of the service offering API, see chapter 7.6.1.

[SWS_CM_00101]{DRAFT} Method to offer a service d The Communication Man-
agement shall provide an OfferService method as part of the ServiceSkeleton
class to offer a service to applications.

void OfferService();

c(RS_CM_00101)

[SWS_CM_00111]{DRAFT} Method to stop offering a service d The Communica-
tion Management shall provide a StopOfferService method as part of the Ser-
viceSkeleton class to stop offering services to applications.

void StopOfferService();

c(RS_CM_00105)

8.1.3.3 Service skeleton creation

For the functional description of the service skeleton creation API, see chapter 7.6.2.

[SWS_CM_00130]{DRAFT} Creation of service skeleton using Instance ID d
The Communication Management shall provide a constructor for each specific Ser-
viceSkeleton class taking two arguments:

• InstanceIdentifier: The identifier of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

202 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(
ara::com::InstanceIdentifier instanceID,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101)

[SWS_CM_10435]{DRAFT} Exception-less creation of service skeleton using In-
stance ID d The Communication Management shall provide a non-throwing construc-
tor for each specific ServiceSkeleton class according to [SWS_CM_10433] and
[SWS_CM_10434]. A Preconstruct function shall take two arguments:

• InstanceIdentifier: The identifier of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton::ServiceSkeleton(ConstructionToken&&) noexcept;

static ara::core::Result<ConstructionToken>
ServiceSkeleton::Preconstruct(

ara::com::InstanceIdentifier instanceID,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101)

[SWS_CM_00152]{DRAFT} Creation of service skeleton using Instance Spec d
The Communication Management shall provide a constructor for each specific Ser-
viceSkeleton class taking two arguments:

• InstanceSpecifier: The specifiers of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

203 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

ServiceSkeleton(
ara::core::InstanceSpecifier instanceSpec,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101)

[SWS_CM_10436]{DRAFT} Exception-less creation of service skeleton using
Instance Spec d The Communication Management shall provide a constructor
for each specific ServiceSkeleton class according to [SWS_CM_10433] and
[SWS_CM_10434]. A Preconstruct function shall take two arguments:

• InstanceSpecifier: The specifiers of a specific instance of a service, needed
to distinguish different instances of exactly the same service in the system. See
[SWS_CM_00302] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(ConstructionToken&&) noexcept;
static ara::core::Result<ConstructionToken> Preconstruct(

ara::core::InstanceSpecifier instanceSpec,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101)

[SWS_CM_00153]{DRAFT} Creation of service skeleton using Instance ID Con-
tainer d The Communication Management shall provide a constructor for each specific
ServiceSkeleton class taking two arguments:

• InstanceIdentifierContainer: The container of instances of a service,
each instance element needed to distinguish different instances of exactly the
same service in the system. See [SWS_CM_00319] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(
ara::com::InstanceIdentifierContainer instanceIDs,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101)

204 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_10437]{DRAFT} Exception-less creation of service skeleton using In-
stance ID Container d The Communication Management shall provide a construc-
tor for each specific ServiceSkeleton class according to [SWS_CM_10433] and
[SWS_CM_10434]. A Preconstruct function shall take two arguments:

• InstanceIdentifierContainer: The container of instances of a service,
each instance element needed to distinguish different instances of exactly the
same service in the system. See [SWS_CM_00319] for the type definition.

• MethodCallProcessingMode: As a default argument, this is the mode of
the service implementation for processing service method invocations with
kEvent as default value. See [SWS_CM_00301] for the type definition and
[SWS_CM_00198] for more details on the behavior.

ServiceSkeleton(ConstructionToken&&) noexcept;
static ara::core::Result<ConstructionToken> Preconstruct(

ara::com::InstanceIdentifierContainer instanceIDs,
ara::com::MethodCallProcessingMode mode =

ara::com::MethodCallProcessingMode::kEvent
);

c(RS_CM_00101)

[SWS_CM_00134]{DRAFT} Copy semantics of service skeleton class d The Com-
munication Management shall disable the generation of the copy constructor and the
copy assignment operator for each specific ServiceSkeleton class.

ServiceSkeleton(const ServiceSkeleton&) = delete;
ServiceSkeleton& operator=(const ServiceSkeleton&) = delete;

c(RS_CM_00101)

[SWS_CM_00135]{DRAFT}Move semantics of service skeleton class d The Com-
munication Management shall provide the possibility to move construct and move as-
sign a ServiceSkeleton instance from another instance.

ServiceSkeleton(ServiceSkeleton &&);
ServiceSkeleton& operator=(ServiceSkeleton &&);

c(RS_CM_00101)

8.1.3.4 Send event

Inside the specific Event class belonging to the specific ServiceSkeleton class a
Send method shall be provided to initiate sending the corresponding event .To support
sending of events where the data is owned by the application and continuously updated
and the data is explicitly created for sending the Send method shall be provided in two
ways: One where the application is owner of the data and the Send method makes a
copy for sending and one where Communication Management is responsible for the
data and the application is not allowed to do anything with the data after sending.

205 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00162]{DRAFT} Send event where application is responsible for the
data d The Send method of the specific Event class where the application is responsi-
ble for the data and the Communication Management creates a copy for sending takes
in the input parameter data, the data to send and sends it to all subscribed applica-
tions. This version of the Send method shall be used whenever the application wants
to work further with the data.

void Event::Send(const SampleType &data);

c(RS_CM_00201)

[SWS_CM_90437]{DRAFT} Send event where Communication Management is re-
sponsible for the data d The Send method of the specific Event class where the
Communication Management is responsible for the data and the application is not al-
lowed to access the data after sending takes in the input parameter data, the data to
send and sends it to all subscribed applications.

void Event::Send(ara::com::SampleAllocateePtr <SampleType> data);

Before sending the event the corresponding data has to be requested from the Com-
munication Management (see [SWS_CM_90438]) and filled with the respective data. c
(RS_CM_00201)

[SWS_CM_90438]{DRAFT} Allocating data for event transfer d Data shall be re-
quested by calling the Allocate method of the specific Event class. By calling the
Send method with the data, it is ensured that the data will be freed by the Communi-
cation Management.

ara::com::SampleAllocateePtr <SampleType> Event::Allocate();

This version of the Send method shall be used whenever the data is created explicitly
for sending and no further processing is happening afterward by the application itself.
c(RS_CM_00201)

See [SWS_CM_00308] for the type definition of SampleAllocateePtr and ARA-
ComAPI explanatory document [1] for more details on the behavior.

8.1.3.5 Provide a service method

[SWS_CM_00191]{DRAFT} Provision of method d A pure virtual method shall be
defined inside the specific ServiceSkeleton class for each provided method of the
service.
The name of this method and its parameters are derived from the signature of the pro-
vided service method.
The service method input parameters shall become input parameters of the respective
method defined inside the ServiceSkeleton class.
An Output type combining the possible output parameters and optional return values
shall be provided inside the ServiceSkeleton class.

206 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

The method shall return an ara::core::Future object wrapping the output param-
eters and return values as result.
A corresponding subclass providing implementations for the methods shall be created
to implement the methods of a respective ServiceSkeleton.

struct Method1Output {
TypeOutputParameter1 output1;
TypeOutputParameter2 output2;
...
TypeResult result;

};

virtual ara::core::Future <Method1Output> Method1(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

) = 0;

c(RS_CM_00211)

[SWS_CM_90434]{DRAFT} Provision of a Fire and Forget method d A pure
virtual method shall be defined inside the specific ServiceSkeleton class for each
provided Fire and Forget method of the service.
The name of this method and its parameters are derived from the signature of the pro-
vided Fire and Forget method.
The Fire and Forget method input parameters shall become input parameters of
the respective method defined inside the ServiceSkeleton class.
The Fire and Forget method shall have no return values.
A corresponding subclass providing implementations for the Fire and Forget
methods shall be created to implement the Fire and Forget method of a respec-
tive ServiceSkeleton.

virtual void FF_Method1(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

) = 0;

c(RS_CM_00225)

8.1.3.6 Processing of service methods

For the functional description of the processing of service methods API, see chapter
7.6.3.

[SWS_CM_00198]{DRAFT} Set service method processing mode
d With the instantiation of a specific ServiceSkeleton class, the
mode for processing service method invocations is set by providing an
ara::com::MethodCallProcessingMode as a parameter of the constructor.

207 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

The mode allows the implementation providing the service method to select how the
incoming service method invocations are processed. The selection is valid for all the
methods of the specific ServiceSkeleton instance. The data type representing the
processing modes is defined by [SWS_CM_00301].
The following processing modes shall be supported:

• Polling (enumeration element kPoll)

• Event-driven, concurrent (enumeration element kEvent)

• Event-driven, sequential (enumeration element kEventSingleThread)

c(RS_CM_00211)

[SWS_CM_00199]{DRAFT} Process Service method invocation d Inside the spe-
cific ServiceSkeleton class, a ProcessNextMethodCall method shall be pro-
vided. This method allows the implementation providing the service method to trigger
the execution of the next service consumer method call at a specific point of time if the
processing mode is set to Polling.
The method shall return an ara::core::Future object wrapping a bool param-
eter as return value. A returned value true indicates that there is at least one
pending invocation, returning false indicates the opposite. Additionally, the returned
ara::core::Future object allows to register a callback function which is invoked
when the next pending execution of a method request is finished.

ara::core::Future<bool> ProcessNextMethodCall();

c(RS_CM_00211)

[SWS_CM_10362]{DRAFT} Raising checked errors for application errors dWhen-
ever on the skeleton side of a service method an ApApplicationError – ac-
cording to the interface description in the Manifest – is detected, the corre-
sponding ara::core::ErrorCode representing this ApApplicationError (see
[SWS_CM_11266]) shall be stored into the ara::core::Promise object, from which
the ara::core::Future is returned to the caller. c(RS_CM_00211, RS_CM_00212,
RS_CM_00213, RS_CM_00214)

8.1.3.7 Registering get handlers for fields

For the functional description of the registering get handlers for fields API, see chapter
7.6.4.

[SWS_CM_00114]{DRAFT} Registering Getters d Inside the specific Field class
belonging to the specific ServiceSkeleton class a RegisterGetHandler method
shall be provided to give the possibility to register a GetHandler.

void RegisterGetHandler(
std::function<ara::core::Future<FieldType>(

)> getHandler);

208 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00218)

[SWS_CM_00115]{DRAFT} Existence of RegisterGetHandler method d The exis-
tence of RegisterGetHandler as part of the Field class shall be controlled by
Field.hasGetter. c(RS_CM_00218)

8.1.3.8 Registering set handlers for fields

For the functional description of the registering set handlers for fields API, see chapter
7.6.5.

[SWS_CM_00116]{DRAFT} Registering Setters d Inside the specific Field class
belonging to the specific ServiceSkeleton class a RegisterSetHandler function
shall be provided to give the possibility to register a SetHandler.

void RegisterSetHandler(
std::function<ara::core::Future<FieldType>(

const FieldType& value)> setHandler);

c(RS_CM_00218)

[SWS_CM_00117]{DRAFT} Existence of the RegisterSetHandler method d The
existence of RegisterSetHandler as part of the Field class shall be controlled by
Field.hasSetter. c(RS_CM_00218)

[SWS_CM_00119]{DRAFT} Update Function d Inside the specific Field class be-
longing to the specific ServiceSkeleton class an Update function shall be pro-
vided to initiate the transmission of updated field data to the subscribers. See
[SWS_CM_00162] for the required behavior. The Update method shall look as follows:

void Field::Update(const FieldType &value);

c(RS_CM_00218)

8.1.3.9 Find service

For the functional description of the find service API, see chapter 7.6.6.

The Communication Management shall provide FindService methods as part of the
ServiceProxy class to enable applications to find services. To support event-based
and time-triggered systems the FindService methods shall be provided in a handler
registration and a immediately returned request style.

[SWS_CM_00122]{DRAFT} Find service with immediately returned request
using Instance ID d The FindService method of the ServiceProxy class with
immediately returned request takes an instance ID qualifying the wanted instance
of the service as optional input parameter. If no instance is specified, any instance
of the service matches.
As result a container containing handles for all matching service instances is returned.

209 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

There are two FindService methods, one for ANY and one using a specified
InstanceIdentifier.

static ara::com::ServiceHandleContainer<<ProxyClassName>::HandleType>
FindService();

static ara::com::ServiceHandleContainer<<ProxyClassName>::HandleType>
FindService(ara::com::InstanceIdentifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. c(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00304] for ServiceHandleContainer,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00302] for InstanceIdentifier.

[SWS_CM_00622]{DRAFT} Find service with immediately returned request using
Instance Specifier d The FindService method of the ServiceProxy class with im-
mediately returned request takes an instance Specifier qualifying the wanted Abstract
Network Binding for the instance.
As result a container containing handles for all matching service instances is returned.

static ara::com::ServiceHandleContainer<<ProxyClassName>::HandleType>
FindService(ara::core::InstanceSpecifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. c(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00304] for ServiceHandleContainer,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00350] for InstanceSpecifier.

[SWS_CM_00123]{DRAFT} Find service with handler registration using In-
stance ID d The StartFindService method of the ServiceProxy class with
handler registration takes as input parameters a FindServiceHandler, fitting
for the corresponding ServiceProxy class which gets called upon detection of a
matching service, and optionally an instance ID qualifying the wanted instance
of the service. If no instance is specified any instance of the service matches.
As result a FindServiceHandle for this search/find request is returned, which is
needed to stop the service availability monitoring and related firing of the given handler.

There are two StartFindService methods one for ANY and one using a specified
InstanceIdentifier.

210 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

static ara::com::FindServiceHandle StartFindService(
ara::com::FindServiceHandler<<ProxyClassName>::HandleType> handler);

static ara::com::FindServiceHandle StartFindService(
ara::com::FindServiceHandler<<ProxyClassName>::HandleType> handler,
ara::com::InstanceIdentifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. c(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00303] for FindServiceHandle,

• [SWS_CM_00383] for FindServiceHandler,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00302] for InstanceIdentifier.

[SWS_CM_00623]{DRAFT} Find service with handler registration using Instance
Specifier d The StartFindService method of the ServiceProxy class with han-
dler registration takes as input parameters a FindServiceHandler, fitting for the
corresponding ServiceProxy class which gets called upon detection of a matching
service, and an instance Specifier qualifying the wanted Abstact Network Binding of
the instance of the service. As result a FindServiceHandle for this search/find
request is returned, which is needed to stop the service availability monitoring and
related firing of the given handler.

static ara::com::FindServiceHandle StartFindService(
ara::com::FindServiceHandler<<ProxyClassName>::HandleType> handler,
ara::core::InstanceSpecifier instance);

where <ProxyClassName> is the name of the ServiceProxy class as defined in
[SWS_CM_00004]. c(RS_CM_00102)

For the definition of the types used in the StartFindService signature, see:

• [SWS_CM_00303] for FindServiceHandle,

• [SWS_CM_00383] for FindServiceHandler,

• [SWS_CM_00312] for HandleType,

• [SWS_CM_00350] for InstanceSpecifier.

[SWS_CM_00125]{DRAFT} Stop find service d To stop receiving further notifications
the ServiceProxy class shall provide a StopFindServicemethod. The FindSer-
viceHandle returned by the FindService method with handler registration has to
be provided as input parameter.

void StopFindService(ara::com::FindServiceHandle handle)

c(RS_CM_00102)

211 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

See [SWS_CM_00303] for the type definition of FindServiceHandle.

8.1.3.10 Service proxy creation

[SWS_CM_00131]{DRAFT} Creation of service proxy d The Communication Man-
agement shall provide a constructor for each specific ServiceProxy class taking a
handle returned by any FindService method of the ServiceProxy class to get a
valid ServiceProxy based on the handles returned by FindService.

explicit ServiceProxy::ServiceProxy(const HandleType &handle);

c(RS_CM_00102)

[SWS_CM_10438]{DRAFT} Exception-less creation of service proxy d The Com-
munication Management shall provide a non-throwing constructor for each specific
ServiceProxy class according to [SWS_CM_10433] and [SWS_CM_10434]. A
Preconstruct function shall take a handle returned by any FindService method
of the ServiceProxy class.

explicit ServiceProxy::ServiceProxy(ConstructionToken&&) noexcept;
static ara::core::Result<ConstructionToken>

ServiceProxy::Preconstruct(
const HandleType &handle);

c(RS_CM_00102)

[SWS_CM_10383]{DRAFT} GetHandle function to return the proxy instance cre-
ation handle d The Communication Management shall provide a GetHandle method
for each specific ServiceProxy class to get the handle from which the Service-
Proxy instance has been created.

HandleType ServiceProxy::GetHandle() const;

c(RS_CM_00107)

See [SWS_CM_00312] for the type definition of HandleType.

[SWS_CM_00136]{DRAFT} Copy semantics of service proxy class d The Commu-
nication Management shall disable the generation of the copy constructor and the copy
assignment operator for each specific ServiceProxy class.

ServiceProxy(const ServiceProxy&) = delete;
ServiceProxy& operator=(const ServiceProxy&) = delete;

c(RS_CM_00102)

[SWS_CM_00137]{DRAFT}Move semantics of service proxy class d The Commu-
nication Management shall provide the possibility to move construct and move assign
a ServiceProxy instance from another instance.

ServiceProxy(ServiceProxy &&);
ServiceProxy& operator=(ServiceProxy &&);

212 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00102)

8.1.3.11 Service proxy destruction

[SWS_CM_10446]{DRAFT} Destruction of service proxy d The destructor of each
specific ServiceProxy class shall destroy the Promise instances corresponding to
the Future instances returned by the function call operator (operator()) of the re-
spective Method class (see [SWS_CM_00196]) or by the Get or Set method of the
respective Field class (see [SWS_CM_00112] and [SWS_CM_00113]) by explicitly
or implicitly invoking the destructor of the Promise (see [SWS_CORE_00349]). This
in turn will make the corresponding Future ready (if this is not already the case) with
an ara::core::ErrorCode (see [SWS_CORE_00501]) where the error domain is
set to ara::core::FutureErrorDomain (see [SWS_CORE_00421]) and the value
is set to broken_promise (see [SWS_CORE_00400]). c(RS_CM_00102)

8.1.3.12 Service event subscription

[SWS_CM_00141]{DRAFT} Method to subscribe to a service event d Inside the
specific Event class belonging to the specific ServiceProxy class a Subscribe
method shall be provided to start subscription of the corresponding event. As input
parameter the cacheSize of the subscription needs to be specified.

void Event::Subscribe(
size_t maxSampleCount

);

c(RS_CM_00103)

[SWS_CM_00700]{DRAFT} Ensure memory allocation of maxSampleCount sam-
ples d The Communication Management shall ensure, that after returning from method
Subscribe sufficient memory resources are available, so that the number of samples
given in parameter maxSampleCount can be concurrently accessed by application
layer, otherwise error handling according to [SWS_CORE_00001] shall be performed.
c(RS_CM_00103)

[SWS_CM_00151]{DRAFT} Method to unsubscribe from a service event d Inside
the specific Event class belonging to the specific ServiceProxy class a Unsub-
scribe method shall be provided to allow for unsubscribing from previously sub-
scribed events.

void Event::Unsubscribe();

c(RS_CM_00104)

213 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00316]{DRAFT} Query Subscription State d The Communication Man-
agement shall provide an API GetSubscriptionState which returns the subscrip-
tion state of an event. The conditions for the Subscription state being returned by Get-
SubscriptionState shall be the same as for the SubscriptionStateChange-
Handler described in [SWS_CM_00311], [SWS_CM_00313] and [SWS_CM_00314].

1 ara::com::SubscriptionState GetSubscriptionState() const;

c(RS_CM_00106)

[SWS_CM_00333]{DRAFT} Set Subscription State change handler d The Commu-
nication Management shall provide an API SetSubscriptionStateChangeHan-
dler to give the possibility to set a subscription state change handler. This handler
shall be called by the Communication Management implementation as soon as the
subscription state of this event has changed. Handler may be overwritten during run-
time.

1 void SetSubscriptionStateChangeHandler(ara::com::
SubscriptionStateChangeHandler handler);

c(RS_CM_00106)

[SWS_CM_00334]{DRAFT} Unset Subscription State change handler d The Com-
munication Management shall provide an API UnsetSubscriptionStateChange-
Handler to give the possibility to unset the subscription state change handler.

1 void UnsetSubscriptionStateChangeHandler();

c(RS_CM_00106)

[SWS_CM_00313]{DRAFT} Call SubscriptionStateChangeHandler with kSub-
scriptionPending d The Communication Management shall call the Subscription-
StateChangeHandler with the value kSubscriptionPending in the following
cases:

• the client subscribes to an event and the actual subscription does not happen
immediately (e.g. due to a bus protocol)

• the client is subscribed to an event and Communication Management has de-
tected that the server instance is currently not available (due to restart, network
problem or so)

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

Note: Method Calls may lead to a service_not_available error
[SWS_CM_11264] at that time.

[SWS_CM_00314]{DRAFT} Call SubscriptionStateChangeHandler with kSub-
scribed d The Communication Management shall call the SubscriptionState-
ChangeHandler with the value kSubscribed in the following cases:

• the client subscribes to an event and the actual subscription is established suc-
cessfully

214 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• the client is subscribed to an event and the actual subscription is re-established
again after being temporarily unavailable (due to restart, network problem or so)

c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

[SWS_CM_00315]{DRAFT} Re-establishing an active subscription d The Commu-
nication Management shall re-establish the actual subscription again after the server
service being temporarily unavailable (due to restart, network problem or so). This
shall work independently of whether a network binding is involved or not. The re-
establishment shall also provide a possible update of binding specific connection prop-
erties if needed. c(RS_CM_00103, RS_CM_00104, RS_CM_00106, RS_CM_00107)

8.1.3.13 Receive event

Inside the specific Event class belonging to the specific ServiceProxy class, a Get-
NewSamples and a GetFreeSampleCount method shall be provided to allow for ac-
cess of received events.

[SWS_CM_00701]{DRAFT} Method to update the event cache d The Communi-
cation Management shall provide an GetNewSamples method as part of the Event
class to update the event cache with the meanwhile received data samples. As input
parameters the GetNewSamples method expects a Callable f and allows to spec-
ify a maxNumberOfSamples to restrict the number of received data samples being
processed in this call.

template <typename F>
ara::core::Result<size_t> GetNewSamples(

F&& f,
size_t maxNumberOfSamples = std::numeric_limits<size_t>::max());

c(RS_CM_00202)

[SWS_CM_00702]{DRAFT} Signature of Callable f d The user provided Callable
f has to comply with the following signature:

void(ara::com::SamplePtr<SampleType const>)

For the definition of the types used in the signature of f, see:

• [SWS_CM_00306] for SamplePtr.

c(RS_CM_00202)

[SWS_CM_00703]{DRAFT} Sequence of actions in GetNewSamples d In the con-
text of the GetNewSamples call, the Communication Management shall do the follow-
ing steps repeatedly:

• get next received event data sample from underlying receive buffers.

• deserialize the data, if needed.

• place the deserialized data sample of type SampleType in the local cache.

215 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

• call user provided f with a SamplePtr referencing the data sample located in
local cache.

until at least one of the following conditions is true:

• maxNumberOfSamples have already been fetched from the underlying receive
buffers within this GetNewSamples call.

• maxSampleCount exceeded. I.e. the application is currently holding more Sam-
plePtrs provided by this Event class instance, than it has commited in call to
Subscribe via maxSampleCount.

• no new data samples available from underlying receive buffers.

c(RS_CM_00202)

[SWS_CM_00704]{DRAFT} Return Value d The returned ara::core::Result ei-
ther contains a

• size_t indicating the number of data samples passed to f in the context of the
call.

or a

• ara::core::ErrorCode with value max_samples_exceeded indicating, that
applications SamplePtrs count has been exceeded.

c(RS_CM_00202)

[SWS_CM_00714]{DRAFT} Reentrancy d GetNewSamples shall be re-entrant for
different ServiceProxy class instances. When called concurrently on the same Ser-
viceProxy class instance, the behavior is undefined. c(RS_CM_00202)

For the E2E-protected events, after updating the event cache via the GetNewSam-
ples method, and before accessing the SamplePtrs, the current Result needs to
be retrieved by calling the GetResult method.

