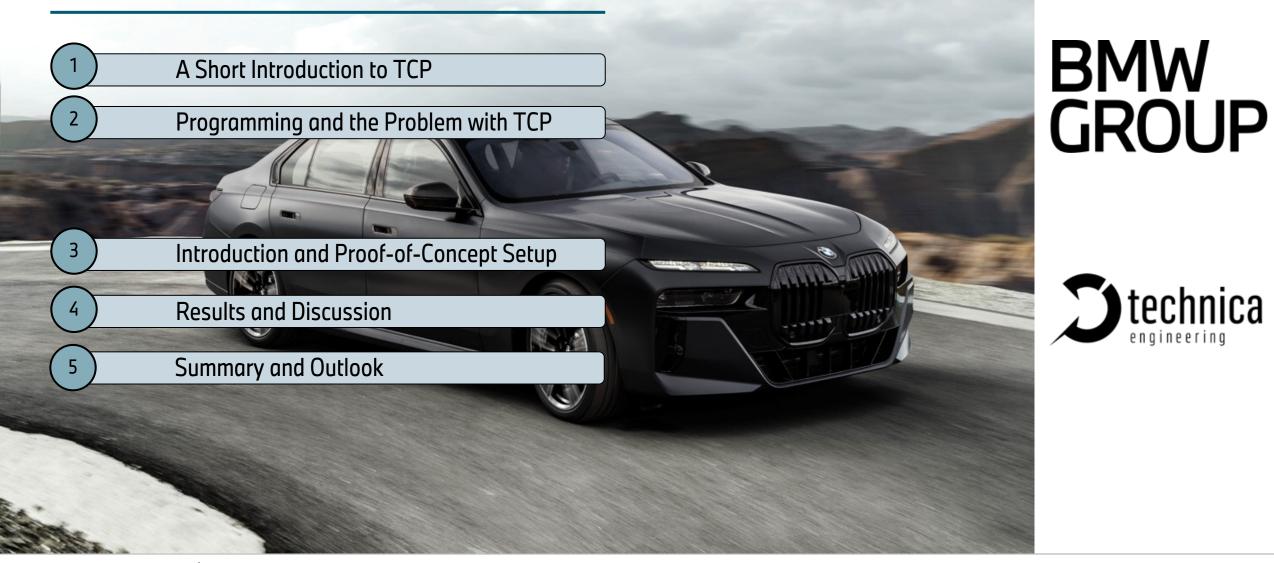
BMW GROUP


TCP AND AUTOMOTIVE ETHERNET – HOW TO RESOLVE THE EVERLASTING STRUGGLE.

KARL BUDWEISER (BMW AG) IAGO ÁLVAREZ, STEFAN LACHNER, LARS VÖLKER (TECHNICA ENGINEERING GMBH)

ETHERNET & IP @ AUTOMOTIVE TECHNOLOGY DAY

I. Álvarez, K. Budweiser, S. Lachner, L. Völker | Ethernet & IP @ Automotive Technology Day | 9-10 November 2022

AGENDA.

I. Álvarez, K. Budweiser, S. Lachner, L. Völker | Ethernet & IP @ Automotive Technology Day | 9-10 November 2022

technica

A short Introduction to TCP

Ethernet & IP @ Automotive Technology Day

A SHORT INTRODUCTION TO TCP. FUNDAMENTALS OF TCP.

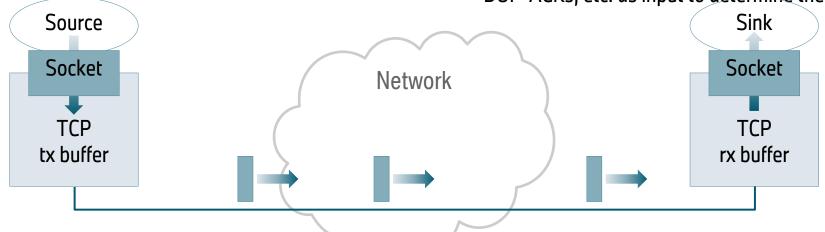
Connection oriented (end-to-end) protocol

- One sender, one receiver, bidirectional
- "Three way Handshake" to establish necessary states