[SWS_CM_90424]{DRAFT} Provide E2E Result d Inside the specific E2E-protected
Events belonging to the specific ServiceProxy class, the method GetResult shall
be provided.

const ara::com::e2e::Result GetResult() const;

For the definition of the type returned by GetResult signature, see:

• [SWS_CM_90423] for Result

c(RS_E2E_08534)

[SWS_CM_00705]{DRAFT} Query Free Sample Slots d The Communication Man-
agement shall provide a GetFreeSampleCount method as part of the Event class
to query the number of free/unused slots for event sample data.

ara::core::Result<size_t> GetFreeSampleCount() const noexcept;

216 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

c(RS_CM_00202)

[SWS_CM_00706]{DRAFT} Return Value of GetFreeSampleCount d The returned
ara::core::Result either contains a

• size_t indicating the number of free/unused slots for event sample data in the
local cache.

or a

• ara::core::ErrorCode with value max_samples_exceeded indicating, that
applications SamplePtrs count has been exceeded.

c(RS_CM_00202)

[SWS_CM_00707]{DRAFT} Calculation of Free Sample Count d

• After call to Subscribe with parameter maxSampleCount set to N and before
any call to GetNewSamples on the same Event class instance, a call to Get-
FreeSampleCount shall return N.

• Each SamplePtr created by the Communication Middleware in the context of
a call to GetNewSamples on the same Event class instance. shall lead to a
decrement of count of free samples.

• Each destruction or nullptr_t assignment (see [SWS_CM_00306]) of a Sam-
plePtr instance created from this Event class instance shall lead to a increment
of count of free samples.

c(RS_CM_00202)

[SWS_CM_00708]{DRAFT} Possibility of exceeding sample count by one d Ac-
cording to (see [SWS_CM_00703]) Communication Management shall allow fetching
newly arrived sample data from underlying buffers even in case all N samples (N ==
maxSampleCount in previous call to Subscribe) are already occupied. This leads to
a state, where N+1 data samples are occupied in the local cache. The Communication
Management has to support this by implicitly allocating memory resources for at least
maxSampleCount + 1 data samples. c(RS_CM_00202)

Note:
The exceeding of the sample count by one has been introduced to efficiently support
applications with a "LastN" access policy of events. If the application already holds its
maximum of N samples of an event and wants to remove the oldest one and append
a newly received one, the Communication Management has to foresee an internal
"spare slot", where it can place — during GetNewSamples — the new sample data
and then pass a SamplePtr to it to the application Callable. A "well behaving"
application would within this Callable free an old SamplePtr and keep the new
passed in SamplePtr. So after the call to Callable f the number of samples held
by the application is still N. A "not well behaving" application could decline to free
any held SamplePtr of the Event class instance but additionally keep the passed in
SamplePtr to the "spare slot", effectively exceeding the committed N.

217 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

8.1.3.14 Receive event by getting triggered

For the functional description of the receive event by getting triggered API, see chapter
7.6.7.2.

[SWS_CM_00181]{DRAFT} Enable service event trigger d To enable that applica-
tions get triggered upon receiving of an event inside the specific Event class belonging
to the specific ServiceProxy class a SetReceiveHandler method shall be pro-
vided to allow for specifying the function to call upon event arrival. Therefore, it takes
as input parameter handler a pointer to the respective function.

void Event::SetReceiveHandler(ara::com::EventReceiveHandler handler)

The EventReceiveHandler constitutes a function without parameters and has to
use the GetNewSamples method of the specific Event class to access the retrieved
event data. See [SWS_CM_00309] for its definition. c(RS_CM_00203)

[SWS_CM_00183]{DRAFT} Disable service event trigger d To disable the triggering
of the application upon receiving of an event inside the specific Event class belong-
ing to the specific ServiceProxy class a UnsetReceiveHandler method shall be
provided to allow for disabling of triggering the application.

void Event::UnsetReceiveHandler()

c(RS_CM_00203)

8.1.3.15 Call a service method

For the functional description of the call a service method API, see chapter 7.6.8.

[SWS_CM_00196]{DRAFT} Initiate a method call d For each service method (i.e.,
ServiceInterface.method with ClientServerOperation.fireAndForget
set to false) of a ServiceInterface a specific Method class named by the
ServiceInterface.method.shortName shall be provided inside the specific
ServiceProxy class of the ServiceInterface.
Within this Method class, a dedicated method Output type combining the possible
output parameters (ClientServerOperation.arguments with ArgumentDat-
aPrototype.direction set to out or inout) and optional return values shall be
provided.
Additionally the operator() shall be provided inside the specific Method class to
allow the call of a method provided by a server.
As input parameters, the operator() shall take the respective input parameters
(ClientServerOperation.arguments with ArgumentDataPrototype.direc-
tion set to in or inout) of the provided method.
The operator() shall return an ara::core::Future object wrapping the dedi-
cated method Output type.

218 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

class Method {
struct Output {

TypeOutputParameter1 output1;
TypeOutputParameter2 output2;
...
TypeResult result; // return value (optional)

};

ara::core::Future<Output> operator()(
TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

);
};

c(RS_CM_00212, RS_CM_00213)

The method call according to [SWS_CM_00196] will return immediately. The caller’s
selection of a synchronous or asynchronous behavior to get the method output is
achieved by the use of the returned ara::core::Future object which is used to
query for method completion and result including possible error.

[SWS_CM_00194]{DRAFT} Cancel the method call d The destructor of the re-
turned ara::core::Future object shall be used by the caller to cancel the request
after issuing a method call. Deleting the returned ara::core::Future object shall
result in the abort of the method call and ensure that any related buffers are released
and no result is returned to the caller. c(RS_CM_00212, RS_CM_00213)

This is a mechanism on client side to tell the Communication Management software
that the caller is not interested in the method result anymore. Cancellation of the
method call is not propagated to the server side execution of the method.

[SWS_CM_00195]{DRAFT} Retrieving results of the method call d The method
GetResult() of the returned ara::core::Future object shall be used to retrieve
the result of the method call as ara::core::Result. The call of the method Ge-
tResult() will block if there is not yet a result available and will return after the result
has been received returning an object of the respective Output or an error. As an
alternative, get() returns the contained object of the result from GetResult(), or
throws the contained error as exception, respectively. c(RS_CM_00212)

[SWS_CM_00192]{DRAFT} Synchronous behavior of method call d To achieve
synchronous behavior of the method call, the methods of ara::core::Future ob-
ject with blocking behavior shall be used because they only return when the out-
put of the method call according to [SWS_CM_00196] is available: get(), wait(),
wait_for(), wait_until(). With the call of one of these methods and the result
still pending, the Communication Management software is allowed to perform actions
which lead to uncontrolled context switches from the caller point of view, e.g. an asyn-
chronous event-style mechanism for a wait-on-event. c(RS_CM_00212)

219 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Note that there are situations where the methods of an ara::core::Future object
with blocking behavior will block forever. The adaptive application will need to gracefully
handle such a situation. Prominent examples for such situations are the following ones:

• the request message or the response message of the (remote) service method
call gets lost

• the implementation for the service method in the subclass of the respective Ser-
viceSkeleton (see [SWS_CM_0019]) does not return (i.e., hangs)

ara::com will not internally perform some kind of timeout supervision in order to even-
tually unblock those blocking ara::core::Future methods. If such a timeout super-
vision is desired from the perspective of the adaptive application, it is up to the adap-
tive application to implement according mechanisms, e.g., by using the wait_for(),
wait_until(), or the is_ready() methods of the ara::core::Future.

On the other hand there are situations where the ara::com implementation on the
client side knows that an issued (remote) service method call will not succeed and
thus would block forever. Prominent examples for such situations are the following
ones:

• the sending of request message of the (remote) service method failed locally (i.e.,
the corresponding system or library call indicated an error)

• the received response message partly contains malformed message content but
contains sufficient correct information allowing to determine the method this re-
sponse is targeted at (i.e., there is sufficient information available about who to
notify/which ara::core::Future to fulfill) – in case of the SOME/IP network
binding (see Section 7.4.1) this would be a response message where

– the layer 2 and layer 4 checksums are correct

– the SOME/IP header (which contains the method ID) is intact (e.g., in case of
a SOME/IP response message, the checks described in [SWS_CM_10313]
are passed)

– the de-serialization of the payload fails though

[SWS_CM_10440]{DRAFT} Aborting method calls in case of locally de-
tected failures d To notify the adaptive application about locally detected
failures which prevent an issued (remote) service method call from suc-
ceed, the ara::com implementation shall make the Future returned by the
function call operator (operator()) of the respective Method class (see
[SWS_CM_00196]) or by the Get or Set method of the respective Field class
(see [SWS_CM_00112] and [SWS_CM_00113]) ready by invoking the SetError
(see [SWS_CORE_00347]) operation of the Promise corresponding to this Future
with an ara::core::ErrorCode (see [SWS_CORE_00501]) where the error do-
main is set to ara::com::ComErrorDomain (see [SWS_CM_11264]) and the value
is set to network_binding_failure (see [SWS_CM_10432]) as an argument. c
(RS_CM_00213, RS_CM_00214)

220 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

[SWS_CM_00193]{DRAFT} Asynchronous behavior of method call with polling d
To achieve asynchronous behavior of the method call with polling on the result avail-
ability, the non-blocking method is_ready() of ara::core::Future object shall
be used. If is_ready() returns true, the next call of get() shall not block, but
immediately return the valid value. c(RS_CM_00213, RS_CM_00214)

Note:
When the user just calls is_ready() of ara::core::Future and on positive re-
sponse, finally GetResult()/get() of ara::core::Future, retrieving the result
works polling-based without any overhead in the middleware and uncontrolled context
switches due to asynchronous event-style mechanisms.

[SWS_CM_00197]{DRAFT} Asynchronous behavior of method call with no-
tification d To achieve asynchronous behavior of the method call with event-
driven notification on the result availability, the non-blocking method then() of
ara::core::Future object shall be used. It allows to register a function, which
gets asynchronously called in case the future has a valid result. c(RS_CM_00213,
RS_CM_00215)

[SWS_CM_90435]{DRAFT} Initiate a Fire and Forget method call d For
each fire and forget service method (i.e., ServiceInterface.method with
ClientServerOperation.fireAndForget set to true) of a ServiceInter-
face a specific FireAndForgetMethod class named by the ServiceInter-
face.method.shortName shall be provided inside the specific ServiceProxy class
of the ServiceInterface.
Within this FireAndForgetMethod class, the operator() shall be provided to
allow the call of a fire and forget method provided by a server.
As input parameters, the operator() shall take the respective input parameters
(ClientServerOperation.arguments with ArgumentDataPrototype.direc-
tion set to in) of the provided fire and forget method.
The operator() shall not have return values.

class FireAndForgetMethod {
void operator()(

TypeInputParameter1 input1,
TypeInputParameter2 input2,
...

);
};

c(RS_CM_00225)

8.1.3.16 Get method for fields

[SWS_CM_00112]{DRAFT}Method to get the value of a field d The Communication
Management shall provide a Get method as part of the Field class to offer a service
to request the current value of the service provider.

221 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

ara::core::Future<FieldType> Get();

c(RS_CM_00218)

[SWS_CM_00132]{DRAFT} Existence of getter method d The existence of the Get
method as part of the Field class shall be controlled by Field.hasGetter. c
(RS_CM_00218)

8.1.3.17 Set method for fields

[SWS_CM_00113]{DRAFT}Method to set the value of a field d The Communication
Management shall provide a Set method as part of the Field class to offer a service
to the applications to request the setting of a new value within the service provider.

ara::core::Future<FieldType> Set(const FieldType& value);

c(RS_CM_00217)

[SWS_CM_00133]{DRAFT} Existence of the set method d The existence of the
set method as part of the Field class shall be controlled by Field.hasSetter. c
(RS_CM_00218)

8.1.3.18 Instance Specifier Translation

For the functional description of the Instance Specifier Translation API, see chapter
7.6.10.

[SWS_CM_00118]{DRAFT} Method Instance Specifier Translation d The Commu-
nication Management shall provide ResolveInstanceIDs method to translate an
InstanceSpecifier to a Instance Identifiers list. The size of the list could
be 0, 1 or greater than 1 depending on the match.

ara::com::InstanceIdentifierContainer
ResolveInstanceIDs(ara::core::InstanceSpecifier modelName);

For the definition of the types used in the ResolveInstanceIDs signature, see:

• [SWS_CM_00319] for InstanceIdentifierContainer,

• [SWS_CM_00350] for InstanceSpecifier.

c(RS_CM_00207)

222 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

A Mentioned Class Tables

For the sake of completeness, this chapter contains a set of class tables representing
meta-classes mentioned in the context of this document.

Class AdaptivePlatformServiceInstance (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a service instance in
an abstract way.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses ProvidedApServiceInstance, RequiredApServiceInstance

Attribute Type Mul. Kind Note

e2eEvent
ProtectionProps

End2EndEvent
ProtectionProps

* aggr This aggregation allows to protect an event or a field
notifier that is defined inside of the ServiceInterface that
is referenced by the ServiceInstance in the role service
Interface.

Tags: atp.Status=draft

secureCom
Config

ServiceInterface
ElementSecureCom
Config

* aggr Configuration settings to secure the communication of
ServiceInterface elements.

Tags: atp.Status=draft

serviceInterface ServiceInterface
Deployment

0..1 ref Reference to a ServiceInterfaceDeployment that identifies
the ServiceInterface that is represented by the Service
Instance.

Tags: atp.Status=draft

Table A.1: AdaptivePlatformServiceInstance

Class Allocator
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the ability to take influence on the way objects are allocated in memory, for
example it can be controlled whether an objects is allocated on the heap or on the stack.

Tags: atp.Status=draft
atp.recommendedPackage=Allocators

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

namespace (or-
dered)

SymbolProps * aggr This aggregation allows for the definition of a namespace
of an Allocator.

Tags: atp.Status=draft

Table A.2: Allocator

223 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ApApplicationError

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to formally specify the semantics of an application error on the
AUTOSAR adaptive platform

Tags: atp.Status=draft
atp.recommendedPackage=ApplicationErrors

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

errorCode Integer 1 attr This attribute has the ability to specify the error code
value within the enclosing AdaptivePlatformApplication
Error.

errorDomain ApApplicationError
Domain

1 ref This reference represents the error domain of the Ap
ApplicationError.

Tags: atp.Status=draft

Table A.3: ApApplicationError

Class ApApplicationErrorDomain

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to define a global error domain for an ApApplicationError.

Tags: atp.Status=draft
atp.recommendedPackage=ApplicationErrorDomains

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

namespace (or-
dered)

SymbolProps * aggr This aggregation defines the namespace of the Ap
ApplicationErrorDomain

Tags: atp.Status=draft

value PositiveUnlimitedInteger 1 attr This attribute identifies the error category.

Table A.4: ApApplicationErrorDomain

Class ApSomeipTransformationProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::SerializationProperties

Note SOME/IP serialization properties.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, TransformationProps

Attribute Type Mul. Kind Note

alignment PositiveInteger 0..1 attr Specifies the alignment of dynamic data in the serialized
data stream. The alignment is specified in Bits.

byteOrder ByteOrderEnum 0..1 attr Specifies the byte order of data in the serialized data
stream.

isDynamic
LengthFieldSize

Boolean 0..1 attr This attribute represents the ability to control the setting
of the wire type for TLV encoding.

If the attribute is set to True then wire type 5-7 shall be
used.

If the attribute does not exist or is set to False then wire
type 4 shall be used.

5

224 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class ApSomeipTransformationProps

session
Handling

SOMEIPTransformer
SessionHandlingEnum

0..1 attr Defines whether the SOME/IP transformer shall use
session handling for Sender/Receiver communication.

sizeOfArray
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a variable size Array (Vector),
fixed-size Array or an Associative_Map.
It describes the size of the length field (in Bytes) that will
be put in front of the Array or Associative_Map in the
SOME/IP message.

sizeOfString
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a String.
It describes the size of the length field (in Bytes) that will
be put in front of the String in the SOME/IP message.

sizeOfStruct
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of an Struct.
It describes the size of the length field (in Bytes) that will
be put in front of the Struct in the SOME/IP message.

sizeOfUnion
LengthField

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a Union.
It describes the size of the length field (in Bytes) that will
be put in front of the Union in the SOME/IP message.

sizeOfUnion
TypeSelector
Field

PositiveInteger 0..1 attr Configures the SOME/IP serialization for the referenced
dataPrototype in case of a Union.
It describes the size of the type selector field (in Bytes)
that will be put in front of the Union in the SOME/IP
message.

stringEncoding BaseTypeEncoding
String

0..1 attr Configures the encoding for SOME/IP serialization for the
referenced dataPrototype in case of an String.

Table A.5: ApSomeipTransformationProps

Class ApplicationArrayDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which is an array, each element is of the same application data type.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow if it is a
variable size array.

element ApplicationArray
Element

1 aggr This association implements the concept of an array
element. That is, in some cases it is necessary to be able
to identify single array elements, e.g. as input values for
an interpolation routine.

Table A.6: ApplicationArrayDataType

225 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ApplicationDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note ApplicationDataType defines a data type from the application point of view. Especially it should be used
whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model, such as
measurement units. It does not consider implementation details such as bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using ApplicationData
Types only.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, AutosarDataType,
CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ApplicationCompositeDataType, ApplicationPrimitiveDataType

Attribute Type Mul. Kind Note
– – – – –

Table A.7: ApplicationDataType

Class ApplicationError

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note This is a user-defined error that is associated with an element of an AUTOSAR interface. It is specific for
the particular functionality or service provided by the AUTOSAR software component.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

errorCode Integer 1 attr The RTE generator is forced to assign this value to the
corresponding error symbol. Note that for error codes
certain ranges are predefined (see RTE specification).

Table A.8: ApplicationError

Class ApplicationPrimitiveDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note A primitive data type defines a set of allowed values.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType,
AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, PackageableElement ,
Referrable

Attribute Type Mul. Kind Note
– – – – –

Table A.9: ApplicationPrimitiveDataType

Class ApplicationRecordDataType

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note An application data type which can be decomposed into prototypes of other application data types.

Tags: atp.recommendedPackage=ApplicationDataTypes

Base ARElement , ARObject , ApplicationCompositeDataType, ApplicationDataType, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpType, AutosarDataType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

5

226 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class ApplicationRecordDataType

element (or-
dered)

ApplicationRecord
Element

1..* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is subject
to variability with the purpose to support the conditional
existence of elements inside a ApplicationrecordData
Type.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table A.10: ApplicationRecordDataType

Class ApplicationRecordElement

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Describes the properties of one particular element of an application record data type.

Base ARObject , ApplicationCompositeElementDataPrototype, AtpFeature, AtpPrototype, DataPrototype,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ApplicationRecordElement as optional. This
means the that, at runtime, the ApplicationRecord
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the ApplicationRecordElement as not valid at the sending
end of a communication and determine its validity at the
receiving end.

Tags: atp.Status=draft

Table A.11: ApplicationRecordElement

Class ArgumentDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An argument of an operation, much like a data element, but also carries direction information and is
owned by a particular ClientServerOperation.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

direction ArgumentDirection
Enum

1 attr This attribute specifies the direction of the argument
prototype.

serverArgument
ImplPolicy

ServerArgumentImpl
PolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same semantics
as if the attribute is set to the value useArgumentType for
primitive arguments and structures.

Table A.12: ArgumentDataPrototype

227 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Enumeration ArgumentDirectionEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note Use cases:

• Arguments in ClientServerOperation can have different directions that need to be formally
indicated because they have an impact on how the function signature looks like eventually.

• Arguments in BswModuleEntry already determine a function signature, but the direction is
used to specify the semantics, especially of pointer arguments.

Literal Description

in The argument value is passed to the callee.

Tags: atp.EnumerationValue=0

inout The argument value is passed to the callee but also passed back from the callee to the caller.

Tags: atp.EnumerationValue=1

out The argument value is passed from the callee to the caller.

Tags: atp.EnumerationValue=2

Table A.13: ArgumentDirectionEnum

Class AutosarDataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of an AutosarDataType.

Base ARObject , AtpFeature, AtpPrototype, DataPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ArgumentDataPrototype, Field, ParameterDataPrototype, PersistencyDataElement, VariableData
Prototype

Attribute Type Mul. Kind Note

type AutosarDataType 1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table A.14: AutosarDataPrototype

Class AutosarDataType (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note Abstract base class for user defined AUTOSAR data types for ECU software.

Base ARElement , ARObject , AtpClassifier , AtpType, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Subclasses AbstractImplementationDataType, ApplicationDataType

Attribute Type Mul. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this AutosarDataType.

Table A.15: AutosarDataType

Class BaseType (abstract)

Package M2::MSR::AsamHdo::BaseTypes

Note This abstract meta-class represents the ability to specify a platform dependant base type.

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

5

228 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class BaseType (abstract)

Subclasses SwBaseType

Attribute Type Mul. Kind Note

baseType
Definition

BaseTypeDefinition 1 aggr This is the actual definition of the base type.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

Table A.16: BaseType

Class BaseTypeDirectDefinition

Package M2::MSR::AsamHdo::BaseTypes

Note This BaseType is defined directly (as opposite to a derived BaseType)

Base ARObject , BaseTypeDefinition

Attribute Type Mul. Kind Note

baseType
Encoding

BaseTypeEncoding
String

1 attr This specifies, how an object of the current BaseType is
encoded, e.g. in an ECU within a message sequence.

Tags: xml.sequenceOffset=90

baseTypeSize PositiveInteger 0..1 attr Describes the length of the data type specified in the
container in bits.

Tags: xml.sequenceOffset=70

byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base type.

Tags: xml.sequenceOffset=110

memAlignment PositiveInteger 0..1 attr This attribute describes the alignment of the memory
object in bits. E.g. "8" specifies, that the object in
question is aligned to a byte while "32" specifies that it is
aligned four byte. If the value is set to "0" the meaning
shall be interpreted as "unspecified".

Tags: xml.sequenceOffset=100

native
Declaration

NativeDeclarationString 0..1 attr This attribute describes the declaration of such a base
type in the native programming language, primarily in the
Programming language C. This can then be used by a
code generator to include the necessary declarations into
a header file. For example

BaseType with
shortName: "MyUnsignedInt"
nativeDeclaration: "unsigned short"

Results in

typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring Implementation
DataTypes will not be generated as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and baseType
Size.

5
5

229 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class BaseTypeDirectDefinition

4
This is required to ensure the consistent handling and
interpretation by software components, RTE, COM and
MCM systems.

Tags: xml.sequenceOffset=120

Table A.17: BaseTypeDirectDefinition

Enumeration ByteOrderEnum

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note When more than one byte is stored in the memory the order of those bytes may differ depending on
the architecture of the processing unit. If the least significant byte is stored at the lowest address, this
architecture is called little endian and otherwise it is called big endian.

ByteOrder is very important in case of communication between different PUs or ECUs.

Literal Description

mostSignificantByte
First

Most significant byte shall come at the lowest address (also known as BigEndian or as
Motorola-Format)

Tags: atp.EnumerationValue=0

mostSignificantByte
Last

Most significant byte shall come highest address (also known as LittleEndian or as Intel-Format)

Tags: atp.EnumerationValue=1

opaque For opaque data endianness conversion has to be configured to Opaque. See AUTOSAR COM
Specification for more details.

Tags: atp.EnumerationValue=2

Table A.18: ByteOrderEnum

Class ClientServerOperation

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note An operation declared within the scope of a client/server interface.

Base ARObject , AtpClassifier , AtpFeature, AtpStructureElement , Identifiable, MultilanguageReferrable,
Referrable

Attribute Type Mul. Kind Note

argument (or-
dered)

ArgumentDataPrototype * aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

fireAndForget Boolean 0..1 attr This attribute defines whether this method is a fire&forget
method (true) or not (false).

Tags: atp.Status=draft

possibleApError ApApplicationError * ref This reference identifies AdaptivePlatformApplication
Errors as a possible error raised by the enclosing Client
ServerOperation.

Tags: atp.Status=draft

5

230 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class ClientServerOperation

possibleApError
Set

ApApplicationErrorSet * ref This reference represents the ability to refer to an entire
group of ApApplicationErrors as one model element
instead of having to refer to all the represented Ap
ApplicationErrors separately.

Tags: atp.Status=draft

Table A.19: ClientServerOperation

Class ComEventGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant access to a ServiceInterface.event.

Tags: atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

design ComEventGrantDesign 0..1 ref This reference identifies the ComEventGrantDesign that
the enclosing ComEventGrant was created from.

Stereotypes: atpUriDef
Tags: atp.Status=draft

service
Deployment

ServiceEvent
Deployment

1 ref This reference identifies the applicable deployment within
the context of an AdaptivePlatformServiceInstance for
which the grant applies.

Tags: atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

1 ref This reference identifies the applicable AdaptivePlatform
ServiceInstance for which the grant applies.