Segmentation

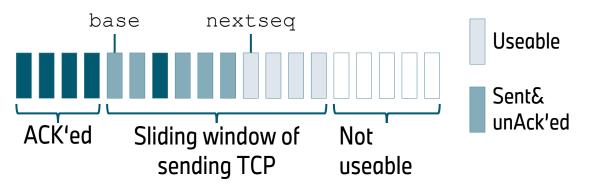
- Packetization & reassembly of stream data in tx/rx buffer
 Data Streaming
- Reliable, in-order delivery of packets, without duplications or loss
 - ightarrow Acknowledgements, sequence IDs, timeouts and clever retries

Pipelining


Permission for parallel packet transmission

Flow Control

- Control sending rate to prevent sender from overwhelming receiver
 - → Sliding window protocol that synchronizes to "receive window"

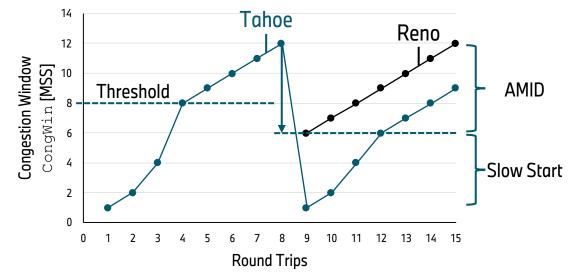

Congestion Control

- Avoid packet loss due to network congestion
 - Adaptive algorithm that takes timeouts, timing variations, DUP-ACKs, etc. as input to determine the congestion window

A SHORT INTRODUCTION TO TCP. FLOW CONTROL AND THE TCP SLIDING WINDOW PROTOCOL.

Basic principles of the TCP sliding window protocol:

- Pipelining: send window allows more than one "packet in-flight"
- Flow Control: continuous synchronization of send window to receive window using the RcvWindow field to slow down sender
- ACKs acknowledge all previous packets incl. the last received one according to the acknowledgment policy
 - DUP-ACKs hinting towards packet loss are possible
 - → 3 DUP-ACKs: Fast Retransmit of oldest unACK'ed packet
- Sender has a timer for each unACK'ed packet
 - → **RTO-Timeout:** unACK'ed packet is retransmitted


Acknowledgement policy:

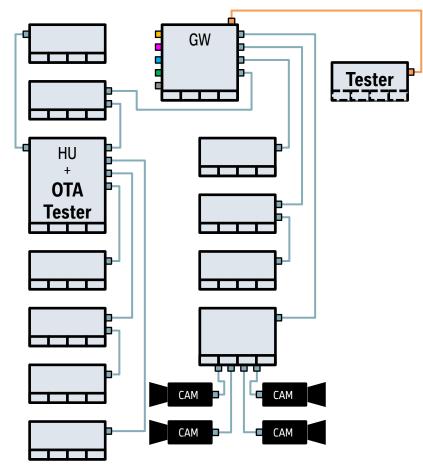
Event	Action of receiving TCP				
Reception of in-order segment	Initiate Delayed ACK and wait				
with expected sequence number	500ms for other in-order				
	segment(s), otherwise send ACK				
Reception of another in-order	Delayed ACK mechanism is still				
segment with seq=nextseq,	active				
while delayed ACK is active					
Reception of an out-of-order	Gap in data stream! Send DUP-				
segment with seq>nextseq	ACK acknowledging again next				
	expected segment (nextseq)				
Reception of an in-order segment	Send a cumulative ACK for all				
that fills a gap in the data stream	segments received w/o gap,				
	provided that seq=nextseq				

A SHORT INTRODUCTION TO TCP. PRINCIPLES OF TCP CONGESTION CONTROL.

TCP Congestion Control: dynamic sending-side **fine-tuning of the send window** based on direct and indirect feedback from both network (timeouts) and receiver (DUP-ACKs) to avoid network overload scenarios.

- Slow Start: CongWin++ for each ACK → exponential increase of congestion window until Threshold is reached
- AIMD: Additive Increase Multiplicative Decrease approach to be more careful&fair while searching for further bandwidth
 - Additive Increase: Increase CongWin by 1MSS per RTT (Round Trip Time) till an incident is detected
 - Multiplicative Decrease: Decrease CongWin and set Threshold = CongWin/2, when an incident is detected
- Reaction to incidents:
 - → 3 DUP-ACKs: Fast Recovery possible (see Reno) by setting CongWin = CongWin/2, as network is still able to deliver data
 - → Timeout: Set CongWin = 1 and begin Slow Start

I. Álvarez, K. Budweiser, S. Lachner, L. Völker | Ethernet & IP @ Automotive Technology Day | 9-10 November 2022


Programming and the Problem with TCP

Ethernet & IP @ Automotive Technology Day

BMW GROUP

VEHICLE PROGRAMMING AND THE PROBLEM WITH TCP. COMMONALITIES IN OBD AND OTA PROGRAMMING.