Tags: atp.Status=draft

Table A.20: ComEventGrant

Class ComFieldGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant access to a ServiceInterface.field.

Tags: atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

design ComFieldGrantDesign 0..1 ref This reference identifies the ComFieldGrantDesign that
the enclosing ComFieldGrant was created from.

Stereotypes: atpUriDef
Tags: atp.Status=draft

role FieldAccessEnum 1 attr This attribute provides the ability to further specify the
access to the ServiceInterface.field.

service
Deployment

ServiceField
Deployment

1 ref This reference identifies the applicable deployment within
the context of an AdaptivePlatformServiceInstance for
which the grant applies.

Tags: atp.Status=draft

5

231 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class ComFieldGrant
serviceInstance AdaptivePlatform

ServiceInstance
1 ref This reference identifies the applicable AdaptivePlatform

ServiceInstance for which the grant applies.

Tags: atp.Status=draft

Table A.21: ComFieldGrant

Class ComFindServiceGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant the finding a service.

Tags: atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

design ComFindServiceGrant
Design

0..1 ref This reference identifies the ComFindServiceGrantDesign
that the enclosing ComFindServiceGrant was created
from.

Stereotypes: atpUriDef
Tags: atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

0..1 ref This reference identifies the AdaptivePlatformService
Instances for which the grant applies.

Tags: atp.Status=draft

Table A.22: ComFindServiceGrant

Class ComMethodGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant access to a ServiceInterface.method.

Tags: atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

design ComMethodGrant
Design

0..1 ref This reference identifies the ComMethodGrantDesign that
the enclosing ComMethodGrant was created from.

Stereotypes: atpUriDef
Tags: atp.Status=draft

service
Deployment

ServiceMethod
Deployment

1 ref This reference identifies the applicable deployment within
the context of an AdaptivePlatformServiceInstance for
which the grant applies.

Tags: atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

1 ref This reference identifies the applicable AdaptivePlatform
ServiceInstance for which the grant applies.

Tags: atp.Status=draft

Table A.23: ComMethodGrant

232 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ComOfferServiceGrant
Package M2::AUTOSARTemplates::AdaptivePlatform::PlatformModuleDeployment::IdentityAccessManagement

Note This meta-class represents the ability to grant the offering of a service.

Tags: atp.Status=draft
atp.recommendedPackage=Grants

Base ARElement , ARObject , CollectableElement , Grant , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

design ComOfferServiceGrant
Design

0..1 ref This reference identifies the ComOfferServiceGrant
Design that the enclosing ComOfferServiceGrant was
created from.

Stereotypes: atpUriDef
Tags: atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

1 ref This reference identifies the AdaptivePlatformService
Instances for which the grant applies.

Tags: atp.Status=draft

Table A.24: ComOfferServiceGrant

Class CompuConst

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the fact that the value of a computation method scale is constant.

Base ARObject

Attribute Type Mul. Kind Note

compuConst
ContentType

CompuConstContent 1 aggr This is the actual content of the constant compu method
scale.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=10
xml.typeElement=false
xml.typeWrapperElement=false

Table A.25: CompuConst

Class CompuConstTextContent

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the textual content of a scale.

Base ARObject , CompuConstContent

Attribute Type Mul. Kind Note

vt VerbatimString 1 attr This represents a textual constant in the computation
method.

Table A.26: CompuConstTextContent

Class CompuMethod

Package M2::MSR::AsamHdo::ComputationMethod

5

233 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class CompuMethod

Note This meta-class represents the ability to express the relationship between a physical value and the
mathematical representation.

Note that this is still independent of the technical implementation in data types. It only specifies the
formula how the internal value corresponds to its physical pendant.

Tags: atp.recommendedPackage=CompuMethods

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

compuInternal
ToPhys

Compu 0..1 aggr This specifies the computation from internal values to
physical values.

Tags: xml.sequenceOffset=80

compuPhysTo
Internal

Compu 0..1 aggr This represents the computation from physical values to
the internal values.

Tags: xml.sequenceOffset=90

displayFormat DisplayFormatString 0..1 attr This property specifies, how the physical value shall be
displayed e.g. in documents or measurement and
calibration tools.

Tags: xml.sequenceOffset=20

unit Unit 0..1 ref This is the physical unit of the Physical values for which
the CompuMethod applies.

Tags: xml.sequenceOffset=30

Table A.27: CompuMethod

Class CompuRationalCoeffs

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to express a rational function by specifying the coefficients of
nominator and denominator.

Base ARObject

Attribute Type Mul. Kind Note
compu
Denominator

CompuNominator
Denominator

1 aggr This is the denominator of the expression.

Tags: xml.sequenceOffset=30

compu
Numerator

CompuNominator
Denominator

1 aggr This is the numerator of the rational expression.

Tags: xml.sequenceOffset=20

Table A.28: CompuRationalCoeffs

Class CompuScale

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to specify one segment of a segmented computation method.

Base ARObject

Attribute Type Mul. Kind Note

desc MultiLanguageOverview
Paragraph

0..1 aggr <desc> represents a general but brief description of the
object in question.

Tags: xml.sequenceOffset=30

5

234 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class CompuScale

compuInverse
Value

CompuConst 0..1 aggr This is the inverse value of the constraint. This supports
the case that the scale is not reversible per se.

Tags: xml.sequenceOffset=60

compuScale
Contents

CompuScaleContents 0..1 aggr This represents the computation details of the scale.

Tags: xml.roleElement=false
xml.roleWrapperElement=false
xml.sequenceOffset=70
xml.typeElement=false
xml.typeWrapperElement=false

lowerLimit Limit 0..1 attr This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

mask PositiveInteger 0..1 attr In difference to all the other computational methods every
COMPU-SCALE will be applied including the bit MASK.
Therefore it is allowed for this type of COMPU-METHOD,
that COMPU-SCALES overlap.

To calculate the string reverse to a value, the string has to
be split and the according value for each substring has to
be summed up. The sum is finally transmitted.

The processing has to be done in order of the
COMPU-SCALE elements.

Tags: xml.sequenceOffset=35

shortLabel Identifier 0..1 attr This element specifies a short name for the particular
scale. The name can for example be used to derive a
programming language identifier.

Tags: xml.sequenceOffset=20

symbol CIdentifier 0..1 attr The symbol, if provided, is used by code generators to get
a C identifier for the CompuScale. The name will be used
as is for the code generation, therefore it needs to be
unique within the generation context.

Tags: xml.sequenceOffset=25

upperLimit Limit 0..1 attr This specifies the upper limit of a of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

Table A.29: CompuScale

Class CompuScales

Package M2::MSR::AsamHdo::ComputationMethod

Note This meta-class represents the ability to stepwise express a computation method.

Base ARObject , CompuContent

Attribute Type Mul. Kind Note
compu
Scale (ordered)

CompuScale * aggr This represents one scale within the compu method. Note
that it contains a Variationpoint in order to support
blueprints of enumerations.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivationTime

5
5

235 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class CompuScales

4
xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=40
xml.typeElement=false
xml.typeWrapperElement=false

Table A.30: CompuScales

Class CppImplementationDataType (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a reusable data type definition taken as a the basis for a
C++ language binding

Tags: atp.Status=draft

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataTypeContextTarget ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses CustomCppImplementationDataType, StdCppImplementationDataType

Attribute Type Mul. Kind Note

arraySize PositiveInteger 0..1 attr This attribute can be used to specify the array size if the
enclosing CppImplementationDataType has array
semantics.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

namespace (or-
dered)

SymbolProps * aggr This aggregation allows for the definition an own
namespace for the enclosing CppImplementationData
Type.

Tags: atp.Status=draft

subElement (or-
dered)

CppImplementation
DataTypeElement

* aggr This represents the collection of sub-elements of the
enclosing CppImplementationDataType

Tags: atp.Status=draft

templateArgu-
ment (ordered)

CppTemplateArgument * aggr This aggreation allows for the specification of properties
of template arguments

Tags: atp.Status=draft

typeEmitter NameToken 0..1 attr This attribute can be taken to control how the respective
CppImplementationDataType is contributed to the
language binding.

typeReference CppImplementation
DataType

0..1 ref This reference shall be defined to define a type reference
(a.k.a. typedef).

Tags: atp.Status=draft

Table A.31: CppImplementationDataType

Class CppImplementationDataTypeElement

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.
A CppImplementationDataTypeElement is used to represent an element of a structure, defining its type.

Tags: atp.Status=draft

5

236 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class CppImplementationDataTypeElement

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
CppImplementationDataTypeContextTarget , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing CppImplementationDataTypeElement as
optional. This means the that, at runtime, the Cpp
ImplementationDataTypeElement may or may not have a
valid value and shall therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

typeReference CppImplementation
DataTypeElement
Qualifier

0..1 aggr This aggregation defines the type of the Cpp
ImplementationDataTypeElement and determines
whether in C++ the CppImplementationDataTypeElement
is defined inside or outside of the enclosing Cpp
ImplementationDataType.

Tags: atp.Status=draft

Table A.32: CppImplementationDataTypeElement

Class CppImplementationDataTypeElementQualifier

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This element qualifies the typeReference of the CppImplementationDataTypeElement to the Cpp
ImplementationDataType.

Tags: atp.Status=draft

Base ARObject

Attribute Type Mul. Kind Note

inplace Boolean 0..1 attr This attribute defines whether the member type of the
CppImplementationDataTypeElement in C++ is an
embedded type element inside of the enclosing struct
(true) or whether the type declaration is defined outside of
the struct.

typeReference CppImplementation
DataType

1 ref This reference defines a type reference.

Tags: atp.Status=draft

Table A.33: CppImplementationDataTypeElementQualifier

Class CppTemplateArgument

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class has the ability to define properties for template arguments.

Tags: atp.Status=draft

Base ARObject

Attribute Type Mul. Kind Note

category CategoryString 0..1 attr This attribute shall be used to contribute further
clarification regarding the semantics of the enclosing Cpp
TemplateArgument.

5

237 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class CppTemplateArgument

allocator Allocator 0..1 ref This reference identifies the applicable allocator.

Tags: atp.Status=draft

inplace Boolean 0..1 attr This attribute specifies whether the shortName of the
referenced templateType is used in the code generation
and the type declaration is defined outside of the
enclosing CppImplementationDataType (true) or whether
the type definition is embedded inside of the enclosing
CppImplementationDataType and the shortName is
ignored (false).

templateType CppImplementation
DataType

0..1 ref This reference identifies the data type of the specific
template argument required for the language binding.

Tags: atp.Status=draft

Table A.34: CppTemplateArgument

Class CustomCppImplementationDataType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a data type definition that is taken as the basis for a C++
language binding to a custom implementation that is declared in the configured header file. The Short
Name of this CustomCppImplementationDataType defines the Class-Name of the custom
implementation.

Tags: atp.Status=draft
atp.recommendedPackage=CppImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataType, CppImplementationData
TypeContextTarget , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

headerFile String 1 attr Configuration of the Header File with the custom class
declaration.

Table A.35: CustomCppImplementationDataType

Class DataPrototype (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note Base class for prototypical roles of any data type.

Base ARObject , AtpFeature, AtpPrototype, Identifiable, MultilanguageReferrable, Referrable

Subclasses ApplicationCompositeElementDataPrototype, AutosarDataPrototype

Attribute Type Mul. Kind Note

swDataDef
Props

SwDataDefProps 0..1 aggr This property allows to specify data definition properties
which apply on data prototype level.

Table A.36: DataPrototype

Class DataTypeMap

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents the relationship between ApplicationDataType and its implementing Abstract
ImplementationDataType.

5

238 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class DataTypeMap

Base ARObject

Attribute Type Mul. Kind Note

applicationData
Type

ApplicationDataType 1 ref This is the corresponding ApplicationDataType

implementation
DataType

AbstractImplementation
DataType

1 ref This is the corresponding AbstractImplementationData
Type.

Table A.37: DataTypeMap

Class DataTypeMappingSet

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes

Note This class represents a list of mappings between ApplicationDataTypes and ImplementationDataTypes.
In addition, it can contain mappings between ImplementationDataTypes and ModeDeclarationGroups.

Tags: atp.recommendedPackage=DataTypeMappingSets

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, CollectableElement , Identifiable, Multilanguage
Referrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

dataTypeMap DataTypeMap * aggr This is one particular association between an Application
DataType and its AbstractImplementationDataType.

modeRequest
TypeMap

ModeRequestTypeMap * aggr This is one particular association between an Mode
DeclarationGroup and its AbstractImplementationData
Type.

Table A.38: DataTypeMappingSet

Class DdsEventDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note DDS configuration settings for an Event.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceEventDeployment

Attribute Type Mul. Kind Note

topicName DDSIdentifier 1 attr Name of the DDS Topic associated with the Event.

Tags: atp.Status=draft

transport
Protocol

TransportLayerProtocol
Enum

1..* attr This attribute defines over which Transport Layer
Protocol(s) this event is intended to be sent.

Tags: atp.Status=draft

Table A.39: DdsEventDeployment

Class DdsEventQosProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Configuration properties of the Event using DDS as the underlying network binding.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

5

239 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class DdsEventQosProps

Base ARObject , DdsQosProps

Attribute Type Mul. Kind Note

event ServiceEvent
Deployment

1 ref Reference to an event that is provided.

Tags: atp.Status=draft

Table A.40: DdsEventQosProps

Class DdsFieldDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note DDS configuration settings for a Field.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceFieldDeployment

Attribute Type Mul. Kind Note

get DdsMethodDeployment 0..1 aggr This aggregation represents the setting of the get method.

Tags: atp.Status=draft

notifier DdsEventDeployment 0..1 aggr This aggregation represents the settings of the notifier.

Tags: atp.Status=draft

set DdsMethodDeployment 0..1 aggr This aggregation represents the settings of the set
method.

Tags: atp.Status=draft

Table A.41: DdsFieldDeployment

Class DdsFieldQosProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Configuration properties of the Field interaction when using DDS as the underlying network binding.

Tags: atp.Status=draft

Base ARObject , DdsQosProps

Attribute Type Mul. Kind Note

field ServiceField
Deployment

1 ref Reference to the field.

Tags: atp.Status=draft

Table A.42: DdsFieldQosProps

Class DdsMethodDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note DDS configuration settings for a Method.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceMethodDeployment

Attribute Type Mul. Kind Note

5

240 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class DdsMethodDeployment

ddsRpcService DdsRpcService
Deployment

0..1 ref Configuration of the DDS-RPC service providing access
to the method when using DDS as the underlying network
binding.

Tags: atp.Status=draft

transport
Protocol

TransportLayerProtocol
Enum

1..* attr This attribute defines over which Transport Layer
Protocol(s) this method is intended to be sent.

Tags: atp.Status=draft

Table A.43: DdsMethodDeployment

Class DdsMethodQosProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Configuration properties of the Method that handles method request/replies when using DDS as the
underlying network binding.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , DdsQosProps

Attribute Type Mul. Kind Note

method ServiceMethod
Deployment

1 ref Reference to the method.

Tags: atp.Status=draft

Table A.44: DdsMethodQosProps

Class DdsProvidedServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a provided service
instance in a concrete implementation on top of DDS.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , DdsQosProps, Dds
ServiceInstanceProps, Identifiable, MultilanguageReferrable, PackageableElement , ProvidedApService
Instance, Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

eventQosProps DdsEventQosProps * aggr List of configuration properties for the Events that are
provided by the Service Instance.

Tags: atp.Status=draft

fieldGetSetQos
Props

DdsFieldQosProps * aggr List of configuration properties for the DDS-RPC service
that provides access to the field getters/setters of the
service instance.

Tags: atp.Status=draft

fieldNotifierQos
Props

DdsFieldQosProps * aggr List of configuration properties for Field notifiers that are
provided by the Service Instance.

Tags: atp.Status=draft

methodQos
Props

DdsMethodQosProps * aggr List of configuration properties for the DDS-RPC service
that provides the methods of the Service Instance.

Tags: atp.Status=draft

5

241 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class DdsProvidedServiceInstance
serviceInstance
Id

PositiveInteger 1 attr Identification number that is used by DDS to identify
DomainParticipants associated with an instance of the
service.

Tags: atp.Status=draft

Table A.45: DdsProvidedServiceInstance

Class DdsQosProps (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note QoS configuration properties for the DDS entities associated with an event, method, or field provided by
or requested from a Service Instance using DDS as the underlying network binding.

Tags: atp.Status=draft

Base ARObject

Subclasses DdsEventQosProps, DdsFieldQosProps, DdsMethodQosProps, DdsServiceInstanceProps

Attribute Type Mul. Kind Note

qosProfile String 0..1 attr Identifies a group of QoS Policies that apply to the DDS
entities associated with the event, method, field, or the
service instance.

Tags: atp.Status=draft

Table A.46: DdsQosProps

Class DdsRequiredServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in a concrete implementation on top of DDS.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , DdsQosProps, Dds
ServiceInstanceProps, Identifiable, MultilanguageReferrable, PackageableElement , Referrable,
RequiredApServiceInstance, UploadablePackageElement

Attribute Type Mul. Kind Note

eventQosProps DdsEventQosProps * aggr List of configuration properties for the Events that are
required by the Service Instance.

Tags: atp.Status=draft

fieldGetSetQos
Props

DdsFieldQosProps * aggr List of configuration properties for the DDS-RPC service
that requires access to the field getters/setters of the
service instance.

Tags: atp.Status=draft

fieldNotifierQos
Props

DdsFieldQosProps * aggr List of configuration properties for Field notifiers that are
required by the Service Instance.

Tags: atp.Status=draft

methodQos
Props

DdsMethodQosProps * aggr List of configuration properties for the DDS-RPC service
that requires access to the methods of the service
instance.

Tags: atp.Status=draft

5

242 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class DdsRequiredServiceInstance

requiredService
InstanceId

AnyServiceInstanceId 1 attr This attribute represents the ability to describe the
required service instance ID.

Tags: atp.Status=draft

Table A.47: DdsRequiredServiceInstance

Class DdsRpcServiceDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note Configuration settings for a DDS-RPC service capable of providing access to the methods and field
getters/setters of a service interface.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

replyTopicName DDSIdentifier 0..1 attr Name of the DDS Reply Topic associated with the
Method.

Tags: atp.Status=draft

requestTopic
Name

DDSIdentifier 0..1 attr Name of the DDS Request Topic associated with the
Method.

Tags: atp.Status=draft

Table A.48: DdsRpcServiceDeployment

Class DdsServiceInstanceProps (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Common configuration properties for the DDS entities provided by or requested from a Service Instance
using DDS as the underlying network binding.

Tags: atp.Status=draft

Base ARObject , DdsQosProps

Subclasses DdsProvidedServiceInstance, DdsRequiredServiceInstance

Attribute Type Mul. Kind Note

domainId Integer 1 attr This attribute identifies the DDS Domain the Service
Instance shall join.

Tags: atp.Status=draft

transportPlugin String 1..* attr Enable a transport plug-in (e.g., sharedMemory) in the
underlying DDS binding implementation.

Tags: atp.Status=draft

Table A.49: DdsServiceInstanceProps

Class DdsServiceInterfaceDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note DDS configuration settings for a ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInterfaceDeployments

5

243 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class DdsServiceInterfaceDeployment

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInterfaceDeployment , UploadablePackageElement

Attribute Type Mul. Kind Note

ddsRpcService DdsRpcService
Deployment

* aggr This aggregation represents the settings of DDS-RPC
services associated with a Service Interface to handle
methods and field getters and setters when using DDS as
the underlying network binding.

Tags: atp.Status=draft

serviceInterface
Id

String 1 attr Unique Identifier that identifies the ServiceInterface in
DDS. This Identifier is encoded in the USER_DATA QoS
of the DomainParticipant associated with the Service
Instance and its value is propagated by DDS Discovery
messages.

Tags: atp.Status=draft

Table A.50: DdsServiceInterfaceDeployment

Class E2EProfileConfiguration

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::E2E

Note This element holds E2E profile specific configuration settings.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

dataIdMode DataIdModeEnum 0..1 attr This attribute describes the inclusion mode that is used to
include the implicit two-byte Data ID in the one-byte CRC.

maxDelta
Counter

PositiveInteger 0..1 attr Maximum allowed difference between two counter values
of two consecutively received valid messages. For
example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

maxErrorState
Init

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

maxErrorState
Invalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.

maxErrorState
Valid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.

minOkStateInit PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.

minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.

profileName NameToken 1 attr Definition of the E2E profile.

5

244 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class E2EProfileConfiguration

windowSize PositiveInteger 0..1 attr Size of the monitoring window for the E2E state machine.

Table A.51: E2EProfileConfiguration

Class End2EndEventProtectionProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::E2E

Note This element allows to protect an event or a field notifier with an E2E profile.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

dataId (ordered) PositiveInteger * attr This represents a unique numerical identifier for the
referenced event or field notifier that is included in the
CRC calculation.

Note: ID is used for protection against masquerading.
The details concerning the
maximum number of values (this information is specific
for each E2E profile) applicable for this
attribute are controlled by a semantic constraint that
depends on the category of the
EndToEndProtection.

dataLength PositiveInteger 0..1 attr Length of payload including E2E header in bits.

dataUpdate
Period

TimeValue 0..1 attr This attribute describes the period in which the
applications are assumed to process E2E-protected
messages. The middleware does not use this attribute at
all.

e2eProfile
Configuration

E2EProfileConfiguration 0..1 ref Reference to E2E profile configuration settings that are
valid to protect the referenced event or field notifier.

Tags: atp.Status=draft

event ServiceEvent
Deployment

0..1 ref Reference to an event that is protected by the E2E profile.

Tags: atp.Status=draft

maxDataLength PositiveInteger 0..1 attr Maximum length of payload including E2E header in bits.

minDataLength PositiveInteger 0..1 attr Minimum length of payload including E2E header in bits.

Table A.52: End2EndEventProtectionProps

Class EndToEndTransformationComSpecProps

Package M2::AUTOSARTemplates::SystemTemplate::Transformer

Note The class EndToEndTransformationIComSpecProps specifies port specific
configuration properties for EndToEnd transformer attributes.

Base ARObject , Describable, TransformationComSpecProps

Attribute Type Mul. Kind Note

disableEndTo
EndCheck

Boolean 1 attr Disables/Enables the E2E check. The E2Eheader is
removed from the payload independent from the setting of
this attribute.

5

245 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class EndToEndTransformationComSpecProps

maxDelta
Counter

PositiveInteger 0..1 attr Maximum allowed difference between two counter values
of two consecutively received valid messages. For
example, if the receiver gets data with counter 1 and Max
DeltaCounter is 3, then at the next reception the receiver
can accept Counters with values 2, 3 or 4.

maxErrorState
Init

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INIT.

The minimum value is 0.

maxErrorState
Invalid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_INVALID.

The minimum value is 0.

maxErrorState
Valid

PositiveInteger 0..1 attr Maximal number of checks in which ProfileStatus equal to
E2E_P_ERROR was determined, within the last Window
Size checks, for the state E2E_SM_VALID.

The minimum value is 0.

minOkStateInit PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INIT.

The minimum value is 1.

minOkState
Invalid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_INVALID.

The minimum value is 1.

minOkState
Valid

PositiveInteger 0..1 attr Minimal number of checks in which ProfileStatus equal to
E2E_P_OK was determined, within the last WindowSize
checks, for the state E2E_SM_VALID.

The minimum value is 1.

windowSize PositiveInteger 0..1 attr Size of the monitoring window for the E2E state machine.

The meaning is the number of correct cycles
(E2E_P_OK) that are required in E2E_SM_INITCOM
before the transition to E2E_SM_VALID.

The minimum allowed value is 1.

Table A.53: EndToEndTransformationComSpecProps

Class EthernetCommunicationConnector
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note Ethernet specific attributes to the CommunicationConnector.

Tags: atp.ManifestKind=MachineManifest

Base ARObject , CommunicationConnector , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

maximum
Transmission
Unit

PositiveInteger 0..1 attr This attribute specifies the maximum transmission unit in
bytes.

network
Endpoint

NetworkEndpoint * ref NetworkEndpoints

pathMtu
Enabled

Boolean 0..1 attr If enabled the IPv4/IPv6 processes incoming ICMP
"Packet Too Big" messages and stores a MTU value for
each destination address.

5

246 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class EthernetCommunicationConnector
pathMtuTimeout TimeValue 0..1 attr If this value is >0 the IPv4/IPv6 will reset the MTU value

stored for each destination after n seconds.
pncFilterData
Mask

PositiveUnlimitedInteger 0..1 attr Bit mask for Ethernet Payload used to configure the
Ethernet Transceiver for partial network wakeup.

unicastNetwork
Endpoint

NetworkEndpoint 0..1 ref Network Endpoint that defines the IPAddress of the
machine.