Fig. SP2018 Ethernet topology (previous generation)

Regular OBD programming procedure:

- Activation pins in OBD port of GW ECU are bridged physically:
 - → GW relays StatusOBD in SI OBD to signal Ethernet ECUs presence of an (external) tester
 - → Ethernet ECUs adapt to the external tester network by acquiring an (external) IP address
- GW announces IP addresses of Ethernet ECUs to the tester so that the acquired IP addresses can be linked with a VIN
- After changing the "Default Diagnostic Bus" from internal to external the tester can program Ethernet ECUs directly

Basic OTA programming procedure:

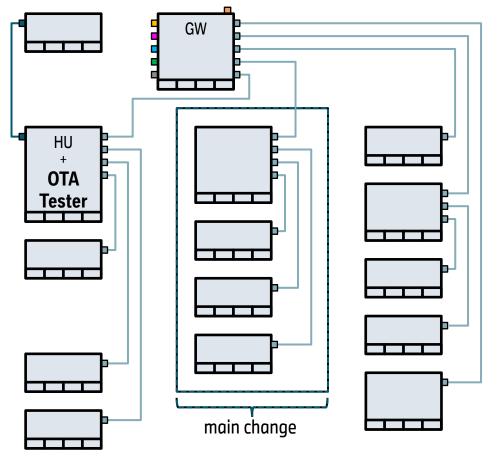
- OTA Tester requests form GW to mimic presence of an external tester by updating StatusOBD
 - ightarrow Regular OBD programming is started

VEHICLE PROGRAMMING AND THE PROBLEM WITH TCP. TYPICAL LIMITATIONS OF EMBEDDED TCP STACKS.

	No.	Time [s]	Delta [s]	Src	Dest	Protocol	Seq	Lenght	Seq.Next	ACK	Expert
	9787	06.376114		HU	GW	ТСР	60726	1460	62186	287	Bulk Transfer
	9788	06.376659	0.000545	GW	HU	TCP	287	0	287	62186	ACK for Bulk Transfer
	9789	06.377139	0.000480	HU	GW	ТСР	<mark>63646</mark>	1460	<mark>65106</mark>	287	[Loss of segment 62186]
	9790	06.377761	0.000622	GW	HU	ТСР	287	0	287	62186	[Dup ACK 9788#1]
	9791	06.419921	0.042160	GW	HU	DolP	287	20	307	62186	Multiple payload, Delay!
	9792	06.420241	0.000320	HU	GW	TCP	65106	0	65106	307	ACK & window probe
	9793	06.420778	0.000537	GW	HU	ТСР	307	65106	307	62186	[Dup ACK 9788#2]
	()										
4	9810	06.581574		HU	GW	ТСР	62186	1460	63646	387	[TCP Retransmission]
	9811	0.6582413	0.000939	GW	HU	ТСР	387	0	387	<mark>63646</mark>	[No Out-of-Order Support]

Findings in trace:

- tcp.analysis.zero_window and small RcvWindow = 2MSS
 - ightarrow Indication of inefficient bulk transfer towards GW
- tcp.analysis.lost_segment shows packet loss
- >1 UDS messages packetized although NODELAY = ON


General Root Causes:

- Dependencies between UDS and TCP due to general protocol design issues: UDS_Timeouts << RTO
- No 3 DUP-ACK due to small RcvWindow, if GW isn't sending
- Retransmission chains due to missing OoO support

I. Álvarez, K. Budweiser, S. Lachner, L. Völker | Ethernet & IP @ Automotive Technology Day | 9-10 November 2022

VEHICLE PROGRAMMING AND THE PROBLEM WITH TCP. ARCHITECTURAL LESSONS LEARNED.

Architectural differences in OTA and their implications:

- Flash sequence optimized for diagnostic-access via GW
 - Packets are distributed less evenly across ports/links, when partitioning tester elsewhere
- Switches w/o dedicated packet buffer per port/TC may introduce unpredictable side effects on other streams that are a little bursty
- Issues from mixed speed-grades for OTA Tester that did not turn up in previously generation due to less performant HW
 - Less traffic offer from OTA Tester
 - Unknowing implicit "traffic shaping" by receivers due to smaller RcvWindow of SP2018 ECUs

Minor deficiencies may have severe consequences in presence of the slightest changes, when TCP is neither fine-tuned nor adapted to automotive constraints!

Fig. SP2021 Ethernet topology (current generation)

100BASE-T1 -

ena

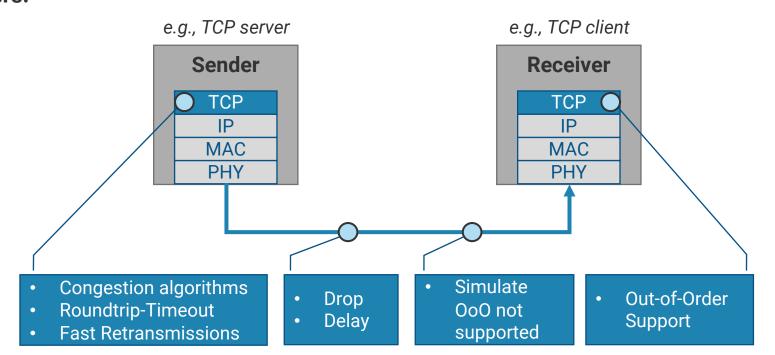
Introduction and PoC Setup

Ethernet & IP @ Automotive Technology Day

PROOF OF CONCEPT INTRODUCTION AND POC SETUP

A PoC setup (under Linux) has been built to cover the following needs:

Tune the following TCP parameters:


- Roundtrip-Timeout
- Out-of-Order support (0o0)
- Congestion algorithms
- Fast Retransmission support

Impairment simulation:

- Dropped segments
- Delayed segments
- OoO not supported

Evaluate effects on

- Round trip time / Latency
- Goodput

engi

Results and Discussion

Ethernet & IP @ Automotive Technology Day

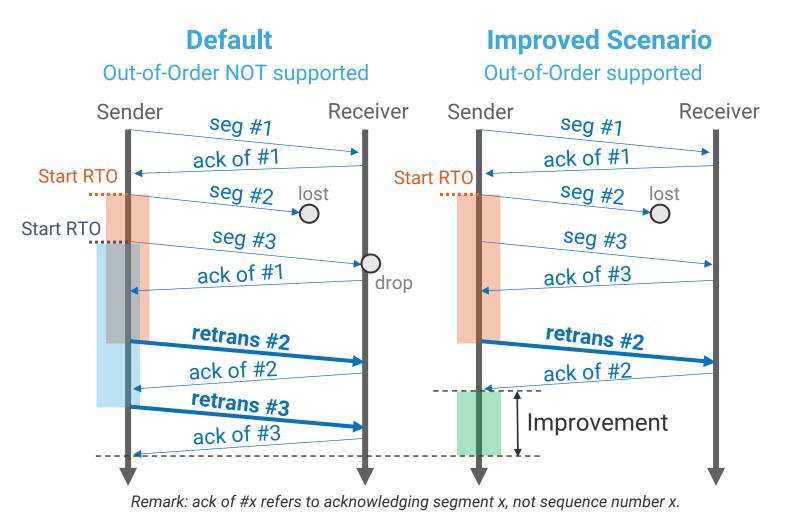
BIG IMPACT PROBLEMS IN EMBEDDED STACKS RESULTS AND DISCUSSION Out-of-Order supported

Issues

•

•

Out-of-Order NOT supported Out-of-Order supported 5E+06 Throughput (bits/s) 3E+06 2E+06 1E+06 **RTO_min = 200ms** RTO_min = 50 ms Avg Throughput: 5.8 Mbit/s 1E+06 ^{6E+06} throughput (bits/s) ^{4E+06} the second seco Retransmission chains due F+06 to missing 0o0 support. Time (s) 2E+06 RTO_min = 50ms Avg Throughput: 6.7 Mbit/s Avg Throughput: 3.5 Mbit/s Poor recovery speed / 1E+06 performance after loss. 4E+06 3E+06 4 2 6 2 3 5 Time (s) Time (s) Avg Throughput: 5.5 Mbit/s • Segment dropped by simulation 4 6