Tags: atp.Status=draft

Table A.54: EthernetCommunicationConnector

Class Field
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to define a piece of data that can be accessed with read and/or
write semantics. It is also possible to generate a notification if the value of the data changes.

Tags: atp.Status=draft

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

hasGetter Boolean 1 attr This attribute controls whether read access is foreseen to
this field.

hasNotifier Boolean 1 attr This attribute controls whether a notification semantics is
foreseen to this field.

hasSetter Boolean 1 attr This attribute controls whether write access is foreseen to
this field.

Table A.55: Field

Enumeration FieldAccessEnum
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::GrantDesign::ComGrant

Note This meta-class provides values that qualify access to a field.

Tags: atp.Status=draft

Literal Description

getter Access to the getter of the Field.

Tags: atp.EnumerationValue=0

getterSetter Access to getter and setter of the field

Tags: atp.EnumerationValue=2

setter Access to the setter of the Field.

Tags: atp.EnumerationValue=1

Table A.56: FieldAccessEnum

Class IPSecConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::SystemDesign

Note IPSec is a protocol that is designed to provide "end-to-end" cryptographically-based security for IP
network connections.

Tags: atp.Status=draft

5

247 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class IPSecConfig

Base ARObject

Attribute Type Mul. Kind Note

ipSecRule IPSecRule * aggr IPSec rules and filters that are defined in the IPSecConfig
for a specific NetworkEndpoint.

Tags: atp.Status=draft

Table A.57: IPSecConfig

Class IPSecRule
Package M2::AUTOSARTemplates::AdaptivePlatform::SystemDesign

Note This element defines an IPSec rule that describes communication traffic that is monitored, protected and
filtered.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

ahCipherSuite
Name

String * attr AH (Authentication Header) algorithm to be used for the
connection, e.g. sha1-sha256-modp1024.

connectionType IPSecConnectionType
Enum

1 attr This attribute defines the type of the connection.

direction Communication
DirectionType

0..1 attr This attribute defines the direction in which the traffic is
monitored. If this attribute is not set a bidirectional traffic
monitoring is assumed.

espCipherSuite
Name

String * attr ESP (Encapsulating Security Payload) algorithm that
provides encryption and optional authentication for the
connection, e.g. aes128-sha256.

ike
Authentication
Method

IkeAuthentication
MethodEnum

0..1 attr This attribute defines the IKE authentication method that
is used locally and is expected on the remote side.

rekeyInterval TimeValue 0..1 attr This attribute provides the information how long (in
seconds) the Security Association (SA) defined by this
IPSecRule shall be used.

remoteIp
Address

NetworkEndpoint * ref Definition of the remote NetworkEndpoint. With
this reference the connection between the local Network
Endpoint and the remote NetworkEndpoint is described
on which the traffic is monitored.

Tags: atp.Status=draft

tcpLocalPort PositiveInteger 0..1 attr This attribute restricts the traffic monitoring to tcp and a
defined local port.
LocalPort = 0 means ANY.

tcpRemotePort PositiveInteger 0..1 attr This attribute restricts the traffic monitoring to tcp and a
defined remote port.
LocalPort = 0 means ANY.

udpLocalPort PositiveInteger 0..1 attr This attribute restricts the traffic monitoring to udp and a
defined local port.
LocalPort = 0 means ANY.

udpRemotePort PositiveInteger 0..1 attr This attribute restricts the traffic monitoring to udp and a
defined remote port.
LocalPort = 0 means ANY.

Table A.58: IPSecRule

248 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ISignalTriggering

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication

Note A ISignalTriggering allows an assignment of ISignals to physical channels.

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

iSignal ISignal 0..1 ref This reference shall be used if an ISignal is transported
on the PhysicalChannel. This reference forms an XOR
relationship with the ISignalTriggering-ISignalGroup
reference.

iSignalGroup ISignalGroup 0..1 ref This reference shall be used if an ISignalGroup is
transported on the PhysicalChannel. This reference
forms an XOR relationship with the ISignal
Triggering-ISignal reference.

iSignalPort ISignalPort * ref References to the ISignalPort on every ECU of the
system which sends and/or receives the ISignal.

References for both the sender and the receiver side
shall be included when the system is completely defined.

Table A.59: ISignalTriggering

Class Identifiable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (within the namespace borders). In addition to
this, Identifiables are objects which contribute significantly to the overall structure of an AUTOSAR
description. In particular, Identifiables might contain Identifiables.

Base ARObject , MultilanguageReferrable, Referrable

Subclasses ARPackage, AbstractEvent , AbstractImplementationDataTypeElement , AbstractServiceInstance,
AdaptiveModuleInstantiation, AdaptiveSwcInternalBehavior, ApplicationEndpoint, ApplicationError,
ApplicationPartitionToEcuPartitionMapping, AsynchronousServerCallResultPoint, AtpBlueprint , Atp
Blueprintable, AtpClassifier , AtpFeature, AutosarOperationArgumentInstance, AutosarVariableInstance,
BswInternalTriggeringPoint, BswModuleDependency, BuildActionEntity , BuildActionEnvironment, CanTp
Address, CanTpChannel, CanTpNode, Chapter, CheckpointTransition, ClassContentConditional, ClientId
Definition, ClientServerOperation, Code, CollectableElement , ComManagementMapping, Comm
ConnectorPort , CommunicationConnector , CommunicationController , Compiler, ConsistencyNeeds,
ConsumedEventGroup, CouplingPort, CouplingPortStructuralElement , CryptoServiceMapping, Data
PrototypeGroup, DataTransformation, DdsRpcServiceDeployment, DependencyOnArtifact, Deterministic
ClientResourceNeeds, DiagEventDebounceAlgorithm, DiagnosticConnectedIndicator, DiagnosticData
Element, DiagnosticFunctionInhibitSource, DiagnosticMasterToSlaveEventMapping, DiagnosticRoutine
Subfunction, DoIpLogicAddress, E2EProfileConfiguration, ECUMapping, EOCExecutableEntityRef
Abstract , EcuPartition, EcucContainerValue, EcucDefinitionElement , EcucDestinationUriDef, Ecuc
EnumerationLiteralDef, EcucQuery, EcucValidationCondition, End2EndEventProtectionProps, EndToEnd
Protection, EventMapping, ExclusiveArea, ExecutableEntity , ExecutionTime, FMAttributeDef, FMFeature
MapAssertion, FMFeatureMapCondition, FMFeatureMapElement, FMFeatureRelation, FMFeature
Restriction, FMFeatureSelection, FieldMapping, FireAndForgetMapping, FlatInstanceDescriptor, Flexray
ArTpNode, FlexrayTpConnectionControl, FlexrayTpNode, FlexrayTpPduPool, FrameTriggering, General
Parameter, GlobalTimeGateway, GlobalTimeMaster , GlobalTimeSlave, HealthChannel , HeapUsage, Hw
AttributeDef, HwAttributeLiteralDef, HwPin, HwPinGroup, IPSecRule, IPv6ExtHeaderFilterList, ISignalToI
PduMapping, ISignalTriggering, IdentCaption, InterfaceMapping, InternalTriggeringPoint, J1939Shared
AddressCluster, J1939TpNode, Keyword, LifeCycleState, LinScheduleTable, LinTpNode, Linker, Mac
MulticastGroup, McDataInstance, MemorySection, MethodMapping, ModeDeclaration, ModeDeclaration
Mapping, ModeSwitchPoint, NetworkEndpoint, NmCluster , NmNode, NvBlockDescriptor, Packageable
Element , ParameterAccess, PduToFrameMapping, PduTriggering, PerInstanceMemory, PersistencyFile
Proxy, PersistencyKeyValuePair, PhmAction, PhmActionItem, PhmActionList, PhmArbitration, Phm
LogicalExpression, PhmRule, PhmSupervision, PhysicalChannel , PortGroup, PortInterfaceMapping,
PossibleErrorReaction, ProcessDesignToMachineDesignMapping, ProcessToMachineMapping,
Processor, ProcessorCore, PskIdentityToKeySlotMapping, ResourceConsumption, ResourceGroup, Rest

5
5

249 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class Identifiable (abstract)

4
AbstractEndpoint , RestElementDef, RestResourceDef, RootSwComponentPrototype, RootSw
CompositionPrototype, RptComponent, RptContainer, RptExecutableEntity, RptExecutableEntityEvent,
RptExecutionContext, RptProfile, RptServicePoint, RunnableEntityGroup, SdgAttribute, SdgClass, Sec
OcJobMapping, SecOcJobRequirement, SecureComProps, SecureCommunicationAuthenticationProps,
SecureCommunicationDeployment , SecureCommunicationFreshnessProps, ServerCallPoint , Service
EventDeployment , ServiceFieldDeployment , ServiceInstanceToSignalMapping, ServiceInterfaceElement
Mapping, ServiceInterfaceElementSecureComConfig, ServiceInterfaceMapping, ServiceMethod
Deployment , ServiceNeeds, SignalBasedFieldToISignalTriggeringMapping, SocketAddress, Someip
EventGroup, SomeipProvidedEventGroup, SomeipTpChannel, SpecElementReference, StackUsage,
StartupConfig, StructuredReq, SupervisionCheckpoint, SwGenericAxisParamType, SwServiceArg, Swc
ServiceDependency, SwcToApplicationPartitionMapping, SwcToEcuMapping, SwcToImplMapping,
SystemMapping, TcpOptionFilterList, TimeBaseResource, TimingCondition, TimingConstraint , Timing
Description, TimingExtensionResource, TimingModeInstance, TlsCryptoCipherSuite, TlsJobMapping,
Topic1, TpAddress, TraceableText, TracedFailure, TransformationProps, TransformationPropsToService
InterfaceElementMapping, TransformationTechnology, Trigger, VariableAccess, VariationPointProxy,
ViewMap, VlanConfig, WaitPoint

Attribute Type Mul. Kind Note

desc MultiLanguageOverview
Paragraph

0..1 aggr This represents a general but brief (one paragraph)
description what the object in question is about. It is only
one paragraph! Desc is intended to be collected into
overview tables. This property helps a human reader to
identify the object in question.

More elaborate documentation, (in particular how the
object is built or used) should go to "introduction".

Tags: xml.sequenceOffset=-60

category CategoryString 0..1 attr The category is a keyword that specializes the semantics
of the Identifiable. It affects the expected existence of
attributes and the applicability of constraints.

Tags: xml.sequenceOffset=-50

adminData AdminData 0..1 aggr This represents the administrative data for the identifiable
object.

Tags: xml.sequenceOffset=-40

annotation Annotation * aggr Possibility to provide additional notes while defining a
model element (e.g. the ECU Configuration Parameter
Values). These are not intended as documentation but
are mere design notes.

Tags: xml.sequenceOffset=-25

introduction DocumentationBlock 0..1 aggr This represents more information about how the object in
question is built or is used. Therefore it is a
DocumentationBlock.

Tags: xml.sequenceOffset=-30

uuid String 0..1 attr The purpose of this attribute is to provide a globally
unique identifier for an instance of a meta-class. The
values of this attribute should be globally unique strings
prefixed by the type of identifier. For example, to include a
DCE UUID as defined by The Open Group, the UUID
would be preceded by "DCE:". The values of this attribute
may be used to support merging of different AUTOSAR
models.
The form of the UUID (Universally Unique Identifier) is
taken from a standard defined by the Open Group (was
Open Software Foundation). This standard is widely
used, including by Microsoft for COM (GUIDs) and by
many companies for DCE, which is based on CORBA.

5
5

250 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class Identifiable (abstract)

4
The method for generating these 128-bit IDs is published
in the standard and the effectiveness and uniqueness of
the IDs is not in practice disputed.
If the id namespace is omitted, DCE is assumed.
An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003".
The uuid attribute has no semantic meaning for an
AUTOSAR model and there is no requirement for
AUTOSAR tools to manage the timestamp.

Tags: xml.attribute=true

Table A.60: Identifiable

Class ImplementationDataType

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Describes a reusable data type on the implementation level. This will typically correspond to a typedef in
C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

dynamicArray
SizeProfile

String 0..1 attr Specifies the profile which the array will follow in case this
data type is a variable size array.

isStructWith
Optional
Element

Boolean 0..1 attr This attribute is only valid if the attribute category is set to
STRUCTURE.

If set to True, this attribute indicates that the
ImplementationDataType has been created with the
intention to define at least one element of the structure as
optional.

Tags: atp.Status=draft

subElement (or-
dered)

ImplementationData
TypeElement

* aggr Specifies an element of an array, struct, or union data
type.

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

symbolProps SymbolProps 0..1 aggr This represents the SymbolProps for the Implementation
DataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

typeEmitter NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data type
definitions.

Table A.61: ImplementationDataType

251 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ImplementationDataTypeElement

Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes

Note Declares a data object which is locally aggregated. Such an element can only be used within the scope
where it is aggregated.

This element either consists of further subElements or it is further defined via its swDataDefProps.

There are several use cases within the system of ImplementationDataTypes fur such a local declaration:

• It can represent the elements of an array, defining the element type and array size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject , AbstractImplementationDataTypeElement , AtpClassifier , AtpFeature, AtpStructureElement ,
Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0) defines
the size of an array and declares that this Implementation
DataTypeElement represents the type of each single
array element.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

arraySize
Handling

ArraySizeHandling
Enum

0..1 attr The way how the size of the array is handled in case of a
variable size array.

arraySize
Semantics

ArraySizeSemantics
Enum

0..1 attr This attribute controls the meaning of the value of the
array size.

isOptional Boolean 0..1 attr This attribute represents the ability to declare the
enclosing ImplementationDataTypeElement as optional.
This means that, at runtime, the ImplementationDataType
Element may or may not have a valid value and shall
therefore be ignored.

The underlying runtime software provides means to set
the CppImplementationDataTypeElement as not valid at
the sending end of a communication and determine its
validity at the receiving end.

Tags: atp.Status=draft

subElement (or-
dered)

ImplementationData
TypeElement

* aggr Element of an array, struct, or union in case of a nested
declaration (i.e. without using "typedefs").

The aggregation of ImplementionDataTypeElement is
subject to variability with the purpose to support the
conditional existence of elements inside a Implementation
DataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProps 0..1 aggr The properties of this ImplementationDataTypeElement.

Table A.62: ImplementationDataTypeElement

Class ImplementationProps (abstract)

Package M2::AUTOSARTemplates::CommonStructure::Implementation

Note Defines a symbol to be used as (depending on the concrete case) either a complete replacement or a
prefix when generating code artifacts.

Base ARObject , Referrable

5

252 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class ImplementationProps (abstract)

Subclasses BswSchedulerNamePrefix, ExecutableEntityActivationReason, SectionNamePrefix, SymbolProps,
SymbolicNameProps

Attribute Type Mul. Kind Note

symbol CIdentifier 1 attr The symbol to be used as (depending on the concrete
case) either a complete replacement or a prefix.

Table A.63: ImplementationProps

Class Ipv4Configuration

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note Internet Protocol version 4 (IPv4) configuration.

Base ARObject , NetworkEndpointAddress

Attribute Type Mul. Kind Note

assignment
Priority

PositiveInteger 0..1 attr Priority of assignment (1 is highest). If a new address
from an assignment method with a higher priority is
available, it overwrites the IP address previously assigned
by an assignment method with a lower priority.

defaultGateway Ip4AddressString 0..1 attr IP address of the default gateway.

dnsServer
Address

Ip4AddressString * attr IP addresses of preconfigured DNS servers.

Tags: xml.namePlural=DNS-SERVER-ADDRESSES

ipAddressKeep
Behavior

IpAddressKeepEnum 0..1 attr Defines the lifetime of a dynamically fetched IP address.

ipv4Address Ip4AddressString 0..1 attr IPv4 Address. Notation: 255.255.255.255.
The IP Address shall be declared in case the ipv4Address
Source is FIXED and thus no auto-configuration
mechanism is used.

ipv4Address
Source

Ipv4AddressSource
Enum

0..1 attr Defines how the node obtains its IP address.

networkMask Ip4AddressString 0..1 attr Network mask. Notation 255.255.255.255

ttl PositiveInteger 0..1 attr Lifespan of data (0..255). The purpose of the TimeToLive
field is to avoid a situation in which an undeliverable
datagram keeps circulating on a system.

Table A.64: Ipv4Configuration

Class Ipv6Configuration

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note Internet Protocol version 6 (IPv6) configuration.

Base ARObject , NetworkEndpointAddress

Attribute Type Mul. Kind Note

assignment
Priority

PositiveInteger 0..1 attr Priority of assignment (1 is highest). If a new address
from an assignment method with a higher priority is
available, it overwrites the IP address previously assigned
by an assignment method with a lower priority.

defaultRouter Ip6AddressString 0..1 attr IP address of the default router.

dnsServer
Address

Ip6AddressString * attr IP addresses of pre configured DNS servers.

Tags: xml.namePlural=DNS-SERVER-ADDRESSES

5

253 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class Ipv6Configuration

enableAnycast Boolean 0..1 attr This attribute is used to enable anycast addressing (i.e. to
one of multiple receivers).

hopCount PositiveInteger 0..1 attr The distance between two hosts. The hop count n means
that n gateways separate the source host from the
destination host
(Range 0..255)

ipAddressKeep
Behavior

IpAddressKeepEnum 0..1 attr Defines the lifetime of a dynamically fetched IP address.

ipAddressPrefix
Length

PositiveInteger 0..1 attr IPv6 prefix length defines the part of the IPv6 address
that is the network prefix.

ipv6Address Ip6AddressString 0..1 attr IPv6 Address. Notation: FFFF:...:FFFF.
The IP Address shall be declared in case the ipv6Address
Source is FIXED and thus no auto-configuration
mechanism is used.

ipv6Address
Source

Ipv6AddressSource
Enum

0..1 attr Defines how the node obtains its IP address.

Table A.65: Ipv6Configuration

Primitive Limit
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::PrimitiveTypes

Note This class represents the ability to express a numerical limit. Note that this is in fact a NumericalVariation
Point but has the additional attribute intervalType.

Tags: xml.xsd.customType=LIMIT-VALUE
xml.xsd.pattern=(0[xX][0-9a-fA-F]+)|(0[0-7]+)|(0[bB][0-1]+)|(([+\-]?[1-9]
[0-9]+(\.[0-9]+)?|[+\-]?[0-9](\.[0-9]+)?)([eE]([+\-]?)[0-9]+)?)|\.0|INF|-INF|NaN
xml.xsd.type=string

Attribute Datatype Mul. Kind Note

intervalType IntervalTypeEnum 0..1 attr This specifies the type of the interval. If the attribute is
missing the interval shall be considered as "CLOSED".

Tags: xml.attribute=true

Table A.66: Limit

Class Machine
Package M2::AUTOSARTemplates::AdaptivePlatform::MachineManifest

Note Machine that represents an Adaptive Autosar Software Stack.

Tags: atp.ManifestKind=MachineManifest
atp.Status=draft
atp.recommendedPackage=Machines

Base ARElement , ARObject , AtpClassifier , AtpFeature, AtpStructureElement , CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note

default
Application
Timeout

EnterExitTimeout 0..1 aggr This aggration defines a default timeout in the context of a
given Machine with respect to the launching and
termination of applications.

Tags: atp.Status=draft

5

254 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class Machine
environment
Variable

TagWithOptionalValue * aggr This aggregation represents the collection of environment
variables that shall be added to the environment defined
on the level of the enclosing Machine.

Stereotypes: atpSplitable
Tags: atp.Splitkey=environmentVariable
atp.Status=draft

functionGroup ModeDeclarationGroup
Prototype

* aggr This aggregation represents the collection of function
groups of the enclosing Machine.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
atp.Status=draft
vh.latestBindingTime=preCompileTime

hwElement HwElement * ref This reference is used to describe the hardware
resources of the machine.

Stereotypes: atpUriDef
Tags: atp.Status=draft

machineDesign MachineDesign 1 ref Reference to the MachineDesign this Machine is
implementing.

Tags: atp.Status=draft

module
Instantiation

AdaptiveModule
Instantiation

* aggr Configuration of Adaptive Autosar module instances that
are running on the machine.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft

perState
Timeout

PerStateTimeout * aggr This aggregation represens the definition of
per-state-timeouts in the context of the enclosing
machine.

Stereotypes: atpSplitable
Tags: atp.Splitkey=perStateTimeout
atp.Status=draft

processor Processor 1..* aggr This represents the collection of processors owned by the
enclosing machine.

Tags: atp.Status=draft

secure
Communication
Deployment

SecureCommunication
Deployment

* aggr Deployment of secure communication protocol
configuration settings to crypto module entities.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName, variationPoint.shortLabel
atp.Status=draft

Table A.67: Machine

Class NetworkEndpoint

Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note The network endpoint defines the network addressing (e.g. IP-Address or MAC multicast address).

Tags: atp.ManifestKind=MachineManifest

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

fullyQualified
DomainName

String 0..1 attr Defines the fully qualified domain name (FQDN) e.g.
some.example.host.

5

255 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class NetworkEndpoint

ipSecConfig IPSecConfig 0..1 aggr Optional IPSec configuration that provides security
services for IP packets.

Tags: atp.Status=draft

network
Endpoint
Address

NetworkEndpoint
Address

1..* aggr Definition of a Network Address.

Tags: xml.name
Plural=NETWORK-ENDPOINT-ADDRESSES

priority PositiveInteger 0..1 attr Defines the frame priority where values from 0 (best
effort) to 7 (highest) are allowed.

Table A.68: NetworkEndpoint

Class PortInterface (abstract)

Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

Note Abstract base class for an interface that is either provided or required by a port of a software component.

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Subclasses ClientServerInterface, DataInterface, DiagnosticPortInterface, ModeSwitchInterface, Persistency
Interface, PlatformHealthManagementInterface, RestServiceInterface, ServiceInterface, Time
SynchronizationInterface, TriggerInterface

Attribute Type Mul. Kind Note

namespace (or-
dered)

SymbolProps * aggr This represents the SymbolProps used for the definition
of a hierarchical namespace applicable for the generation
of code artifacts out of the definition of a ServiceInterface.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
atp.Status=draft

Table A.69: PortInterface

Class PortInterfaceToDataTypeMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This meta-class represents the ability to associate a PortInterface with a DataTypeMappingSet. This
association is needed for the generation of header files in the scope of a single PortInterface.

The association is intentionally made outside the scope of the PortInterface itself because the designers
of a PortInterface most likely will not want to add details about the level of ImplementationDataType.

Tags: atp.Status=draft
atp.recommendedPackage=ServiceInterfaceToDataTypeMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Attribute Type Mul. Kind Note

dataType
MappingSet

DataTypeMappingSet 1..* ref This represents the reference to the applicable data
TypemappingSet

Tags: atp.Status=draft
atp.StatusComment=Reserved for adaptive platform

5

256 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class PortInterfaceToDataTypeMapping

portInterface PortInterface 1 ref This represents the reference to the applicable Port
Interface

Tags: atp.Status=draft
atp.StatusComment=Reserved for adaptive platform

Table A.70: PortInterfaceToDataTypeMapping

Class ProvidedApServiceInstance (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a provided service
instance in an abstract way.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Subclasses DdsProvidedServiceInstance, ProvidedSomeipServiceInstance, ProvidedUserDefinedServiceInstance

Attribute Type Mul. Kind Note
– – – – –

Table A.71: ProvidedApServiceInstance

Class ProvidedServiceInstance
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::Fibex4Ethernet::EthernetTopology

Note Service instances that are provided by the ECU that is connected via the ApplicationEndpoint to a
CommunicationConnector.

Base ARObject , AbstractServiceInstance, Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

EventHandler EventHandler * aggr Collection of event callback configurations.

instance
Identifier

PositiveInteger 0..1 attr Instance identifier. Can be used for e.g. service discovery
to identify the instance of the service.

loadBalancing
Priority

PositiveInteger 0..1 attr Defines the value to be used for load balancing priority in
the service offer. Lower value means higher priority.

loadBalancing
Weight

PositiveInteger 0..1 attr Defines the value to be used for load balancing weight in
the service offer. Higher value means higher probability to
be chosen.

priority PositiveInteger 0..1 attr Defines the frame priority where values from 0 (best
effort) to 7 (highest) are allowed.

sdServerConfig SdServerConfig 0..1 aggr Service Discovery Server configuration.

serviceIdentifier PositiveInteger 0..1 attr Service ID. Shall be unique within one system to allow
service discovery.