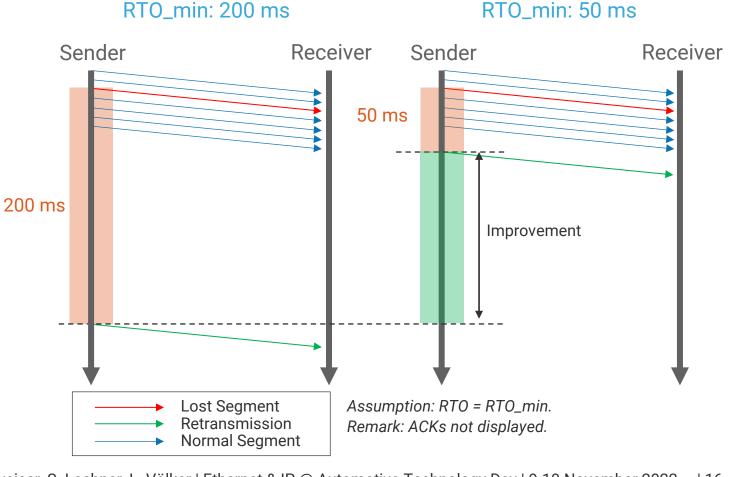

I. Álvarez, K. Budweiser, S. Lachner, L. Völker | Ethernet & IP @ Automotive Technology Day | 9-10 November 2022 114

Time (s)

OUT-OF-ORDER SUPPORT RESULTS AND DISCUSSION

Key Points

- The improved scenario enables the receiver to acknowledge the received 000 segments after a loss.
- Sender retransmits only what has been lost.
- OoO support prevents from loss chain effects, which are highly critical for transmission recovery.
- Selective Acknowledgment at the receiver provides additional advantages, if 0o0 is supported.
- Improvement depends on size of bytes in transit.



RETRANSMISSION TIMEOUT (RTO) RESULTS AND DISCUSSION

Key Points

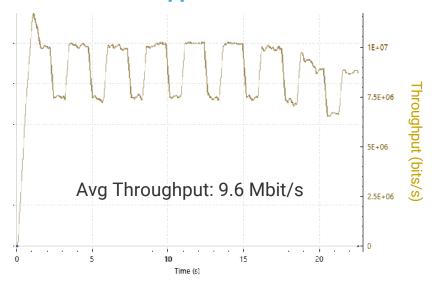
- RTO defines how long the sender waits for a segment to be ACKed before triggering a retransmission.
 RTO_min is the minimum RTO used by the stack.
- RTO_min > RTT (but similar range).
- In Linux, the standard RTO_min is 200 ms. This is too large for small networks with low latencies like in the automotive use-case.
- Lowering the RTO_min to a value of ~50 ms has been shown to be reasonable.

Improved Scenario

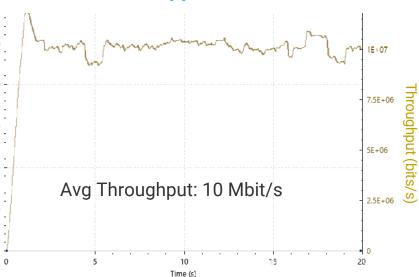
Default

SELECTIVE ACKNOWLEDGMENT (SACK) RESULTS AND DISCUSSION

Experimental Results


Latency

More than one "hole / gap" can be retransmitted within one RTT, thus improving latency.


Throughput

SACK features have proven to speed up recovery and smooth out data throughput after losses.

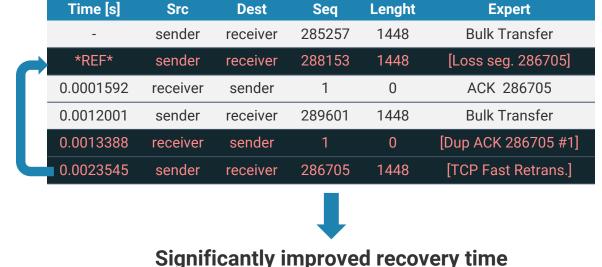
Out-of-Order supported + SACK OFF

FAST RETRANSMISSIONS AND RECOVERY (FRR) (1) RESULTS AND DISCUSSION

Key Points

- Upon receipt of a third Dup ACK, the sender assumes a segment loss and immediately retransmits it.
- Also, unsent segments within the window may be sent immediately after fast retransmissions.
- To trigger FRR, window size must be large enough: applications need to keep sending data. Typical issue with diagnostics and flash update.
- Selective Acknowledgment (SACK) can lead to FRR since every ACK is basically a Dup ACK.

Default **Improved Scenario Fast Retransmissions ON** Fast Retransmissions OFF e.g., 3 ms Expiration of 3 Dup ACKs to RTO to trigger trigger FRR retransmission RTO e.g., 200 ms Improvement

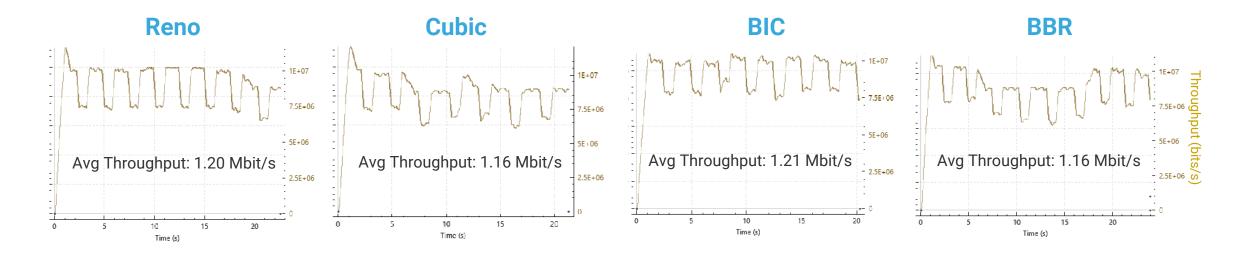


FAST RETRANSMISSIONS AND RECOVERY (FRR) (2) RESULTS AND DISCUSSION

- Due to a local network, no reordering is expected.
- Therefore, three Dup ACKs are not necessary to determine reordering.
- FRR have experimentally been triggered upon a second and even a first Dup ACK (faster recovery).

FRR after 3rd Dup ACK

Time [s] Src Dest Seq Lenght Expert receiver 5178049 1448 Bulk Transfer sender sender 1 ACK 5180945 receiver 0 [Loss seg. 5180945] *REF* sender receiver 5182393 1448 0.0014266 [Dup ACK 5180945 #1] receiver sender 0.0012798 5183841 **Bulk Transfer** sender receiver 1448 0.0014155 receiver sender [Dup ACK 5180945 #2] 0 0.0024309 5185289 **Bulk Transfer** sender receiver 1448 0.0025945 [Dup ACK 5180945 #3] receiver sender 0 0.0036629 [TCP Fast Retrans.] sender receiver 518095 1448



FRR after 1st Dup ACK

LOW IMPACT PARAMETERS IN EMBEDDED STACKS RESULTS AND DISCUSSION

- Impact of different congestion control algorithms was minor (selected examples see above).
- None of these algorithms can cope with retransmission chains.

OVERALL RECOMMENDATION RESULTS AND DISCUSSION

- RTO shall be tuned to 3-5x main function cycle of the TCP/IP stack: 50-70 ms.
- Out-of-Order shall be supported by TCP receiver to avoid unnecessary retransmissions.
- SACK can provide additional improvement.
- Fast Retransmissions shall be supported to enhance recovery time after segment loss.
 - \rightarrow Larger application messages and TCP window size. Otherwise, 3 Dup ACKs might never be seen.

Application Message:	e.g., UDS over DoIP						
TCP segments:	#1	#2	#3	#4	#5	#6	
Rcv Window:							
Loss criticality:	#1	#2	#3	#4	#5	#6	

Limitation

If drop occurs at the end of the message (seg #6) only RTO_min tuning helps to detect loss.

• Congestion control shall be optimized for automotive network properties

 \rightarrow No reordering expected, therefore no three Dup ACKs necessary to trigger fast retransmissions.

engi

Summary and Outlook

Ethernet & IP @ Automotive Technology Day

1111

SUMMARY & OUTLOOK CONCLUSION

- Embedded stacks without OoO support result in loss chains.
- Optimization with most performance impact:
 - **RTO_min tuning** improves TCP reaction time for retransmissions.
 - Out-of-Order support stops loss chains.
- Outlook:
 - Advanced traffic shaping can prevent loss due to switch congestion.
- Custom congestion control algorithm for automotive could improve reaction time.
- Investigation of application keepalives (e.g., SOME/IP magic cookie) after application data.

BMW GROUP

Karl Budweiser

Network Architect Karl.Budweiser@bmw.de +49-151-601-58073

BMW AG

80788 Munich Germany

https://www.linkedin.com/in/karl-budweiser-9b899a156/

lago Álvarez

System Engineer lago.Alvarez@technica-engineering.de

Technica Engineering GmbH Leopoldstraße 236 80807 Munich Germany

www.linkedin.com/in/iago-alvarez