Table A.72: ProvidedServiceInstance

257 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ProvidedSomeipServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a provided service
instance in a concrete implementation on top of SOME/IP.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , ProvidedApServiceInstance, Referrable, Uploadable
PackageElement

Attribute Type Mul. Kind Note

capability
Record (or-
dered)

TagWithOptionalValue * aggr A sequence of records to store arbitrary name/value pairs
conveying additional information about the named
service.

Tags: atp.Status=draft

eventProps SomeipEventProps * aggr Configuration settings for individual events that are
provided by the ServiceInstance.

Tags: atp.Status=draft

loadBalancing
Priority

PositiveInteger 0..1 attr This attribute is used to specify the priority in the load
balancing option of SOME/IP that is added to the Offer
Service.

When a client searches for all service instances of a
service, the client shall choose the service instance with
highest priority if one is defined.

loadBalancing
Weight

PositiveInteger 0..1 attr This attribute is used to specify the weight in the load
balancing option of SOME/IP that is added to the Offer
Service.

When a client searches for all service instances of a
service, the client shall choose the service instance with
highest priority if one is defined. If several service
instances exist with the highest priority the service
instance shall be chosen based on the weights of the
service instances.

method
ResponseProps

SomeipMethodProps * aggr Configuration settings for individual methods that are
provided by the ServiceInstance.

Tags: atp.Status=draft

providedEvent
Group

SomeipProvidedEvent
Group

* aggr List of EventGroups that are provided by the Service
Instance.

Tags: atp.Status=draft

sdServerConfig SomeipSdServer
ServiceInstanceConfig

1 ref Server specific configuration settings relevant for the
SOME/IP service discovery.

Tags: atp.Status=draft

serviceInstance
Id

PositiveInteger 1 attr Identification number that is used by SOME/IP service
discovery to identify the instance of the service.

Table A.73: ProvidedSomeipServiceInstance

Class ProvidedUserDefinedServiceInstance
Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

5

258 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class ProvidedUserDefinedServiceInstance
Note This meta-class represents the ability to describe the existence and configuration of a provided service

instance in a concrete implementation that is not standardized by AUTOSAR.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , ProvidedApServiceInstance, Referrable, Uploadable
PackageElement

Attribute Type Mul. Kind Note
– – – – –

Table A.74: ProvidedUserDefinedServiceInstance

Class Referrable (abstract)

Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable

Note Instances of this class can be referred to by their identifier (while adhering to namespace borders).

Base ARObject

Subclasses AtpDefinition, BswDistinguishedPartition, BswModuleCallPoint , BswModuleClientServerEntry, Bsw
VariableAccess, CouplingPortTrafficClassAssignment, CppImplementationDataTypeContextTarget ,
DiagnosticDebounceAlgorithmProps, DiagnosticEnvModeElement , EthernetPriorityRegeneration, Event
Handler, ExclusiveAreaNestingOrder, HwDescriptionEntity , ImplementationProps, LinSlaveConfigIdent,
ModeTransition, MultilanguageReferrable, NetworkConfiguration, NmNetworkHandle, PncMappingIdent,
SingleLanguageReferrable, SocketConnectionBundle, SomeipRequiredEventGroup, TimeSyncServer
Configuration, TpConnectionIdent

Attribute Type Mul. Kind Note

shortName Identifier 1 attr This specifies an identifying shortName for the object. It
needs to be unique within its context and is intended for
humans but even more for technical reference.

Tags: xml.enforceMinMultiplicity=true
xml.sequenceOffset=-100

shortName
Fragment

ShortNameFragment * aggr This specifies how the Referrable.shortName is
composed of several shortNameFragments.

Tags: xml.sequenceOffset=-90

Table A.75: Referrable

Class RequiredApServiceInstance (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in an abstract way.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, UploadablePackageElement

Subclasses DdsRequiredServiceInstance, RequiredSomeipServiceInstance, RequiredUserDefinedServiceInstance

Attribute Type Mul. Kind Note
– – – – –

Table A.76: RequiredApServiceInstance

259 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class RequiredSomeipServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in a concrete implementation on top of SOME/IP.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, RequiredApServiceInstance, Uploadable
PackageElement

Attribute Type Mul. Kind Note

capability
Record (or-
dered)

TagWithOptionalValue * aggr A sequence of records to store arbitrary name/value pairs
conveying additional information about the named
service.

Tags: atp.Status=draft

methodRequest
Props

SomeipMethodProps * aggr Configuration settings for individual methods that are
requested by the ServiceInstance.

Tags: atp.Status=draft

requiredEvent
Group

SomeipRequiredEvent
Group

* aggr List of EventGroups that are used by the RequiredService
Instance.

Tags: atp.Status=draft

requiredMinor
Version

AnyVersionString 0..1 attr This attribute is used to configure for which minor version
of the SomeIp ServiceInterface the Service Discovery will
search.
Value can be set to a number that represents the Minor
Version of the searched service or to ANY.

requiredService
InstanceId

AnyServiceInstanceId 0..1 attr This attribute represents the ability to describe the
required service instance ID.

sdClientConfig SomeipSdClientService
InstanceConfig

1 ref Client specific configuration settings relevant for the
SOME/IP service discovery.

Tags: atp.Status=draft

Table A.77: RequiredSomeipServiceInstance

Class RequiredUserDefinedServiceInstance

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe the existence and configuration of a required service
instance in a concrete implementation that is not standardized by AUTOSAR.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInstances

Base ARElement , ARObject , AdaptivePlatformServiceInstance, CollectableElement , Identifiable,
MultilanguageReferrable, PackageableElement , Referrable, RequiredApServiceInstance, Uploadable
PackageElement

Attribute Type Mul. Kind Note
– – – – –

Table A.78: RequiredUserDefinedServiceInstance

260 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class SecOcSecureComProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note Configuration of AUTOSAR SecOC.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, SecureComProps

Attribute Type Mul. Kind Note

authAlgorithm String 0..1 attr This attribute defines the authentication algorithm used
for MAC generation and verification.

authInfoTx
Length

PositiveInteger 0..1 attr This attribute defines the length in bits of the
authentication code to be included in the payload of the
authenticated Message.

freshnessValue
Length

PositiveInteger 0..1 attr This attribute defines the complete length in bits of the
Freshness Value.

freshnessValue
TxLength

PositiveInteger 0..1 attr This attribute defines the length in bits of the Freshness
Value to be included in the payload of the secured
message. In other words this attribute defines the length
of the authenticated Message.

jobRequirement SecOcJobRequirement * aggr Collection of cryptographic job requirements.

Tags: atp.Status=draft

Table A.79: SecOcSecureComProps

Class SecureComProps (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note This meta-class defines a communication security protocol and its configuration settings.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses SecOcSecureComProps, TlsSecureComProps

Attribute Type Mul. Kind Note
– – – – –

Table A.80: SecureComProps

Class ServiceEventDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note This abstract meta-class represents the ability to specify a deployment of an Event to a middleware
transport layer.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses DdsEventDeployment, SomeipEventDeployment, UserDefinedEventDeployment

Attribute Type Mul. Kind Note

event VariableDataPrototype 0..1 ref Reference to an Event that is deployed to a middleware
transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.81: ServiceEventDeployment

261 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ServiceFieldDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note This abstract meta-class represents the ability to specify a deployment of a Field to a middleware
transport layer.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses DdsFieldDeployment, SomeipFieldDeployment, UserDefinedFieldDeployment

Attribute Type Mul. Kind Note

field Field 1 ref Reference to a Field that is deployed to a middleware
transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.82: ServiceFieldDeployment

Class ServiceInstanceToMachineMapping (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceMapping

Note This meta-class represents the ability to map one or several AdaptivePlatformServiceInstances to a
CommunicationConnector of a Machine.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses DdsServiceInstanceToMachineMapping, SomeipServiceInstanceToMachineMapping, UserDefined
ServiceInstanceToMachineMapping

Attribute Type Mul. Kind Note

communication
Connector

Communication
Connector

0..1 ref Reference to the Machine to which the ServiceInstance is
mapped.

Tags: atp.Status=draft

secOcCom
PropsFor
Multicast

SecOcSecureCom
Props

* ref Reference to communication security configuration
settings that are valid for the udp multicast endpoint (Port
+ Multicast IP Address) defined by the ServiceInstanceTo
MachineMapping.

Tags: atp.Status=draft

secureCom
PropsForTcp

SecureComProps * ref Reference to communication security configuration
settings that are valid for the tcp unicast endpoint (Tcp
Port + Unicast IP Address) defined by the Service
InstanceToMachineMapping.

Tags: atp.Status=draft

secureCom
PropsForUdp

SecureComProps * ref Reference to communication security configuration
settings that are valid for the udp unicast endpoint (Udp
Port + Unicast IP Address) defined by the Service
InstanceToMachineMapping.

Tags: atp.Status=draft

serviceInstance AdaptivePlatform
ServiceInstance

* ref Reference to a ServiceInstance that is mapped to the
Machine.

Tags: atp.Status=draft

Table A.83: ServiceInstanceToMachineMapping

262 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ServiceInterface
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::PortInterface

Note This represents the ability to define a PortInterface that consists of a heterogeneous collection of
methods, events and fields.

Tags: atp.Status=draft
atp.recommendedPackage=ServiceInterfaces

Base ARElement , ARObject , AtpBlueprint , AtpBlueprintable, AtpClassifier , AtpType, CollectableElement ,
Identifiable, MultilanguageReferrable, PackageableElement , PortInterface, Referrable

Attribute Type Mul. Kind Note

event VariableDataPrototype * aggr This represents the collection of events defined in the
context of a ServiceInterface.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

field Field * aggr This represents the collection of fields defined in the
context of a ServiceInterface.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

method ClientServerOperation * aggr This represents the collection of methods defined in the
context of a ServiceInterface.

Stereotypes: atpVariation
Tags: atp.Status=draft
vh.latestBindingTime=blueprintDerivationTime

Table A.84: ServiceInterface

Class ServiceInterfaceDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note Middleware transport layer specific configuration settings for the ServiceInterface and all contained
ServiceInterface elements.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, UploadablePackageElement

Subclasses DdsServiceInterfaceDeployment, SignalBasedServiceInterfaceDeployment, SomeipServiceInterface
Deployment, UserDefinedServiceInterfaceDeployment

Attribute Type Mul. Kind Note

event
Deployment

ServiceEvent
Deployment

* aggr Middleware transport layer specific configuration settings
for an Event that is defined in the ServiceInterface.

Tags: atp.Status=draft

fieldDeployment ServiceField
Deployment

* aggr Middleware transport layer specific configuration settings
for a Field that is defined in the ServiceInterface.

Tags: atp.Status=draft

method
Deployment

ServiceMethod
Deployment

* aggr Middleware transport layer specific configuration settings
for a method that is defined in the ServiceInterface.

Tags: atp.Status=draft

5

263 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class ServiceInterfaceDeployment (abstract)

serviceInterface ServiceInterface 0..1 ref Reference to a ServiceInterface that is deployed to a
middleware transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.85: ServiceInterfaceDeployment

Class ServiceInterfaceElementSecureComConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note This element allows to secure the communication of the referenced ServiceInterface element.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

dataId PositiveInteger 0..1 attr This attribute defines a unique numerical identifier for the
referenced ServiceInterface element.

event ServiceEvent
Deployment

0..1 ref Reference to an event that is protected by a security
protocol.

Tags: atp.Status=draft

fieldNotifier ServiceField
Deployment

0..1 ref Reference to a field notifier that is protected by a security
protocol.

Tags: atp.Status=draft

freshnessValue
Id

PositiveInteger 0..1 attr This attribute defines the Id of the Freshness Value.

getterCall ServiceField
Deployment

0..1 ref Reference to a field getter call message that is protected
by a security protocol.

Tags: atp.Status=draft

getterReturn ServiceField
Deployment

0..1 ref Reference to a field getter return message that is
protected by a security protocol.

Tags: atp.Status=draft

methodCall ServiceMethod
Deployment

0..1 ref Reference to a method call message that is protected by
a security protocol.

Tags: atp.Status=draft

methodReturn ServiceMethod
Deployment

0..1 ref Reference to a method return message that is protected
by a security protocol.

Tags: atp.Status=draft

setterCall ServiceField
Deployment

0..1 ref Reference to a field setter call message that is protected
by a security protocol.

Tags: atp.Status=draft

setterReturn ServiceField
Deployment

0..1 ref Reference to a field setter return message that is
protected by a security protocol.

Tags: atp.Status=draft

Table A.86: ServiceInterfaceElementSecureComConfig

264 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class ServiceMethodDeployment (abstract)

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note This abstract meta-class represents the ability to specify a deployment of a Method to a middleware
transport layer.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Subclasses DdsMethodDeployment, SomeipMethodDeployment, UserDefinedMethodDeployment

Attribute Type Mul. Kind Note

method ClientServerOperation 0..1 ref Reference to a method that is deployed to a middleware
transport layer.

Stereotypes: atpUriDef
Tags: atp.Status=draft

Table A.87: ServiceMethodDeployment

Class SomeipCollectionProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Collection of attributes that are configurable for an event that is provided by a ServiceInstance or for a
method that is provided or requested by a ServiceInstance.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject

Attribute Type Mul. Kind Note

udpCollection
BufferTimeout

TimeValue 0..1 attr Maximum time, an outgoing message (event, method call
or method response) may be delayed, due to data
collection.

udpCollection
Trigger

UdpCollectionTrigger
Enum

0..1 attr Defines whether the ServiceInterface element (event or
method) contributes to the triggering of the udp data
transmission if data collection is enabled.

Table A.88: SomeipCollectionProps

Class SomeipDataPrototypeTransformationProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::SerializationProperties

Note This meta-class represents the ability to define data transformation props specifically for a SOME/IP
serialization for a given DataPrototype.

Tags: atp.Status=draft
atp.recommendedPackage=SomeipDataPrototypeTransformationPropss

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

dataPrototype DataPrototypeInService
InterfaceRef

* aggr Collection of DataPrototypes for which the settings in
SomeipDataPrototypeTransformationProps are valid. For
reuse reasons the SomeipDataPrototypeTransformation
Props is able to aggregate several DataPrototypes.

Tags: atp.Status=draft

5

265 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class SomeipDataPrototypeTransformationProps

network
Representation

SwDataDefProps 0..1 aggr Optional specification of the actual network
representation for the referenced primitive DataPrototype.
If a network representation is provided then the baseType
available in the SwDataDefProps shall be used as input
for the serialization/deserialization. If the network
Representation is not provided then the baseType of the
AbstractImplementationDataType shall be used for the
serialization/deserialization.

Tags: atp.Status=draft

someip
Transformation
Props

ApSomeip
TransformationProps

0..1 ref This reference represents the ability to define data
transformation props specifically for a SOME/IP
serialization.

Tags: atp.Status=draft

Table A.89: SomeipDataPrototypeTransformationProps

Class SomeipEventDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note SOME/IP configuration settings for an Event.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceEventDeployment

Attribute Type Mul. Kind Note

eventId PositiveInteger 1 attr Unique Identifier within a ServiceInterface that identifies
the Event in SOME/IP. This Identifier is sent as part of the
Message ID in SOME/IP messages.

maximum
SegmentLength

PositiveInteger 0..1 attr This attribute describes the length in bytes of the
SOME/IP segment. This includes 8 bytes for the Request
ID, Protocol Version, Interface Version, Message Type
and Return Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length is
larger than
maximumSegmentLength then the corresponding
SOME/IP message will be segmented into smaller parts
that are transmitted over the network.

separationTime TimeValue 0..1 attr Sets the duration of the minimum time in seconds
SOME/IP shall wait between the transmissions of
segments.

transport
Protocol

TransportLayerProtocol
Enum

1 attr This attribute defines over which Transport Layer Protocol
this event is intended to be sent.

Table A.90: SomeipEventDeployment

Class SomeipEventGroup

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note Grouping of events and notification events inside a ServiceInterface in order to allow subscriptions.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

5

266 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class SomeipEventGroup

Attribute Type Mul. Kind Note

event SomeipEvent
Deployment

* ref Reference to an event that is part of the EventGroup.

Tags: atp.Status=draft

eventGroupId PositiveInteger 1 attr Unique Identifier that identifies the EventGroup in
SOME/IP. This Identifier is sent as Eventgroup ID in
SOME/IP Service Discovery messages.

Table A.91: SomeipEventGroup

Class SomeipEventProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class allows to set configuration options for an event in the provided service instance.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject

Attribute Type Mul. Kind Note

collectionProps SomeipCollectionProps 0..1 aggr Collection of timing attributes configurable for an event
that is provided by a Service Instance.

Tags: atp.Status=draft

event SomeipEvent
Deployment

0..1 ref Reference to the event for which the SomeipEventProps
are applicable.

Tags: atp.Status=draft

Table A.92: SomeipEventProps

Class SomeipFieldDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note SOME/IP configuration settings for a Field.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceFieldDeployment

Attribute Type Mul. Kind Note

get SomeipMethod
Deployment

0..1 aggr This aggregation represents the setting of the get method.

Tags: atp.Status=draft

notifier SomeipEvent
Deployment

0..1 aggr This aggregation represents the settings of the notifier.

Tags: atp.Status=draft

set SomeipMethod
Deployment

0..1 aggr This aggregation represents the settings of the set
method

Tags: atp.Status=draft

Table A.93: SomeipFieldDeployment

267 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class SomeipMethodDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note SOME/IP configuration settings for a Method.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, ServiceMethodDeployment

Attribute Type Mul. Kind Note

maximum
SegmentLength
Request

PositiveInteger 0..1 attr This attribute describes the length in bytes of one
SOME/IP segment into which the Method Call Message
will be divided.
This length field includes 8 bytes for the Request ID,
Protocol Version, Interface Version, Message Type and
Return Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length is
larger than maximumSegmentLengthRequest then the
corresponding SOME/IP message will be segmented into
smaller parts that are transmitted over the network.

maximum
SegmentLength
Response

PositiveInteger 0..1 attr This attribute describes the length in bytes of one
SOME/IP segment into which the Method Return
Message will be divided.
This length field includes 8 bytes for the Request ID,
Protocol Version, Interface Version, Message Type and
Return Code and 4 additional SOME/IP TP bytes.

If this attribute is set to a value and the data length is
larger than maximumSegmentLengthResponse then the
corresponding SOME/IP message will be segmented into
smaller parts that are transmitted over the network.

methodId PositiveInteger 1 attr Unique Identifier within a ServiceInterface that identifies
the Method in SOME/IP. This Identifier is sent as part of
the Message ID in SOME/IP messages.

separationTime
Request

TimeValue 0..1 attr Sets the duration of the minimum time in seconds
SOME/IP shall wait between the transmissions of
segments into which the Method Call Message will be
divided.

separationTime
Response

TimeValue 0..1 attr Sets the duration of the minimum time in seconds
SOME/IP shall wait between the transmissions of
segments into which the Method Return Message will be
divided.

transport
Protocol

TransportLayerProtocol
Enum

1 attr This attribute defines over which Transport Layer Protocol
this method is intended to be sent.

Table A.94: SomeipMethodDeployment

Class SomeipMethodProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class allows to set configuration options for a method in the service instance.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject

Attribute Type Mul. Kind Note

collectionProps SomeipCollectionProps 0..1 aggr Collection of timing attributes configurable for a method
that is provided or requested by a Service Instance.

Tags: atp.Status=draft

5

268 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class SomeipMethodProps

method SomeipMethod
Deployment

0..1 ref Reference to the method for which the SomeipMethod
Props are applicable.

Tags: atp.Status=draft

Table A.95: SomeipMethodProps

Class SomeipProvidedEventGroup

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note The meta-class represents the ability to configure ServiceInstance related communication settings on the
provided side for each EventGroup separately.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

eventGroup SomeipEventGroup 0..1 ref Reference to the SomeipEventGroup in the System
Manifest for which the ServiceInstance related Event
Group settings are valid.

Tags: atp.Status=draft

multicast
Threshold

PositiveInteger 1 attr Specifies the number of subscribed clients that trigger the
server to change the transmission of events to multicast.

Example:
If configured to 0 only unicast will be used.
If configured to 1 the first client will be already served by
multicast.
If configured to 2 the first client will be server with unicast
and as soon as the 2nd client arrives both will be served
by multicast.

This does not influence the handling of initial events,
which are served using unicast only.

sdServerEvent
GroupTiming
Config

SomeipSdServerEvent
GroupTimingConfig

0..1 ref Server Timing configuration settings that are EventGroup
specific.

Tags: atp.Status=draft

Table A.96: SomeipProvidedEventGroup

Class SomeipRequiredEventGroup

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note The meta-class represents the ability to configure ServiceInstance related communication settings on the
required side for each EventGroup separately.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Referrable

Attribute Type Mul. Kind Note

eventGroup SomeipEventGroup 0..1 ref Reference to the SomeipEventGroup in the System
Manifest for which the ServiceInstance related Event
Group settings are valid.

Tags: atp.Status=draft

5

269 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class SomeipRequiredEventGroup

sdClientEvent
GroupTiming
Config

SomeipSdClientEvent
GroupTimingConfig

1 ref Client Timing configuration settings that are EventGroup
specific.

Tags: atp.Status=draft

Table A.97: SomeipRequiredEventGroup

Class SomeipSdClientEventGroupTimingConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class is used to specify configuration related to service discovery in the context of an event
group on SOME/IP.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=SomeipSdTimingConfigs

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

request
ResponseDelay

RequestResponseDelay 0..1 aggr The Service Discovery shall delay answers to unicast
messages triggered by multicast messages (e.g.
Subscribe Eventgroup after Offer Service).

Tags: atp.Status=draft

timeToLive PositiveInteger 1 attr Defines the time in seconds the subscription of this event
is expected by the client.
this value is sent from the client to the server in the
SD-subscribeEvent message.

Table A.98: SomeipSdClientEventGroupTimingConfig

Class SomeipSdClientServiceInstanceConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Client specific settings that are relevant for the configuration of SOME/IP Service-Discovery.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=SomeipSdTimingConfigs

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

initialFind
Behavior

InitialSdDelayConfig 0..1 aggr Controls initial find behavior of clients.

Tags: atp.Status=draft

serviceFind
TimeToLive

PositiveInteger 1 attr This attribute represents the ability to define the time in
seconds the service find is valid.

Table A.99: SomeipSdClientServiceInstanceConfig

270 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

Class SomeipSdServerServiceInstanceConfig

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Server specific settings that are relevant for the configuration of SOME/IP Service-Discovery.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=SomeipSdTimingConfigs

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

initialOffer
Behavior

InitialSdDelayConfig 0..1 aggr Controls offer behavior of the server.

Tags: atp.Status=draft

offerCyclicDelay TimeValue 0..1 attr Optional attribute to define cyclic offers. Cyclic offer is
active, if the delay is set (in seconds).

request
ResponseDelay

RequestResponseDelay 0..1 aggr Maximum/Minimum allowable response delay to entries
received by multicast in seconds.
The Service Discovery shall delay answers to entries that
were transported in a multicast SOME/IP-SD message
(e.g. FindService).

Tags: atp.Status=draft

serviceOffer
TimeToLive

PositiveInteger 1 attr Defines the time in seconds the service offer is valid.

Table A.100: SomeipSdServerServiceInstanceConfig

Class SomeipServiceInstanceToMachineMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceMapping

Note This meta-class allows to map SomeipServiceInstances to a CommunicationConnector of a Machine. In
this step the network configuration (IP Address, Transport Protocol, Port Number) for the ServiceInstance
is defined.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInstanceToMachineMappings

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInstanceToMachineMapping, UploadablePackageElement

Attribute Type Mul. Kind Note

eventMulticast
UdpPort

PositiveInteger 0..1 attr UdpPort configuration that is used for Event
communication in the IP-Multicast case.

During SOME/IP Service Discovery: Send in the
SD-SubscribeEventGroupAck Message to client (answer
to SD-SubscribeEventGroup).

Event: This is the destination-port where the server sends
the multicast event messages if the multicastThreshold of
the corresponding SomeipProvidedEventGroup is
exceeded.

ipv4MulticastIp
Address

Ip4AddressString 0..1 attr Multicast IPv4 Address that is
transmitted in the EventGroupSubscribeAck message
for all available EventGroups that are available in
the ProvidedSomeipServiceInstance.

ipv6MulticastIp
Address

Ip6AddressString 0..1 attr Multicast IPv6 Address that is
transmitted in the EventGroupSubscribeAck message
for all available EventGroups that are available in
the ProvidedSomeipServiceInstance.

5

271 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class SomeipServiceInstanceToMachineMapping

tcpPort PositiveInteger 0..1 attr TcpPort configuration that is used for Method and Event
communication in IP-Unicast case.

During SOME/IP Service Discovery:
PortNumber that is sent in the SD-Offer Message to client
(answer on SD-find) or clients (SD-offer).

Method:
This is the destination-port where the server accepts the
method call messages (from the clients).
This is the source-port where the server sends the
method response messages (to the client).

Event:
This is the event source-port where the server sends the
event messages to the subscribed clients in IP-Unicast
case.

udpCollection
BufferSize
Threshold

PositiveInteger 0..1 attr Specifies the amount of data in bytes that shall be
buffered for data transmission over the udp connection
specified by this SomeipServiceInstanceToMachine
Mapping in case data collection is enabled.

udpPort PositiveInteger 0..1 attr UdpPort configuration that is used for Method and Event
communication in IP-Unicast case.

During SOME/IP Service Discovery:
PortNumber that is sent in the SD-Offer Message to client
(answer on SD-find) or clients (SD-offer).

Method:
This is the destination-port where the server accepts the
method call messages (from the clients).
This is the source-port where the server sends the
method response messages (to the client).

Event:
This is the event source-port where the server sends the
event messages to the subscribed clients in IP-Unicast
case.

Table A.101: SomeipServiceInstanceToMachineMapping

Class SomeipServiceInterfaceDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note SOME/IP configuration settings for a ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInterfaceDeployment , UploadablePackageElement

Attribute Type Mul. Kind Note

eventGroup SomeipEventGroup * aggr SOME/IP EventGroups that are defined within the
SOME/IP ServiceClass.

Tags: atp.Status=draft

serviceInterface
Id

PositiveInteger 1 attr Unique Identifier that identifies the ServiceInterface in
SOME/IP. This Identifier is sent as Service ID in SOME/IP
Service Discovery messages.

5

272 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class SomeipServiceInterfaceDeployment

serviceInterface
Version

SomeipServiceInterface
Version

1 aggr The SOME/IP major and minor Version of the Service.

Tags: atp.Status=draft

Table A.102: SomeipServiceInterfaceDeployment

Class SomeipServiceInterfaceVersion

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This meta-class represents the ability to describe a version of a SOME/IP ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject

Attribute Type Mul. Kind Note

majorVersion PositiveInteger 1 attr Major Version of the ServiceInterface.

minorVersion PositiveInteger 1 attr Minor Version of the ServiceInterface.

Table A.103: SomeipServiceInterfaceVersion

Class StdCppImplementationDataType

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::CppImplementationDataType

Note This meta-class represents the way to specify a data type definition that is taken as the basis for a C++
language binding to a C++ Standard Library feature.

Tags: atp.Status=draft
atp.recommendedPackage=CppImplementationDataTypes

Base ARElement , ARObject , AbstractImplementationDataType, AtpBlueprint , AtpBlueprintable, AtpClassifier ,
AtpType, AutosarDataType, CollectableElement , CppImplementationDataType, CppImplementationData
TypeContextTarget , Identifiable, MultilanguageReferrable, PackageableElement , Referrable

Attribute Type Mul. Kind Note
– – – – –

Table A.104: StdCppImplementationDataType

Class «atpVariation» SwDataDefProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This class is a collection of properties relevant for data objects under various aspects. One could
consider this class as a "pattern of inheritance by aggregation". The properties can be applied to all
objects of all classes in which SwDataDefProps is aggregated.

Note that not all of the attributes or associated elements are useful all of the time. Hence, the process
definition (e.g. expressed with an OCL or a Document Control Instance MSR-DCI) has the task of
implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a curve, or a map, but
also the recordLayouts which specify how such elements are mapped/converted to the Data
Types in the programming language (or in AUTOSAR). This is mainly expressed by properties
like swRecordLayout and swCalprmAxisSet

5
5

273 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class «atpVariation» SwDataDefProps

4
• Implementation aspects, mainly expressed by swImplPolicy, swVariableAccessImplPolicy, sw

AddrMethod, swPointerTagetProps, baseType, implementationDataType and additionalNative
TypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or unit, dataConstr,
invalidValue

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime

Base ARObject

Attribute Type Mul. Kind Note

additionalNative
TypeQualifier

NativeDeclarationString 0..1 attr This attribute is used to declare native qualifiers of the
programming language which can neither be deduced
from the baseType (e.g. because the data object
describes a pointer) nor from other more abstract
attributes. Examples are qualifiers like "volatile", "strict" or
"enum" of the C-language. All such declarations have to
be put into one string.

Tags: xml.sequenceOffset=235

annotation Annotation * aggr This aggregation allows to add annotations (yellow pads
...) related to the current data object.

Tags: xml.roleElement=true
xml.roleWrapperElement=true
xml.sequenceOffset=20
xml.typeElement=false
xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data object.

Tags: xml.sequenceOffset=50

compuMethod CompuMethod 0..1 ref Computation method associated with the semantics of
this data object.

Tags: xml.sequenceOffset=180

dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags: xml.sequenceOffset=190

displayFormat DisplayFormatString 0..1 attr This property describes how a number is to be rendered
e.g. in documents or in a measurement and calibration
system.

Tags: xml.sequenceOffset=210

display
Presentation

DisplayPresentation
Enum

0..1 attr This attribute controls the presentation of the related data
for measurement and calibration tools.

implementation
DataType

AbstractImplementation
DataType

0..1 ref This association denotes the ImplementationDataType of
a data declaration via its aggregated SwDataDefProps. It
is used whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType via a
"typedef" to another ImplementationDatatype

• the target type of a pointer (see SwPointerTarget
Props), if it does not refer to a base type directly

5
5

274 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class «atpVariation» SwDataDefProps

4
• the data type of an array or record element within

an ImplementationDataType, if it does not refer to
a base type directly

• the data type of an SwServiceArg, if it does not
refer to a base type directly

Tags: xml.sequenceOffset=215

invalidValue ValueSpecification 0..1 aggr Optional value to express invalidity of the actual data
element.

Tags: xml.sequenceOffset=255

stepSize Float 0..1 attr This attribute can be used to define a value which is
added to or subtracted from the value of a DataPrototype
when using up/down keys while calibrating.

swAddrMethod SwAddrMethod 0..1 ref Addressing method related to this data object. Via an
association to the same SwAddrMethod it can be
specified that several DataPrototypes shall be located in
the same memory without already specifying the memory
section itself.

Tags: xml.sequenceOffset=30

swAlignment AlignmentType 0..1 attr The attribute describes the intended alignment of the
DataPrototype. If the attribute is not defined the alignment
is determined by the swBaseType size and the memory
AllocationKeywordPolicy of the referenced SwAddr
Method.

Tags: xml.sequenceOffset=33

swBit
Representation

SwBitRepresentation 0..1 aggr Description of the binary representation in case of a bit
variable.

Tags: xml.sequenceOffset=60

swCalibration
Access

SwCalibrationAccess
Enum

0..1 attr Specifies the read or write access by MCD tools for this
data object.

Tags: xml.sequenceOffset=70

swCalprmAxis
Set

SwCalprmAxisSet 0..1 aggr This specifies the properties of the axes in case of a
curve or map etc. This is mainly applicable to calibration
parameters.

Tags: xml.sequenceOffset=90

swComparison
Variable

SwVariableRefProxy * aggr Variables used for comparison in an MCD process.

Tags: xml.sequenceOffset=170
xml.typeElement=false

swData
Dependency

SwDataDependency 0..1 aggr Describes how the value of the data object has to be
calculated from the value of another data object (by the
MCD system).

Tags: xml.sequenceOffset=200

swHostVariable SwVariableRefProxy 0..1 aggr Contains a reference to a variable which serves as a
host-variable for a bit variable. Only applicable to bit
objects.

Tags: xml.sequenceOffset=220
xml.typeElement=false

swImplPolicy SwImplPolicyEnum 0..1 attr Implementation policy for this data object.

Tags: xml.sequenceOffset=230

5

275 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class «atpVariation» SwDataDefProps

swIntended
Resolution

Numerical 0..1 attr The purpose of this element is to describe the requested
quantization of data objects early on in the design
process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies the
transition from the physical world to the standardized
world (and vice-versa) (here, "the slope per bit" is present
implicitly in the conversion formula).

In the case of a development phase without a fixed
conversion formula, a pre-specification can occur through
swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240

swInterpolation
Method

Identifier 0..1 attr This is a keyword identifying the mathematical method to
be applied for interpolation. The keyword needs to be
related to the interpolation routine which needs to be
invoked.

Tags: xml.sequenceOffset=250

swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual objects
do not appear in the memory, their derivation is much
more dependent on other objects and hence they shall
have a swDataDependency .

Tags: xml.sequenceOffset=260

swPointerTarget
Props

SwPointerTargetProps 0..1 aggr Specifies that the containing data object is a pointer to
another data object.

Tags: xml.sequenceOffset=280

swRecord
Layout

SwRecordLayout 0..1 ref Record layout for this data object.

Tags: xml.sequenceOffset=290

swRefresh
Timing

MultidimensionalTime 0..1 aggr This element specifies the frequency in which the object
involved shall be or is called or calculated. This timing
can be collected from the task in which write access
processes to the variable run. But this cannot be done by
the MCD system.

So this attribute can be used in an early phase to express
the desired refresh timing and later on to specify the real
refresh timing.

Tags: xml.sequenceOffset=300

swTextProps SwTextProps 0..1 aggr the specific properties if the data object is a text object.

Tags: xml.sequenceOffset=120

swValueBlock
Size

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

swValueBlock
Size
Mult (ordered)

Numerical * attr This attribute is used to specify the dimensions of a value
block (VAL_BLK) for the case that that value block has
more than one dimension.

The dimensions given in this attribute are ordered such
that the first entry represents the first dimension, the
second entry represents the second dimension, and so
on.

5
5

276 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class «atpVariation» SwDataDefProps

4
For one-dimensional value blocks the attribute swValue
BlockSize shall be used and this attribute shall not exist.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

unit Unit 0..1 ref Physical unit associated with the semantics of this data
object. This attribute applies if no compuMethod is
specified. If both units (this as well as via compuMethod)
are specified the units shall be compatible.

Tags: xml.sequenceOffset=350

valueAxisData
Type

ApplicationPrimitive
DataType

0..1 ref The referenced ApplicationPrimitiveDataType represents
the primitive data type of the value axis within a
compound primitive (e.g. curve, map). It supersedes
CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table A.105: SwDataDefProps

Class SwTextProps

Package M2::MSR::DataDictionary::DataDefProperties

Note This meta-class expresses particular properties applicable to strings in variables or calibration
parameters.

Base ARObject

Attribute Type Mul. Kind Note

arraySize
Semantics

ArraySizeSemantics
Enum

1 attr This attribute controls the semantics of the arraysize for
the array representing the string in an Implementation
DataType.

It is there to support a safe conversion between
ApplicationDatatype and ImplementationDatatype, even
for variable length strings as required e.g. for Support of
SAE J1939.

baseType SwBaseType 0..1 ref This is the base type of one character in the string. In
particular this baseType denotes the intended encoding of
the characters in the string on level of ApplicationData
Type.

Tags: xml.sequenceOffset=30

swFillCharacter Integer 0..1 attr Filler character for text parameter to pad up to the
maximum length swMaxTextSize.

The value will be interpreted according to the encoding
specified in the associated base type of the data object,
e.g. 0x30 (hex) represents the ASCII character zero as
filler character and 0 (dec) represents an end of string as
filler character.

The usage of the fill character depends on the arraySize
Semantics.

Tags: xml.sequenceOffset=40

5

277 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class SwTextProps

swMaxTextSize Integer 1 attr Specifies the maximum text size in characters. Note the
size in bytes depends on the encoding in the
corresponding baseType.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table A.106: SwTextProps

Class SymbolProps

Package M2::AUTOSARTemplates::SWComponentTemplate::Components

Note This meta-class represents the ability to contribute a part of a namespace.

Base ARObject , ImplementationProps, Referrable

Attribute Type Mul. Kind Note
– – – – –

Table A.107: SymbolProps

Class TlsSecureComProps

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::SecureCommunication

Note Configuration of the Transport Layer Security protocol (TLS).

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable, SecureComProps

Attribute Type Mul. Kind Note

keyExchange CryptoServicePrimitive * ref This reference identifies the shared (i.e. applicable for
each of the aggreated cipher suites) crypto service
primitive for the execution of key exchange during the
handshake phase.

Tags: atp.Status=draft

tlsCipherSuite TlsCryptoCipherSuite * aggr Collection of supported cipher suites that are used to
negotiate the security settings for a network connection
defined by the ServiceInstanceToMachineMapping.

Tags: atp.Status=draft

Table A.108: TlsSecureComProps

Class TlvDataIdDefinition
Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::SerializationProperties

Note This meta-class represents the ability to define the tlvDataId.

Tags: atp.Status=draft

Base ARObject

Attribute Type Mul. Kind Note

id PositiveInteger 1 attr This attribute represents the definition of the value of the
TlvDataId

5

278 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class TlvDataIdDefinition
tlvArgument ArgumentDataPrototype 0..1 ref This reference assigns a tlvDataId to a given argument of

a ClientServerOperation.

Tags: atp.Status=draft

tlvRecord
Element

ApplicationRecord
Element

0..1 ref This reference associates the definition of a TLV data id
with a given ApplicationRecordElement.

Tags: atp.Status=draft

tlvSubElement CppImplementation
DataTypeElement

0..1 ref This reference associates the definition of a TLV data id
with a given CppImplementationDataTypeElement.

Stereotypes: atpSplitable
Tags: atp.Splitkey=tlvSubElement
atp.Status=draft

Table A.109: TlvDataIdDefinition

Class TransformationPropsToServiceInterfaceElementMapping

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::ApplicationStructure

Note This meta-class represents the ability to associate a ServiceInterface element with TransformationProps.
The referenced elements of the Service Interface will be serialized according to the settings defined in
the TransformationProps.

Tags: atp.Status=draft

Base ARObject , Identifiable, MultilanguageReferrable, Referrable

Attribute Type Mul. Kind Note

event VariableDataPrototype * ref This represents the reference to one or several events of
one ServiceInterface.

Tags: atp.Status=draft

field Field * ref This represents the reference to one or several fields of
one ServiceInterface.

Tags: atp.Status=draft

method ClientServerOperation * ref This represents the reference to one or several methods
of one ServiceInterface.

Tags: atp.Status=draft

tlvDataId TlvDataIdDefinition * aggr This aggregation represents the collection of tlvDataIds
defined in the enclosing context.

Stereotypes: atpSplitable
Tags: atp.Splitkey=tlvDataId
atp.Status=draft

transformation
Props

TransformationProps 0..1 ref This represents the reference to the applicable
Serialization properties.

Tags: atp.Status=draft

Table A.110: TransformationPropsToServiceInterfaceElementMapping

Class TransformationPropsToServiceInterfaceElementMappingSet

Package M2::AUTOSARTemplates::AdaptivePlatform::ApplicationDesign::SerializationProperties

Note Collection of TransformationPropsToServiceInterfaceElementMappings.

Tags: atp.Status=draft
atp.recommendedPackage=TransformationPropsToServiceInterfaceMappingSets

5

279 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class TransformationPropsToServiceInterfaceElementMappingSet

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable

Attribute Type Mul. Kind Note

mapping TransformationPropsTo
ServiceInterface
ElementMapping

* aggr Mapping that assigns serialization properties to elements
of a ServiceInterface.

Tags: atp.Status=draft

Table A.111: TransformationPropsToServiceInterfaceElementMappingSet

Enumeration TransportLayerProtocolEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note This enumeration allows to choose a TCP/IP transport layer protocol.

Tags: atp.Status=draft

Literal Description

tcp Transmission control protocol

Tags: atp.EnumerationValue=1

udp User datagram protocol

Tags: atp.EnumerationValue=0

Table A.112: TransportLayerProtocolEnum

Enumeration UdpCollectionTriggerEnum

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInstanceDeployment

Note Defines whether the ServiceInterface element (event or method) contributes to the triggering of the
udp data transmission if data collection is enabled.

Tags: atp.Status=draft

Literal Description

always ServiceInterface element will trigger the transmission of the data.

Tags: atp.EnumerationValue=0

never ServiceInterface element will be buffered and will not trigger the transmission of the data.

Tags: atp.EnumerationValue=1

Table A.113: UdpCollectionTriggerEnum

Class UserDefinedServiceInterfaceDeployment

Package M2::AUTOSARTemplates::AdaptivePlatform::ServiceInstanceManifest::ServiceInterfaceDeployment

Note UserDefined configuration settings for a ServiceInterface.

Tags: atp.ManifestKind=ServiceInstanceManifest
atp.Status=draft
atp.recommendedPackage=ServiceInterfaceDeployments

Base ARElement , ARObject , CollectableElement , Identifiable, MultilanguageReferrable, Packageable
Element , Referrable, ServiceInterfaceDeployment , UploadablePackageElement

Attribute Type Mul. Kind Note

5

280 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Class UserDefinedServiceInterfaceDeployment
– – – – –

Table A.114: UserDefinedServiceInterfaceDeployment

Class VariableDataPrototype

Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes

Note A VariableDataPrototype is used to contain values in an ECU application. This means that most likely a
VariableDataPrototype allocates "static" memory on the ECU. In some cases optimization strategies
might lead to a situation where the memory allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on which it is used
executes.

Base ARObject , AtpFeature, AtpPrototype, AutosarDataPrototype, DataPrototype, Identifiable, Multilanguage
Referrable, Referrable

Attribute Type Mul. Kind Note

initValue ValueSpecification 0..1 aggr Specifies initial value(s) of the VariableDataPrototype

Table A.115: VariableDataPrototype

B History of Specification Items

B.1 Constraint and Specification Item History of this document
according to AUTOSAR Release 17-10

B.1.1 Added Traceables in 17-10

Number Heading

[SWS_CM_00007] Service skeleton Field class
[SWS_CM_00112] Method to get the value of a field

[SWS_CM_00113] Method to set the value of a field
[SWS_CM_00114] Registering Getters

[SWS_CM_00115] Existence of RegisterGetHandler method

[SWS_CM_00116] Registering Setters

[SWS_CM_00117] Existence of the RegisterSetHandler method

[SWS_CM_00119] Update Function

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00128] Ensuring the existence of valid Field values

[SWS_CM_00129] Ensuring existence of SetHandler

[SWS_CM_00132] Existence of getter method
5

281 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00133] Existence of the set method
[SWS_CM_00182] Event Receive Handler call serialization
[SWS_CM_00183] Disable service event trigger

[SWS_CM_00252]

[SWS_CM_00253]

[SWS_CM_00254]

[SWS_CM_00255]

[SWS_CM_00256]

[SWS_CM_00257]

[SWS_CM_00258]

[SWS_CM_00259]

[SWS_CM_00260]

[SWS_CM_00262]

[SWS_CM_00263]

[SWS_CM_00264]

[SWS_CM_00265]

[SWS_CM_00266] FilterFunction for incoming event filtering

[SWS_CM_00427] String Data Type with baseTypeSize of 16

[SWS_CM_00428] Element specification typed by String Data Type with baseTypeSize of 16

[SWS_CM_01031] Service fields namespace

[SWS_CM_10268]

[SWS_CM_10269]

[SWS_CM_10270]

[SWS_CM_10271]

[SWS_CM_10272]

[SWS_CM_10273]

[SWS_CM_10274]

[SWS_CM_10275]

[SWS_CM_10276]

[SWS_CM_10277]

[SWS_CM_10278]

[SWS_CM_10279]

[SWS_CM_10280]

[SWS_CM_10281]

[SWS_CM_10282]

[SWS_CM_10283]

[SWS_CM_10284]
5

282 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10285] Responsibility of proper string encoding

[SWS_CM_10286] Encoding mismatch in input configurations

[SWS_CM_10287] Conditions for sending of a SOME/IP event message

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10289] Source of a SOME/IP event message

[SWS_CM_10290] Destination of a SOME/IP event message

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10293] Identifying the right event

[SWS_CM_10294] Deserializing the payload

[SWS_CM_10295] Store the received event data
[SWS_CM_10296] Invoke receive handler
[SWS_CM_10297] Conditions for sending of a SOME/IP request message

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10299] Source of a SOME/IP request message

[SWS_CM_10300] Destination of a SOME/IP request message

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10303] Identifying the right method

[SWS_CM_10304] Deserializing the payload

[SWS_CM_10305] Store the received method data
[SWS_CM_10306] Invoke the method - event driven
[SWS_CM_10307] Invoke the method - polling

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10310] Source of a SOME/IP response message

[SWS_CM_10311] Destination of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10314] Identifying the right method

[SWS_CM_10315] Discarding orphaned responses

[SWS_CM_10316] Deserializing the payload - response mesages

[SWS_CM_10317] Making the Future ready

[SWS_CM_10318] Invoke the notification function
[SWS_CM_10319] Conditions for sending of a SOME/IP event message

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10321] Source of a SOME/IP event message
5

283 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10322] Destination of a SOME/IP event message

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10324] Checks for a received SOME/IP event message

[SWS_CM_10325] Identifying the right event

[SWS_CM_10326] Deserializing the payload

[SWS_CM_10327] Store the received event data
[SWS_CM_10328] Invoke receive handler
[SWS_CM_10329] Conditions for sending of a SOME/IP request message

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10331] Source of a SOME/IP request message

[SWS_CM_10332] Destination of a SOME/IP request message

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10335] Identifying the right method

[SWS_CM_10336] Deserializing the payload

[SWS_CM_10337] Store the received method data
[SWS_CM_10338] Invoke the registered set/get handlers - event driven

[SWS_CM_10339] Invoke the registered set/get handlers - polling

[SWS_CM_10340] Conditions for sending of a SOME/IP response message

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10342] Source of a SOME/IP response message

[SWS_CM_10343] Destination of a SOME/IP response message

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10345] Checks for a received SOME/IP response message

[SWS_CM_10346] Identifying the right method

[SWS_CM_10347] Discarding orphaned responses

[SWS_CM_10348] Deserializing the payload

[SWS_CM_10349] Making the Future ready

[SWS_CM_10350] Invoke the notification function
[SWS_CM_10351] Service application errors

[SWS_CM_10352] Definition of ServiceNotAvailableException

[SWS_CM_10353] Use of ServiceNotAvailableException

[SWS_CM_10354] Definition of ApplicationErrorException

[SWS_CM_10355] Use of ApplicationErrorException

[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error
5

284 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10359] Deserializing the payload - error response mesages

[SWS_CM_10361]

[SWS_CM_10362] Raising checked exceptions for application errors

[SWS_CM_10370] Data Type definitions for Application Errors in Common header file

[SWS_CM_10371] Context of thrown checked exceptions

[SWS_CM_11262]

[SWS_CM_11263]

[SWS_CM_90101] Secure channel creation
[SWS_CM_90102] Using secure channels

[SWS_CM_90103] TLS secure channel for methods using reliable transport

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90107] TLS secure channel for fields
[SWS_CM_90108] SecOC secure channel for methods
[SWS_CM_90109] SecOC secure channel for events
[SWS_CM_90110] SecOC secure channel for fields
[SWS_CM_90401]

[SWS_CM_90402]

[SWS_CM_90403]

[SWS_CM_90404]

[SWS_CM_90405]

[SWS_CM_90406]

[SWS_CM_90407]

[SWS_CM_90408]

[SWS_CM_90409]

[SWS_CM_90410]

[SWS_CM_90411]

[SWS_CM_90412]

[SWS_CM_90413]

[SWS_CM_90414]

[SWS_CM_90415]

[SWS_CM_90416]

[SWS_CM_90417]

[SWS_CM_90418]

[SWS_CM_90419]

[SWS_CM_90420] E2ECheckStatus of a sample
5

285 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_90421] ara::com:state_machine::E2E check status

[SWS_CM_90422] ara::com:state_machine::State

[SWS_CM_90423] E2EResult
[SWS_CM_90424] Provide E2E Result
[SWS_CM_90425] Namespace of Sample Pointer

[SWS_CM_90430]

[SWS_CM_90431]

[SWS_CM_90432] Functionality of Sample Pointer

Table B.1: Added Traceables in 17-10

B.1.2 Changed Traceables in 17-10

Number Heading

[SWS_CM_00122] Find service with immediately returned request

[SWS_CM_00123] Find service with handler registration

[SWS_CM_00124] Find service handler behavior
[SWS_CM_00171] Receive a service event using polling

[SWS_CM_00181] Enable service event trigger

[SWS_CM_00195] Retrieving results of the method call

[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00205] SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00300] Event Cache Update Policy

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00303] Find Service Handle
[SWS_CM_00304] Service Handle Container
[SWS_CM_00305] Find Service Handler
[SWS_CM_00306] Sample Pointer

[SWS_CM_00307] Sample Container

[SWS_CM_00308] Sample Allocatee Pointer

[SWS_CM_00309] Event Receive Handler
[SWS_CM_00310] Subscription State

[SWS_CM_00312] Handle Type Class

[SWS_CM_00346] Promise::set_value, forwarding reference version

[SWS_CM_00406] String Data Type with baseTypeSize of 8
5

286 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00409] Associative Map Data Type

[SWS_CM_00420] Element specification typed by String Data Type with baseTypeSize of 8

[SWS_CM_01010] Service Identifier and Service Version Classes
[SWS_CM_01016] Data Type definitions for AUTOSAR Data Types in Common header file

[SWS_CM_01019] Data Type declarations in Types header file

[SWS_CM_10017]

[SWS_CM_10034]

[SWS_CM_10059]

[SWS_CM_10242] UTF-8 Strings

[SWS_CM_10243] UTF-16 Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10252]

[SWS_CM_10253]

[SWS_CM_10256]

[SWS_CM_10257]

[SWS_CM_10258]

[SWS_CM_10260]

[SWS_CM_10262] Insertion of an associative map length field

[SWS_CM_10264] Size of the associative map length field

[SWS_CM_10267] Insertion of an associative map length field

Table B.2: Changed Traceables in 17-10

B.1.3 Deleted Traceables in 17-10

Number Heading

[SWS_CM_01003] Inclusion protection

Table B.3: Deleted Traceables in 17-10

287 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

B.2 Constraint and Specification Item History of this document
according to AUTOSAR Release 18-03

B.2.1 Added Traceables in 18-03

Number Heading

[SWS_CM_00008] Service proxy Field class

[SWS_CM_00172] Method to update the event cache

[SWS_CM_00173] Method to get the cached samples

[SWS_CM_00174] Method to clean-up the event cache

[SWS_CM_00313] Call SubscriptionStateChangeHandler with kSubscriptionPending

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed

[SWS_CM_00315] Re-establishing an active subscription

[SWS_CM_00316] Query Subscription State

[SWS_CM_00383] Extended Find Service Handler
[SWS_CM_00412] Union Data Type

[SWS_CM_00417] Element specification typed by Union

[SWS_CM_00448] Element specification typed by Variant

[SWS_CM_00449] Variant Data Type

[SWS_CM_00450] Maximum size of allocated vector memory

[SWS_CM_00451] Namespace specification for an ImplementationDataType of category VEC-
TOR

[SWS_CM_01032]
Accessing optional record elements inside a Structure Implementation
Data Type that are serialized with the Tag-Length-Value principle.

[SWS_CM_01033] Optional Class Template

[SWS_CM_01034] Optional default constructor

[SWS_CM_01035] Optional move constructor

[SWS_CM_01036] Optional copy constructor

[SWS_CM_01037] Optional destructor

[SWS_CM_01038] Optional move assignment operator

[SWS_CM_01039] Optional default copy assignment operator

[SWS_CM_01040] Optional function to get contained value

[SWS_CM_01041] Optional function to check availability of contained value

[SWS_CM_01042] Optional bool operator

[SWS_CM_01043] Optional reset function

[SWS_CM_01044]

[SWS_CM_01045]
Every record element inside a struct that contains at least one optional record
element shall be serialized based on the Tag-Length-Value principle.

[SWS_CM_01046] Regarding the definition of tlvDataId see [TPS_MANI_01097] and [con-
str_1532] for details.

5

288 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_01047] Every record element shall have a wire type assigned when the optionality
is used for at least one record element inside the struct.

[SWS_CM_01048] Every record element shall have a tag assigned when the optionality is used
for at least one record element inside the struct.

[SWS_CM_01049] The tlvDataIds shall be synchronized between the interacting proxy and
skeleton instances.

[SWS_CM_01050] Variant Class Template

[SWS_CM_01051] Variant default constructor
[SWS_CM_01052] Variant move constructor
[SWS_CM_01053] Variant copy constructor

[SWS_CM_01054] Variant destructor
[SWS_CM_01055] Variant move assignment operator

[SWS_CM_01056] Variant default copy assignment operator

[SWS_CM_01057] Variant function to return the zero-based index of the alternative
[SWS_CM_01058] Variant function to check if the Variant is in invalid state
[SWS_CM_10040]

[SWS_CM_10235]

[SWS_CM_10244] UTF-16LE Strings

[SWS_CM_10372] Inclusion of Implementation Types header files

[SWS_CM_10373] Implementation Types header files existence

[SWS_CM_10374] Data Type definitions for AUTOSAR Data Types in Implementation Types
header files

[SWS_CM_10375] Implementation Types header file namespace

[SWS_CM_10376] Skip CompuScales with non-point range

[SWS_CM_10377] Sending SOME/IP SubscribeEventgroup messages - initial

[SWS_CM_10378] Sending SOME/IP StopSubscribeEventgroup messages

[SWS_CM_10379] Silently discarding SOME/IP event messages for unsubscribed events

[SWS_CM_10380] Silently discarding SOME/IP event messages for unsubscribed events

[SWS_CM_10381] Sending SOME/IP SubscribeEventgroup messages - renewal

[SWS_CM_10382] Calling stop find service for already stopped finds

[SWS_CM_10384] Change of Service Interface Deployment

[SWS_CM_10385] Change of Service Instance Deployment

[SWS_CM_10386] Change of Network Configuration

[SWS_CM_10387] Data accumulation for UDP data transmission
[SWS_CM_10388] Enabling of data accumulation for UDP data transmission

[SWS_CM_10389] Configuration of a data accumulation on a ProvidedServiceInstance for
transmission over UDP

[SWS_CM_10390] Configuration of a data accumulation on a RequiredSomeipServiceIn-
stance for transmission over UDP

5

289 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_11000]

[SWS_CM_11001] Mapping of OfferService method

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance

[SWS_CM_11003] Assigning a DDS Topic and a DDS DataWriter to every Event in the Servi-
ceInterface

[SWS_CM_11004] Adding Service and Service Instance IDs to the DDS Domain Participant’s
USER_DATA QoS Policy

[SWS_CM_11005] Mapping of StopOfferService method

[SWS_CM_11006] Mapping of FindService method

[SWS_CM_11007] Finding a DDS DomainParticipant suitable for performing client-side opera-
tions

[SWS_CM_11008] Creating a DDS DomainParticipant suitable for performing client-side opera-
tions

[SWS_CM_11009] Discovering remote Service Instances through DDS DomainParticipants

[SWS_CM_11010] Mapping of StartFindService method

[SWS_CM_11011] Defining a DDS BuiltinParticipantListener

[SWS_CM_11012] Binding a BuiltinParticipantListener to a DDS DomainParticipant

[SWS_CM_11013] Mapping of StopFindService method

[SWS_CM_11014] Unbinding a BuiltinParticipantListener from a DDS DomainParticipant

[SWS_CM_11015] Mapping Events to DDS Topics

[SWS_CM_11016] DDS Topic datatype definition

[SWS_CM_11017] Mapping of Send method

[SWS_CM_11018] Mapping of Subscribe method

[SWS_CM_11019] Creating a DDS DataReader for event subscription

[SWS_CM_11020] Defining a DDS DataReaderListener

[SWS_CM_11021] Mapping of Unsubscribe method

[SWS_CM_11022] Mapping of GetSubscriptionState method

[SWS_CM_11023] Mapping of Update method

[SWS_CM_11024] Mapping of GetCachedSamples method

[SWS_CM_11025] Mapping of SetReceiveHandler method

[SWS_CM_11026] Mapping of UnsetReceiveHandler method

[SWS_CM_11027] Mapping of SetSubscriptionStateHandler method

[SWS_CM_11028] Mapping of UnsetSubscriptionStateHandler method

[SWS_CM_11041]

[SWS_CM_11042]

[SWS_CM_11043]

[SWS_CM_11044] Serialization of Strings of baseTypeSize 8

[SWS_CM_11045] Serialization of Strings of baseTypeSize 16
5

290 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_11046] Serialization of ImplementationDataType of category VECTOR

[SWS_CM_11047] Serialization of ImplementationDataType of category ARRAY

[SWS_CM_11048]

[SWS_CM_90001] Restrictions on executing methods

[SWS_CM_90002] Restrictions on sending events

[SWS_CM_90003] Restrictions on receiving events

[SWS_CM_90004] Process separation of network and language binding for access control

[SWS_CM_90433]

[SWS_CM_90434] Provision of a Fire and Forget method

[SWS_CM_90435] Initiate a Fire and Forget method call

[SWS_CM_90436] No checked exceptions thrown for Fire and Forget method calls

[SWS_CM_90437] Send event where Communication Management is responsible for the data

[SWS_CM_90438] Allocating data for event transfer

Table B.4: Added Traceables in 18-03

B.2.2 Changed Traceables in 18-03

Number Heading

[SWS_CM_00002] Service skeleton class
[SWS_CM_00003] Service skeleton Event class
[SWS_CM_00004] Service proxy class

[SWS_CM_00005] Service proxy Event class

[SWS_CM_00006] Service proxy Method class

[SWS_CM_00007] Service skeleton Field class
[SWS_CM_00102] Uniqueness of offered service

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00123] Find service with handler registration

[SWS_CM_00124] Find service handler behavior
[SWS_CM_00141] Method to subscribe to a service event
[SWS_CM_00162] Send event where application is responsible for the data

[SWS_CM_00201] Start of service discovery protocol on Server side

[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00204] SOME/IP StopOffer message

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message
5

291 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message

[SWS_CM_00209] Start of service discovery protocol on Client side

[SWS_CM_00252]

[SWS_CM_00253]

[SWS_CM_00254]

[SWS_CM_00255]

[SWS_CM_00256]

[SWS_CM_00257]

[SWS_CM_00258]

[SWS_CM_00259]

[SWS_CM_00260]

[SWS_CM_00262]

[SWS_CM_00263]

[SWS_CM_00264]

[SWS_CM_00265]

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00303] Find Service Handle
[SWS_CM_00306] Sample Pointer

[SWS_CM_00310] Subscription State

[SWS_CM_00311] Subscription State Changed Handler

[SWS_CM_00312] Handle Type Class

[SWS_CM_00400] Naming of data types by short name

[SWS_CM_00401] Naming of data types by symbol

[SWS_CM_00402] Primitive Data Type

[SWS_CM_00403] Array Data Type with one dimension

[SWS_CM_00404] Array Data Type with more than one dimension

[SWS_CM_00405] Structure Data Type

[SWS_CM_00406] String Data Type with baseTypeSize of 8

[SWS_CM_00407] Vector Data Type with one dimension

[SWS_CM_00408] Vector Data Type with more than one dimension

[SWS_CM_00409] Associative Map Data Type

[SWS_CM_00410] Data Type redefinition

[SWS_CM_00411] Avoid Data Type redeclaration

[SWS_CM_00413] Element specification typed by Base Type

[SWS_CM_00414] Element specification typed by Implementation Data Type

[SWS_CM_00415] Element specification typed by Array
5

292 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00416] Element specification typed by Structure

[SWS_CM_00418] Element specification typed by Vector

[SWS_CM_00419] Element specification typed by Map

[SWS_CM_00420] Element specification typed by String Data Type with baseTypeSize of 8

[SWS_CM_00421] Provide data type definitions

[SWS_CM_00422] Reject data type definitions

[SWS_CM_00423] Data Type Mapping

[SWS_CM_00424] Enumeration Data Type

[SWS_CM_00425] Definition of enumerators
[SWS_CM_00426] Reject incomplete Enumeration Data Types

[SWS_CM_00427] String Data Type with baseTypeSize of 16

[SWS_CM_00428] Element specification typed by String Data Type with baseTypeSize of 16

[SWS_CM_01005] Namespace of Service header files

[SWS_CM_01008] Common header file namespace

[SWS_CM_01010] Service Identifier and Service Version Classes
[SWS_CM_01015] Service methods namespace

[SWS_CM_01017] Service Identifier Type definitions in Common header file

[SWS_CM_01020] Folder structure
[SWS_CM_01031] Service fields namespace

[SWS_CM_10013]

[SWS_CM_10016]

[SWS_CM_10017]

[SWS_CM_10034]

[SWS_CM_10036]

[SWS_CM_10037]

[SWS_CM_10042]

[SWS_CM_10053]

[SWS_CM_10054]

[SWS_CM_10055]

[SWS_CM_10056]

[SWS_CM_10057]

[SWS_CM_10058]

[SWS_CM_10059]

[SWS_CM_10060]

[SWS_CM_10070]

[SWS_CM_10072]

[SWS_CM_10076]
5

293 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10169]

[SWS_CM_10172]

[SWS_CM_10218]

[SWS_CM_10219]

[SWS_CM_10222]

[SWS_CM_10234]

[SWS_CM_10242] UTF-8 Strings

[SWS_CM_10243] UTF-16BE Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10248]

[SWS_CM_10252]

[SWS_CM_10253]

[SWS_CM_10256]

[SWS_CM_10257]

[SWS_CM_10258]

[SWS_CM_10259]

[SWS_CM_10260]

[SWS_CM_10261] Serialization of an associative map

[SWS_CM_10262] Insertion of an associative map length field

[SWS_CM_10264] Size of the associative map length field

[SWS_CM_10265] Serialization of associative map elements

[SWS_CM_10266] Applicability of mandatory padding after variable length data elements

[SWS_CM_10267] Insertion of an associative map length field

[SWS_CM_10268]

[SWS_CM_10269]

[SWS_CM_10270]

[SWS_CM_10271]

[SWS_CM_10272]

[SWS_CM_10273]

[SWS_CM_10274]

[SWS_CM_10275]

[SWS_CM_10276]

[SWS_CM_10277]

[SWS_CM_10278]

[SWS_CM_10279]

[SWS_CM_10280]
5

294 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10281]

[SWS_CM_10282]

[SWS_CM_10283]

[SWS_CM_10284]

[SWS_CM_10285] Responsibility of proper string encoding

[SWS_CM_10286] Encoding mismatch in input configurations

[SWS_CM_10287] Conditions for sending of a SOME/IP event message

[SWS_CM_10288] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10289] Source of a SOME/IP event message

[SWS_CM_10290] Destination of a SOME/IP event message

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10293] Identifying the right event

[SWS_CM_10294] Deserializing the payload

[SWS_CM_10295] Store the received event data
[SWS_CM_10296] Invoke receive handler
[SWS_CM_10297] Conditions for sending of a SOME/IP request message

[SWS_CM_10298] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10299] Source of a SOME/IP request message

[SWS_CM_10300] Destination of a SOME/IP request message

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10303] Identifying the right method

[SWS_CM_10304] Deserializing the payload

[SWS_CM_10305] Store the received method data
[SWS_CM_10306] Invoke the method - event driven
[SWS_CM_10307] Invoke the method - polling

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10309] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10310] Source of a SOME/IP response message

[SWS_CM_10311] Destination of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10314] Identifying the right method

[SWS_CM_10315] Discarding orphaned responses

[SWS_CM_10316] Deserializing the payload - response messages

[SWS_CM_10317] Making the Future ready
5

295 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10318] Invoke the notification function
[SWS_CM_10319] Conditions for sending of a SOME/IP event message

[SWS_CM_10320] Transport protocol for sending of a SOME/IP event message

[SWS_CM_10321] Source of a SOME/IP event message

[SWS_CM_10322] Destination of a SOME/IP event message

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10324] Checks for a received SOME/IP event message

[SWS_CM_10325] Identifying the right event

[SWS_CM_10326] Deserializing the payload

[SWS_CM_10327] Store the received event data
[SWS_CM_10328] Invoke receive handler
[SWS_CM_10329] Conditions for sending of a SOME/IP request message

[SWS_CM_10330] Transport protocol for sending of a SOME/IP request message

[SWS_CM_10331] Source of a SOME/IP request message

[SWS_CM_10332] Destination of a SOME/IP request message

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10335] Identifying the right method

[SWS_CM_10336] Deserializing the payload

[SWS_CM_10337] Store the received method data
[SWS_CM_10338] Invoke the registered set/get handlers - event driven

[SWS_CM_10339] Invoke the registered set/get handlers - polling

[SWS_CM_10340] Conditions for sending of a SOME/IP response message

[SWS_CM_10341] Transport protocol for sending of a SOME/IP response message

[SWS_CM_10342] Source of a SOME/IP response message

[SWS_CM_10343] Destination of a SOME/IP response message

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10345] Checks for a received SOME/IP response message

[SWS_CM_10346] Identifying the right method

[SWS_CM_10347] Discarding orphaned responses

[SWS_CM_10348] Deserializing the payload

[SWS_CM_10349] Making the Future ready

[SWS_CM_10350] Invoke the notification function
[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error
5

296 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10359] Deserializing the payload - error response mesages

[SWS_CM_10361]

[SWS_CM_11262]

[SWS_CM_11263]

[SWS_CM_90103] TLS secure channel for methods using reliable transport

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90401]

[SWS_CM_90402]

[SWS_CM_90403]

[SWS_CM_90404]

[SWS_CM_90405]

[SWS_CM_90406]

[SWS_CM_90407]

[SWS_CM_90408]

[SWS_CM_90409]

[SWS_CM_90410]

[SWS_CM_90411]

[SWS_CM_90412]

[SWS_CM_90413]

[SWS_CM_90414]

[SWS_CM_90416]

[SWS_CM_90417]

[SWS_CM_90418]

[SWS_CM_90419]

[SWS_CM_90420] E2ECheckStatus of a sample

[SWS_CM_90421] ara::com:E2E_state_machine::E2Echeckstatus

[SWS_CM_90422] ara::com:E2E_state_machine::E2EState

[SWS_CM_90423] E2EResult
[SWS_CM_90424] Provide E2E Result
[SWS_CM_90430]

[SWS_CM_90431]

Table B.5: Changed Traceables in 18-03

297 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

B.2.3 Deleted Traceables in 18-03

Number Heading

[SWS_CM_00121] Method to find a service
[SWS_CM_00161] Method to send a service event
[SWS_CM_00163] Send event where Communication Management is responsible for the data

[SWS_CM_00171] Receive a service event using polling

[SWS_CM_01014] No memory allocation in header files

[SWS_CM_01016] Data Type definitions for AUTOSAR Data Types in Common header file

[SWS_CM_90425] Namespace of Sample Pointer

Table B.6: Deleted Traceables in 18-03

B.3 Constraint and Specification Item History of this document
according to AUTOSAR Release 18-10

B.3.1 Added Traceables in 18-10

Number Heading

[SWS_CM_00118] Method Instance Specifier Translation

[SWS_CM_00134] Copy semantics of service skeleton class

[SWS_CM_00135] Move semantics of service skeleton class
[SWS_CM_00136] Copy semantics of service proxy class

[SWS_CM_00137] Move semantics of service proxy class

[SWS_CM_00152] Creation of service skeleton using Instance Spec

[SWS_CM_00153] Creation of service skeleton using Instance ID Container

[SWS_CM_00317] Copy semantics of handle Type Class

[SWS_CM_00318] Move semantics of handle Type Class

[SWS_CM_00333] Set Subscription State change handler

[SWS_CM_00334] Unset Subscription State change handler

[SWS_CM_00350] Instance Specifier Class

[SWS_CM_00452] Usage of attribute arraySize of an CppImplementationDataType with
category VECTOR

[SWS_CM_00502] CustomCppImplementationDataType of category ARRAY

[SWS_CM_00503] StdCppImplementationDataType of category VECTOR with one di-
mension defined with an Allocator

[SWS_CM_00504] Supported Primitive Cpp Implementation Data Typess

[SWS_CM_00505] StdCppImplementationDataType with category ASSOCIATIVE_MAP
defined with an Allocator

[SWS_CM_00506] CustomCppImplementationDataType of category ASSOCIATIVE_MAP
5

298 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00507] CustomCppImplementationDataType of category VECTOR

[SWS_CM_00508] CustomCppImplementationDataType of category VARIANT

[SWS_CM_00509] StdCppImplementationDataType with the category STRING with a de-
fined Allocator

[SWS_CM_00622] Find service with immediately returned request using Instance Specifier

[SWS_CM_00623] Find service with handler registration using Instance Specifier

[SWS_CM_01059] Variant destructor
[SWS_CM_01060] Variant move assignment operator

[SWS_CM_01061] Variant default copy assignment operator

[SWS_CM_01062] Variant converting assignment operator

[SWS_CM_01063] Variant function to return the zero-based index of the alternative
[SWS_CM_01064] Variant function to check if the Variant is in invalid state
[SWS_CM_01065] Variant function to swap two Variants

[SWS_CM_01066] Variant function to create a new value in-place, in an existing Variant object

[SWS_CM_01067] Variant function to create a new value in-place, in an existing Variant object
using an initializer list

[SWS_CM_01068] Variant function to create a new value in-place, in an existing Variant object
by destoying and initializing the contained value

[SWS_CM_01069] Variant function to create a new value in-place, in an existing Variant object
by destoying and initializing the contained value using an initializer list

[SWS_CM_10088]

[SWS_CM_10098]

[SWS_CM_10099]

[SWS_CM_10174] Mix of signal-based and SOME/IP communication

[SWS_CM_10226]

[SWS_CM_10227]

[SWS_CM_10250]

[SWS_CM_10251]

[SWS_CM_10254]

[SWS_CM_10255]

[SWS_CM_10383] GetHandle function to return the proxy instance creation handle

[SWS_CM_10391]

[SWS_CM_10392] ScaleLinearAndTexttable Class Template

[SWS_CM_10393] ScaleLinearAndTexttable static assertion
[SWS_CM_10394] ScaleLinearAndTexttable underlying type deduction

[SWS_CM_10395] ScaleLinearAndTexttable default constructor
[SWS_CM_10396] ScaleLinearAndTexttable copy constructor

[SWS_CM_10397] ScaleLinearAndTexttable constructor with enum class argument
5

299 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10398] ScaleLinearAndTexttable constructor with underlying type argument

[SWS_CM_10399] ScaleLinearAndTexttable copy assignment operator

[SWS_CM_10400] ScaleLinearAndTexttable assignment operator with enum class argur-
ment

[SWS_CM_10401]
ScaleLinearAndTexttable assignment operator with underlying type ar-
gument

[SWS_CM_10402] ScaleLinearAndTexttable cast operator to the underlying type

[SWS_CM_10403] Equal to operator between two ScaleLinearAndTexttable objects

[SWS_CM_10404]
Equal to operators between ScaleLinearAndTexttable and an underly-
ing type

[SWS_CM_10405] Equal to operators between ScaleLinearAndTexttables and an enum
class

[SWS_CM_10406] Not equal to operator between two ScaleLinearAndTexttable objects

[SWS_CM_10407]
Not equal to operators between ScaleLinearAndTexttable and an un-
derlying type

[SWS_CM_10408] Not equal to operators between ScaleLinearAndTexttables and an
enum class

[SWS_CM_10409] Scale Linear And Textable type definition

[SWS_CM_10410] InstanceIdentifier check during the creation of service skeleton

[SWS_CM_10411] Service method processing modes

[SWS_CM_10412] Invoking GetHandlers

[SWS_CM_10413] Invoking SetHandlers

[SWS_CM_10414] Initiate a method call
[SWS_CM_10415] Notify the Field value after a call to the SetHandler function

[SWS_CM_10428] payload representing application error

[SWS_CM_10429] Identifying the right application error in a message with Message Type set to
ERROR (0x81)

[SWS_CM_10430] Handling invalid messages with Message Type set to RESPONSE (0x81)

[SWS_CM_10431] Mapping of ara::core::ErrorCode

[SWS_CM_10432]

[SWS_CM_10433] Declaration of Construction Token
[SWS_CM_10434] Creation of a Construction Token
[SWS_CM_10435] Exception-less creation of service skeleton using Instance ID

[SWS_CM_10436] Exception-less creation of service skeleton using Instance Spec

[SWS_CM_10437] Exception-less creation of service skeleton using Instance ID Container

[SWS_CM_10438] Exception-less creation of service proxy

[SWS_CM_10450] InstanceSpecifier check during the creation of service skeleton

[SWS_CM_10451] InstanceIdentifierContainer check during the creation of service
skeleton

[SWS_CM_10452] InstanceSpecifier translation to InstanceIdentifiers
5

300 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10590] Abstract Network Protocol Binding

[SWS_CM_11029] Assigning a DDS Request and Reply Topic, and DataWriters and DataRead-
ers, to the Methods in the ServiceInterface

[SWS_CM_11030] Assigning a DDS Topic and a DDS DataWriter to every Field in the ServiceIn-
terface with its hasNotifier attribute equal to true

[SWS_CM_11031] Assigning a DDS Request and Reply Topic, and DataWriters and DataRead-
ers, to the Field Getters/Setters in the ServiceInterface

[SWS_CM_11040] DDS standard serialization rules

[SWS_CM_11049] DDS serialization of CppImplementationDataType of category ASSO-
CIATIVE_MAP

[SWS_CM_11050] DDS serialization of CppImplementationDataType of category VARI-
ANT

[SWS_CM_11100] Mapping Methods to DDS Service Methods and Topics

[SWS_CM_11101] DDS Service Request Topic data type definition

[SWS_CM_11102] DDS Service Reply Topic data type definition

[SWS_CM_11103] Creating a DataWriter to handle method requests on the client side

[SWS_CM_11104] Creating a DataReader to handle method responses on the client side

[SWS_CM_11105] Creating a DataReader to handle method requests on the server side

[SWS_CM_11106] Creating a DataWriter to handle method responses on the server side

[SWS_CM_11107] Calling a service method from the client side

[SWS_CM_11108] Notifying the client of a response to a method call

[SWS_CM_11109] Processing a method call on the server side (event driven)

[SWS_CM_11110] Creating a DataReaderListener to process asynchronous requests on the
server side

[SWS_CM_11111] Processing a method call on the server side (polling)

[SWS_CM_11112] Sending a method call response from the server side

[SWS_CM_11130] Mapping Fields with hasNotifier attribute to DDS Topics

[SWS_CM_11131] Field Notifier DDS Topic data type definition

[SWS_CM_11132] Mapping of Send method

[SWS_CM_11133] Mapping of Subscribe method

[SWS_CM_11134] Creating a DDS DataReader for field subscription

[SWS_CM_11135] Creating a DDS DataReaderListener for field subscription

[SWS_CM_11136] Mapping of Unsubscribe method

[SWS_CM_11137] Mapping of GetSubscriptionState method

[SWS_CM_11138] Mapping of Update method

[SWS_CM_11139] Mapping of GetCachedSamples method

[SWS_CM_11140] Mapping of SetReceiveHandler method

[SWS_CM_11141] Mapping of UnsetReceiveHandler method
5

301 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_11142] Mapping of SetSubscriptionStateHandler method

[SWS_CM_11143] Mapping of UnsetSubscriptionStateHandler method

[SWS_CM_11144] Mapping of Field Get/Set methods to DDS Service Methods and Topics

[SWS_CM_11145] DDS Service Request Topic data type definition for Field getter and setter
operations

[SWS_CM_11146] DDS Service Reply Topic data type definition for Field getter and setter oper-
ations

[SWS_CM_11147] Creating a DataWriter to handle get/set requests on the client side

[SWS_CM_11148] Creating a DataReader to handle get/set responses on the client side

[SWS_CM_11149] Creating a DataReader to handle get/set requests on the server side

[SWS_CM_11150] Creating a DataWriter to handle get/set responses on the server side

[SWS_CM_11151] Calling get/set method associated with a field from the client side

[SWS_CM_11152] Notifying the client of the response to the get/set method call

[SWS_CM_11153] Processing a get/set method call associated with a field on the server side
(event driven)

[SWS_CM_11154] Creating a DataReaderListener to process asynchronous requests for field
getters and setters on the server side

[SWS_CM_11155] Processing a get/set method call associated with a field on the server side
(polling)

[SWS_CM_11156] Sending a response for a get/set method call associated with a field from the
server side

[SWS_CM_11264] Definition general ara::com errors

[SWS_CM_11265] Use of general ara::com errors

[SWS_CM_11266] Definition of Application Errors

[SWS_CM_90005] Restrictions on offering services

[SWS_CM_90006] Restrictions on using services

[SWS_CM_90111] Behavior of a ServiceProxy over TLS before successful completion of the
handshake

[SWS_CM_90112] Behavior of a ServiceProxy over DTLS before successful completion of the
handshake

[SWS_CM_90113] Behavior of a ServiceSkeleton over TLS before successful completion of the
handshake

[SWS_CM_90114] Behavior of a ServiceSkeleton over DTLS before successful completion of the
handshake

[SWS_CM_90115] SecOC secure channel for methods using unreliable transport

[SWS_CM_90116] SecOC secure channel for events using unreliable transport

[SWS_CM_90117] IPsec secure channel between communication nodes
[SWS_CM_90118] Transport of Service communication over an IPsec security association

[SWS_CM_90119] Behavior of a creating ServiceProxy over TLS or DTLS

[SWS_CM_90120] TLS client role of a Proxy
5

302 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_90121] TLS server role of a Skeleton
[SWS_CM_90201] Secure channel creation
[SWS_CM_90202] Using secure channels

[SWS_CM_90203] TLS secure channel for methods using reliable transport

[SWS_CM_90204] DTLS secure channel for methods using unreliable transport

[SWS_CM_90205] TLS secure channel for events using reliable transport

[SWS_CM_90206] DTLS secure channel for events using unreliable transport

[SWS_CM_90207] TLS secure channel for fields

[SWS_CM_90209] IPsec secure channel between communication nodes and Transport of Ser-
vice communication over an IPsec security association

[SWS_CM_90210] Using the DDS Security standard plug-ins in the Adaptive Platform

Table B.7: Added Traceables in 18-10

B.3.2 Changed Traceables in 18-10

Number Heading

[SWS_CM_00102] Uniqueness of offered service

[SWS_CM_00103] Protocol where a service is offered
[SWS_CM_00112] Method to get the value of a field

[SWS_CM_00113] Method to set the value of a field
[SWS_CM_00114] Registering Getters

[SWS_CM_00116] Registering Setters

[SWS_CM_00120] Provision of an update notification event for a Field

[SWS_CM_00122] Find service with immediately returned request using Instance ID

[SWS_CM_00123] Find service with handler registration using Instance ID

[SWS_CM_00124] Find service handler behavior
[SWS_CM_00128] Ensuring the existence of valid Field values

[SWS_CM_00129] Ensuring the existence of SetHandler

[SWS_CM_00130] Creation of service skeleton using Instance ID

[SWS_CM_00131] Creation of service proxy

[SWS_CM_00172] Method to update the event cache

[SWS_CM_00191] Provision of method
[SWS_CM_00192] Synchronous behavior of method call

[SWS_CM_00193] Asynchronous behavior of method call with polling

[SWS_CM_00194] Cancel the method call
[SWS_CM_00195] Retrieving results of the method call

5

303 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00196] Initiate a method call
[SWS_CM_00197] Asynchronous behavior of method call with notification

[SWS_CM_00198] Set service method processing mode

[SWS_CM_00199] Process Service method invocation
[SWS_CM_00202] SOME/IP FindService message

[SWS_CM_00203] SOME/IP OfferService message

[SWS_CM_00205] Content of SOME/IP SubscribeEventgroup message

[SWS_CM_00206] SOME/IP SubscribeEventgroupAck message

[SWS_CM_00207] Content of SOME/IP StopSubscribeEventgroup message

[SWS_CM_00208] SOME/IP SubscribeEventgroupNack message

[SWS_CM_00257]

[SWS_CM_00258]

[SWS_CM_00264]

[SWS_CM_00302] Instance Identifier Class
[SWS_CM_00304] Service Handle Container
[SWS_CM_00306] Sample Pointer

[SWS_CM_00307] Sample Container

[SWS_CM_00312] Handle Type Class

[SWS_CM_00314] Call SubscriptionStateChangeHandler with kSubscribed

[SWS_CM_00315] Re-establishing an active subscription

[SWS_CM_00316] Query Subscription State

[SWS_CM_00383] Find Service Handler
[SWS_CM_00400] Naming of data types by short name

[SWS_CM_00402] Primitive fixed width integer types

[SWS_CM_00403] StdCppImplementationDataType of category ARRAY with one dimension

[SWS_CM_00404] Array Data Type with more than one dimension

[SWS_CM_00405] Structure Data Type

[SWS_CM_00406] StdCppImplementationDataType with the category STRING

[SWS_CM_00407] StdCppImplementationDataType of category VECTOR with one di-
mension defined without an Allocator

[SWS_CM_00408] Vector Data Type with more than one dimension

[SWS_CM_00409] StdCppImplementationDataType with category ASSOCIATIVE_MAP
defined without an Allocator

[SWS_CM_00410] Data Type redefinition

[SWS_CM_00411] Avoid Data Type redeclaration

[SWS_CM_00414] Element specification typed by CppImplementationDataType

[SWS_CM_00421] Provide data type definitions

[SWS_CM_00423] Data Type Mapping
5

304 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00424] Enumeration Data Type

[SWS_CM_00425] Definition of enumerators
[SWS_CM_00426] Reject incomplete Enumeration Data Types

[SWS_CM_00449] Variant Data Type

[SWS_CM_00450] Define the maximum size of allocated vector memory

[SWS_CM_01004] Inclusion of common header file
[SWS_CM_01008] Namespace for Service Identifier Type definitions

[SWS_CM_01010] Service Identifier and Service Version Classes
[SWS_CM_01015] Service methods namespace

[SWS_CM_01019] Data Type declarations in Types header file

[SWS_CM_01020] Folder structure

[SWS_CM_01032]
Accessing optional record elements inside a Structure Cpp Implemen-
tation Data Type that are serialized with the Tag-Length-Value principle.

[SWS_CM_01045] Use cases for the definition of tlvDataId
[SWS_CM_01046] Definition of tlvDataId

[SWS_CM_01049] Synchronization of tlvDataIds between the interacting proxy and skeleton
instances.

[SWS_CM_01050] Variant Class Template

[SWS_CM_01054] Variant converting constructor

[SWS_CM_01055] Variant explicit converting constructor with specified alternative

[SWS_CM_01056] Variant explicit converting constructor with specified alternative and initial-
izer list

[SWS_CM_01057] Variant explicit converting constructor with alternative specified by index

[SWS_CM_01058] Variant explicit converting constructor with alternative specified by index
and initializer list

[SWS_CM_10017]

[SWS_CM_10036]

[SWS_CM_10042]

[SWS_CM_10059]

[SWS_CM_10070]

[SWS_CM_10234]

[SWS_CM_10235]

[SWS_CM_10242] Model representation of UTF-8 Strings

[SWS_CM_10245] Serialization of strings

[SWS_CM_10247] Deserialization of strings

[SWS_CM_10253]

[SWS_CM_10262] Insertion of an associative map length field

[SWS_CM_10265] Serialization of associative map elements

[SWS_CM_10285] Responsibility of proper string encoding
5

305 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10291] Content of the SOME/IP event message

[SWS_CM_10292] Checks for a received SOME/IP event message

[SWS_CM_10294] Deserializing the payload

[SWS_CM_10301] Content of the SOME/IP request message

[SWS_CM_10302] Checks for a received SOME/IP request message

[SWS_CM_10304] Deserializing the payload

[SWS_CM_10308] Conditions for sending of a SOME/IP response message

[SWS_CM_10312] Content of the SOME/IP response message

[SWS_CM_10313] Checks for a received SOME/IP response message

[SWS_CM_10316] Deserializing the payload - normal response messages

[SWS_CM_10317] Making the Future ready

[SWS_CM_10323] Content of the SOME/IP event message

[SWS_CM_10324] Checks for a received SOME/IP event message

[SWS_CM_10326] Deserializing the payload

[SWS_CM_10333] Content of the SOME/IP request message

[SWS_CM_10334] Checks for a received SOME/IP request message

[SWS_CM_10336] Deserializing the payload

[SWS_CM_10339] Invoke the registered set/get handlers - polling

[SWS_CM_10344] Content of the SOME/IP response message

[SWS_CM_10345] Checks for a received SOME/IP response message

[SWS_CM_10348] Deserializing the payload

[SWS_CM_10349] Making the Future ready

[SWS_CM_10357] Distinguishing errors from normal responses

[SWS_CM_10358] Identifying the right application error in a message with Message Type set to
RESPONSE (0x80)

[SWS_CM_10361]

[SWS_CM_10362] Raising checked errors for application errors

[SWS_CM_10370] Common header file for Application Errors

[SWS_CM_10371] Context of return checked errors
[SWS_CM_10372] Inclusion of Implementation Types header files

[SWS_CM_10373] Implementation Types header files existence

[SWS_CM_10374] Data Type definitions for AUTOSAR Data Types in Implementation Types
header files

[SWS_CM_10375] Implementation Types header file namespace

[SWS_CM_10382] Calling stop find service for already stopped finds

[SWS_CM_10388] Enabling of data accumulation for UDP data transmission

[SWS_CM_10389] Configuration of a data accumulation on a ProvidedServiceInstance for
transmission over UDP

5

306 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_10390] Configuration of a data accumulation on a RequiredSomeipServiceIn-
stance for transmission over UDP

[SWS_CM_11001] Mapping of OfferService method

[SWS_CM_11002] Assigning a DDS DomainParticipant to a Service Instance

[SWS_CM_11003] Assigning a DDS Topic and a DDS DataWriter to every Event in the Servi-
ceInterface

[SWS_CM_11004] Adding Service and Service Instance IDs to the DDS DomainParticipant’s
USER_DATA QoS Policy

[SWS_CM_11005] Mapping of StopOfferService method

[SWS_CM_11006] Mapping of FindService method

[SWS_CM_11007] Finding a DDS DomainParticipant suitable for performing client-side opera-
tions

[SWS_CM_11009] Discovering remote Service Instances through DDS DomainParticipants

[SWS_CM_11010] Mapping of StartFindService method

[SWS_CM_11011] Defining a DDS BuiltinParticipantListener

[SWS_CM_11012] Binding a BuiltinParticipantListener to a DDS DomainParticipant

[SWS_CM_11014] Unbinding a BuiltinParticipantListener from a DDS DomainParticipant

[SWS_CM_11015] Mapping Events to DDS Topics

[SWS_CM_11016] DDS Topic data type definition

[SWS_CM_11017] Mapping of Send method

[SWS_CM_11018] Mapping of Subscribe method

[SWS_CM_11019] Creating a DDS DataReader for event subscription

[SWS_CM_11020] Defining a DDS DataReaderListener

[SWS_CM_11021] Mapping of Unsubscribe method

[SWS_CM_11022] Mapping of GetSubscriptionState method

[SWS_CM_11023] Mapping of Update method

[SWS_CM_11025] Mapping of SetReceiveHandler method

[SWS_CM_11026] Mapping of UnsetReceiveHandler method

[SWS_CM_11027] Mapping of SetSubscriptionStateHandler method

[SWS_CM_11028] Mapping of UnsetSubscriptionStateHandler method

[SWS_CM_11041] DDS serialization of StdCppImplementationDataType of category
VALUE

[SWS_CM_11042] DDS serialization of enumeration data types

[SWS_CM_11043] DDS serialization of StdCppImplementationDataType of category
STRUCTURE

[SWS_CM_11044] DDS serialization of StdCppImplementationDataType of category
STRING with string shortName

[SWS_CM_11046] Encoding Format and Endianness of Strings in DDS

[SWS_CM_11047] DDS serialization of CppImplementationDataType of category VECTOR
5

307 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_11048] DDS serialization of CppImplementationDataType of category ARRAY

[SWS_CM_90001] Restrictions on executing methods

[SWS_CM_90101] Secure UDP and TCP channel creation for TLS, DTLS and SecOC

[SWS_CM_90102] Using secure TLS, DTLS and SecOC channels

[SWS_CM_90103] TLS secure channel for methods using reliable transport

[SWS_CM_90104] DTLS secure channel for methods using unreliable transport

[SWS_CM_90105] TLS secure channel for events using reliable transport

[SWS_CM_90106] DTLS secure channel for events using unreliable transport

[SWS_CM_90108] SecOC secure channel for methods using reliable transport

[SWS_CM_90109] SecOC secure channel for events using reliable transport

[SWS_CM_90110] SecOC secure channel for fields
[SWS_CM_90401]

[SWS_CM_90404]

[SWS_CM_90420] E2ECheckStatus of a sample

[SWS_CM_90421] ara::com:E2E_state_machine::E2Echeckstatus

[SWS_CM_90422] ara::com:E2E_state_machine::E2EState

[SWS_CM_90430]

[SWS_CM_90436] No checked errors for Fire and Forget method calls

Table B.8: Changed Traceables in 18-10

B.3.3 Deleted Traceables in 18-10

Number Heading

[SWS_CM_00262]

[SWS_CM_00263]

[SWS_CM_00305] Find Service Handler
[SWS_CM_00320] FutureStatus

[SWS_CM_00321] Future Class Template

[SWS_CM_00322] Future default constructor
[SWS_CM_00323] Future move constructor
[SWS_CM_00324] Future unwrapping constructor

[SWS_CM_00325] Move assignment operator

[SWS_CM_00326] Future::get

[SWS_CM_00327] Future::valid

[SWS_CM_00328] Future::wait

[SWS_CM_00329] Future::wait_for

5

308 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_00330] Future::wait_until

[SWS_CM_00331] Future::then

[SWS_CM_00332] Future::is_ready

[SWS_CM_00340] Promise Class Template

[SWS_CM_00341] Promise default constructor
[SWS_CM_00342] Promise move constructor
[SWS_CM_00343] Promise move assignment operator

[SWS_CM_00344] Promise::get_future

[SWS_CM_00345] Promise::set_value

[SWS_CM_00346] Promise::set_value, forwarding reference version

[SWS_CM_00347] Promise::set_exception

[SWS_CM_00348] Promise::set_future_dtor_handler

[SWS_CM_00401] Naming of data types by symbol

[SWS_CM_00412] Union Data Type

[SWS_CM_00413] Element specification typed by Base Type

[SWS_CM_00415] Element specification typed by Array

[SWS_CM_00416] Element specification typed by Structure

[SWS_CM_00417] Element specification typed by Union

[SWS_CM_00418] Element specification typed by Vector

[SWS_CM_00419] Element specification typed by Map

[SWS_CM_00420] Element specification typed by String Data Type with baseTypeSize of 8

[SWS_CM_00422] Reject data type definitions

[SWS_CM_00427] String Data Type with baseTypeSize of 16

[SWS_CM_00428] Element specification typed by String Data Type with baseTypeSize of 16

[SWS_CM_00448] Element specification typed by Variant

[SWS_CM_00451] Namespace specification for an ImplementationDataType of category VEC-
TOR

[SWS_CM_01033] Optional Class Template

[SWS_CM_01034] Optional default constructor

[SWS_CM_01035] Optional move constructor

[SWS_CM_01036] Optional copy constructor

[SWS_CM_01037] Optional destructor

[SWS_CM_01038] Optional move assignment operator

[SWS_CM_01039] Optional default copy assignment operator

[SWS_CM_01040] Optional function to get contained value

[SWS_CM_01041] Optional function to check availability of contained value

[SWS_CM_01042] Optional bool operator

[SWS_CM_01043] Optional reset function
5

309 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

Specification of Communication Management
AUTOSAR AP Release 19-03

4
Number Heading

[SWS_CM_01044]

[SWS_CM_10040]

[SWS_CM_10243] UTF-16BE Strings

[SWS_CM_10244] UTF-16LE Strings

[SWS_CM_10286] Encoding mismatch in input configurations

[SWS_CM_10351] Service application errors

[SWS_CM_10352] Definition of ServiceNotAvailableException

[SWS_CM_10353] Use of ServiceNotAvailableException

[SWS_CM_10354] Definition of ApplicationErrorException

[SWS_CM_10355] Use of ApplicationErrorException

[SWS_CM_10356] Definition of sub-classes of ApplicationErrorException

[SWS_CM_10359] Deserializing the payload - error response mesages

[SWS_CM_11045] Serialization of Strings of baseTypeSize 16

[SWS_CM_90432] Functionality of Sample Pointer

Table B.9: Deleted Traceables in 18-10

B.4 Constraint and Specification Item History of this document
according to AUTOSAR Release 19-03

B.4.1 Added Traceables in 19-03

none

B.4.2 Changed Traceables in 19-03

none

B.4.3 Deleted Traceables in 19-03

none

310 of 310
— AUTOSAR CONFIDENTIAL —

Document ID 717: AUTOSAR_SWS_CommunicationManagement

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other functional clusters
	5.1 Platform dependencies

	6 Requirements Tracing
	7 Functional specification
	7.1 General description
	7.1.1 Architectural concepts
	7.1.2 Design decisions
	7.1.3 Communication paradigms

	7.2 End-to-end communication protection for Events
	7.2.1 Publisher
	7.2.2 Subscriber - GetNewSamples
	7.2.2.1 Case 1 - there are one or more serialized samples
	7.2.2.2 Case 2 - there are no serialized samples

	7.2.3 Subscriber - Callback f
	7.2.4 Subscriber - Access to E2E information

	7.3 End-to-end communication protection for Methods
	7.4 Network binding
	7.4.1 SOME/IP Network binding
	7.4.1.1 Service Discovery
	7.4.1.2 Accumulation of SOME/IP messages
	7.4.1.3 Execution context of message reception actions
	7.4.1.4 Handling Events
	7.4.1.5 Handling Method Calls
	7.4.1.6 Handling Fields
	7.4.1.7 Serialization of Payload

	7.4.2 Signal-Based Network binding
	7.4.3 DDS Network binding
	7.4.3.1 Service Discovery
	7.4.3.2 Handling Events
	7.4.3.3 Handling Method Calls
	7.4.3.4 Handling Fields
	7.4.3.5 Serialization of Payload

	7.5 Security
	7.5.1 Access Control
	7.5.2 Secure Communication
	7.5.2.1 SOME/IP Network binding
	7.5.2.2 DDS

	7.6 Communication API
	7.6.1 Offer service
	7.6.2 Service skeleton creation
	7.6.3 Processing of service methods
	7.6.4 Registering get handlers for fields
	7.6.5 Registering set handlers for fields
	7.6.6 Find service
	7.6.7 Receive events
	7.6.7.1 Receive event by polling
	7.6.7.2 Receive event by getting triggered

	7.6.8 Call a service method
	7.6.9 Update notification events for fields
	7.6.10 Instance Specifier Translation

	8 Communication API specification
	8.1 C++ language binding
	8.1.1 API Header files
	8.1.1.1 Service header files
	8.1.1.2 Common header file
	8.1.1.3 Types header file
	8.1.1.4 Implementation Types header files

	8.1.2 API Data Types
	8.1.2.1 Service Identifier Data Types
	8.1.2.2 Event Related Data Types
	8.1.2.3 Method Related Data Types
	8.1.2.4 Generic Data Types
	8.1.2.5 Communication Payload Data Types
	8.1.2.6 Error Types
	8.1.2.7 E2E Related Data Types

	8.1.3 API Reference
	8.1.3.1 Object Creation via Construction Token
	8.1.3.2 Offer service
	8.1.3.3 Service skeleton creation
	8.1.3.4 Send event
	8.1.3.5 Provide a service method
	8.1.3.6 Processing of service methods
	8.1.3.7 Registering get handlers for fields
	8.1.3.8 Registering set handlers for fields
	8.1.3.9 Find service
	8.1.3.10 Service proxy creation
	8.1.3.11 Service proxy destruction
	8.1.3.12 Service event subscription
	8.1.3.13 Receive event
	8.1.3.14 Receive event by getting triggered
	8.1.3.15 Call a service method
	8.1.3.16 Get method for fields
	8.1.3.17 Set method for fields
	8.1.3.18 Instance Specifier Translation

	A Mentioned Class Tables
	B History of Specification Items
	B.1 Constraint and Specification Item History of this document according to AUTOSAR Release 17-10
	B.1.1 Added Traceables in 17-10
	B.1.2 Changed Traceables in 17-10
	B.1.3 Deleted Traceables in 17-10

	B.2 Constraint and Specification Item History of this document according to AUTOSAR Release 18-03
	B.2.1 Added Traceables in 18-03
	B.2.2 Changed Traceables in 18-03
	B.2.3 Deleted Traceables in 18-03

	B.3 Constraint and Specification Item History of this document according to AUTOSAR Release 18-10
	B.3.1 Added Traceables in 18-10
	B.3.2 Changed Traceables in 18-10
	B.3.3 Deleted Traceables in 18-10

	B.4 Constraint and Specification Item History of this document according to AUTOSAR Release 19-03
	B.4.1 Added Traceables in 19-03
	B.4.2 Changed Traceables in 19-03
	B.4.3 Deleted Traceables in 19-03

